表紙
市場調查報告書
商品編碼
928648

生質塑膠:2020-2025年

Bioplastics 2020-2025

出版日期: | 出版商: IDTechEx Ltd. | 英文 168 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

儘管人們日益意識到塑膠引起的環境問題,但全球塑膠產量仍在增長,預計到2030年將生產超過6億噸塑膠。生物塑膠是一種由生物質製成的聚合物,具有成為這個解決策略的可能性。其中許多是可生物降解的,並由可再生資源製成,這可能有助於減輕全球對化石資源的依賴。儘管具有這些優點,但由於成本和規模等障礙,它們仍未得到廣泛應用,但情況開始發生變化。合成生物學領域的創新使這些聚合物更便宜。由於客戶越來越意識到石油基聚合物對氣候變化的影響,因此該領域正在重新定位。

本報告提供生質塑膠的技術·用途·市場調查,彙整生質塑膠定義和概要,主要的類型·特徵·用途,技術·革新趨勢,利用案例,主要經營者的配合措施,市場成長的各種影響因素分析,製造能力·製造數量的估計·預測等資料。

第1章 摘要整理

第2章 簡介

  • 調查範圍
  • 縮寫·用語·定義
  • 生質塑膠是什麼?
  • 生物分解性
  • 聚合物的回收
  • 可利用的生物基單體
  • 來自單糖的生物基聚合物
  • 來自植物油的生物基聚合物
  • 社會·經濟·環境方面的大趨勢
  • 聚合物的種類:熱塑性樹脂·熱固性樹脂·合成橡膠
  • 生質塑膠:全球生產能力
  • 環境成本:塑膠污染的擴大
  • 四個替代推進因素等

第3章 合成生物基聚合物

  • 聚酯:聚乳酸
    • 聚乳酸 (PLA) 是什麼?
    • PLA的製造
    • PLA的生物分解
    • 生物分解:PLA的水解
    • 丙交酯/ PLA供應商
    • PLA的現在及未來的用途
    • PLA:SWOT分析
    • PLA的生命週期的機會
  • 聚酯:其他聚酯
    • 簡介
    • 可利用的生物基聚酯
    • 生物基聚酯的供應商
    • 聚乙烯對苯二甲酸酯(PET)
    • 生物基MEG及PET:單體生產
    • 生物基MEG及PET:聚合物用途
    • 生物基PDO及PTT:單體生產
    • 生物基PDO及PTT:聚合物用途
    • 生物基BDO及PBT:單體生產
    • 生物基BDO及PBT:聚合物用途
    • 生物基的對苯二甲酸
    • 生物基琥珀酸和PBS:單體生產
    • 生物基的琥珀酸和PBS:聚合物用途
    • 聚乙烯呋喃酸酯
    • 生物基的夫喃甲醇化合物:5-HMF
    • 生物基FDCA及PEF:單體生產
    • 生物基FDCA及PEF:聚合物用途
  • 聚醯胺
    • 簡介
    • 可利用的生物基單體·聚醯胺
    • 生物基單體及聚醯胺的供應商
    • C6:己二酸·己二胺·己內醯胺
    • C10:癸二酸/癸二胺
    • C11:11-氨基十一烷酸
    • C12:十二烷二酸
    • 聚醯胺的特性·用途·機會
  • 其他聚合物
    • 其他生物基聚合物
    • 聚酯多元醇·聚氨酯·多異氰酸酯
    • Cargill
    • Covestro·Reverdia
    • BASF
    • Covestro
    • 生物基聚烯
    • Braskem
    • Roquette
    • 三菱化學:Durabio

第4章 天然生質塑膠·生物基聚合物

  • PHA (聚羥基烷酯)
    • 簡介
    • 供應商
    • 微結構和特性
    • 一般的特性
    • 生物合成途徑
    • 發酵·回收·精製
    • SWOT分析
    • 用途
    • 機會
    • 用途:現在和未來
    • 風險
    • 生產設備
    • Newlight Technologies
    • Danimer Scientific
  • 多糖類
    • 纖維素
    • 奈米纖維素
    • 奈米纖維素的形態
    • 奈米纖維素的用途
    • CelluForce
    • Exilva計劃
    • 熱塑性澱粉的製造
    • Plantic
    • Loliware
    • Notpla
    • Evoware
  • 蛋白質:合成蜘蛛絲
    • 沒有蜘蛛的蜘蛛絲
    • 合成蜘蛛絲絲的製造
    • 蜘蛛絲的用途
    • Bolt Threads
    • Spiber
    • Kraig Biocraft Laboratories

第5章 生物邏輯系統的設計和工程

  • 生物邏輯系統的設計和工程
  • Central dogmatism的manipyureshon
  • 合成生物學寬廣的範圍
  • 生物製造業
  • 合成生物學技術與工具
  • DNA合成
  • 遺傳基因編輯
  • 所謂CRISPR
  • 菌株的建立和最佳化
  • 產業規模的微生物菌株的開發架構
  • 規模的課題

第6章 市場趨勢·分析

  • 全球塑膠生產量的展望
  • 拋棄式塑膠污染相關認識
  • 可生物降解的塑膠是解決方案嗎?
  • 碳排放削減指令
  • 原料競爭:食品還是燃料(或塑膠)?
  • 原油價格的影響
  • 消費者對綠色產品的付款接受度
  • 生質塑膠的生產能力
  • 生質塑膠的生產能力:各市場區隔
  • 生質塑膠的生產能力:各地區
  • 生質塑膠:汽車用途
  • 生質塑膠:加工性
  • 生質塑膠:包裝的適用性
  • 生質塑膠:軟質包裝的適用性
  • 生質塑膠:硬質包裝的適用性
  • 生質塑膠生產能力預測:各材料
  • 生質塑膠生產量的預測:各類聚合物
  • 生質塑膠的預測:各地區
  • 市場成長的促進因素·抑制因素
  • 轉向生物基塑膠:為什麼這麼慢?
目錄

Title:
Bioplastics 2020-2025
A technology and market perspective for biobased polymers.

Bioplastics are finally becoming a viable alternative to fossil-based plastics.

Despite growing awareness of the environmental problems caused by plastics, global plastics production is still increasing, with the world forecast to produce over 600 million tonnes of plastic by 2030. Bioplastics, a class of polymers manufactured from biomass, could be a solution. Many are biodegradable and, because they are made from renewable resources, they could help ease the world's dependency on fossil-based resources. Despite these advantages, bioplastics have not yet seen widespread application due to barriers such as cost and scale. The fall in oil prices in 2014 exacerbated the situation, with bioplastics companies struggling to compete with extremely cheap petrochemically derived plastics.

However, the situation is beginning to change. Thanks in part to innovations in synthetic biology, these polymers are becoming more affordable to manufacture. Increasing customer awareness of the climate impact of petrochemically derived polymers as well as a global shift in demand away from plastics with a lifespan of several hundreds of years has resulted in renewed focus on this previously inaccessible area.

Technologies, applications and case studies

There are currently many different types of bioplastics. These range from direct substitutes for non-biodegradable fossil-based plastics, such as Coca-Cola's PlantBottle produced from partially biosourced polyethylene terephthalate (PET), to completely biodegradable plastics made through innovative production methods, such as polyhydroxyalkanoates (PHAs) produced through bacterial fermentation. This report takes an in-depth look at the diverse array of bioplastics and biobased polymers, from established to nascent, providing detailed case studies of companies developing cutting edge technologies for producing bioplastics. An overview of the latest tools utilised in the field of synthetic biology is provided, with focus on CRISPR, protein and organism engineering and commercial scale fermentation. Furthermore, this report cuts through the marketing hype to offer a detailed insight into some of the foremost biobased polymer companies leading global innovation and bringing potentially disruptive products to market.

Market outlook

This report provides an overview of the technological advancements in biobased polymers to date, a comprehensive insight into the drivers and restraints affecting synthesis and production at scale for all key application areas discussed and provides case studies and SWOT analyses for the most prolific disrupters developing biobased polymers.

Key questions answered in this report:

  • What are bioplastics and how can they be used?
  • Which bioplastics are gaining the most interest throughout the industry?
  • Who are the key players developing bioplastics?
  • What are the key drivers and restraints of market growth?
  • How are traditional plastics being disrupted by bioplastics?
  • How will bioplastic production capacity increase from 2020 to 2025?

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Global plastics production to pass 600 million tonnes by 2030
  • 1.2. Awareness around single use plastic pollution
  • 1.3. What are bioplastics?
  • 1.4. Navigating biobased polymers from monosaccharides
  • 1.5. Navigating biobased polymers from vegetable oils
  • 1.6. Biobased value add: The Green Premium...
  • 1.7. ...versus the price of Brent Crude
  • 1.8. The price of oil affects the size of the Green Premium
  • 1.9. The four drivers for substitution
  • 1.10. Drivers and restraints of market growth
  • 1.11. A rapidly growing but uncertain technology
  • 1.12. Global production capacities of bioplastics (2019)
  • 1.13. Global production capacities of bioplastics by market segment (2019)
  • 1.14. Global production capacities of bioplastics by region (2019)
  • 1.15. Bioplastics: forecast production capacity by material
  • 1.16. Switching to biobased plastics: why so slow?

2. INTRODUCTION

  • 2.1. Scope of the report
  • 2.2. List of acronyms
  • 2.3. Key terms and definitions
  • 2.4. What are bioplastics?
  • 2.5. The three main families of bioplastics
  • 2.6. What does "biodegradable" mean?
  • 2.7. Recycling polymers
  • 2.8. The range of available biobased monomers
  • 2.9. Navigating biobased polymers from monosaccharides
  • 2.10. Navigating biobased polymers from vegetable oils
  • 2.11. Social, economic and environmental megatrends
  • 2.12. A rapidly growing but uncertain technology
  • 2.13. Global supply of plastics has grown exponentially
  • 2.14. Polymer types: thermoplastics, thermosets and elastomers
  • 2.15. Global production capacities of bioplastics (2019)
  • 2.16. Environmental costs: the rising tide of plastic pollution
  • 2.17. Biobased value add: The Green Premium...
  • 2.18. ...versus the price of Brent Crude
  • 2.19. The four drivers for substitution

3. SYNTHETIC BIOBASED POLYMERS

  • 3.1. Polyesters: polylactic acid
    • 3.1.1. What is polylactic acid (PLA)?
    • 3.1.2. Production of polylactic acid
    • 3.1.3. Lactic acid: bacterial fermentation or chemical synthesis?
    • 3.1.4. Optimal lactic acid bacteria strains for fermentation
    • 3.1.5. Engineering yeast strains for lactic acid fermentation
    • 3.1.6. Fermentation, recovery and purification
    • 3.1.7. Polymerisation of lactide and microstructures of PLA
    • 3.1.8. Biodegradation of polylactic acid
    • 3.1.9. Biodegradation: hydrolysis of PLA
    • 3.1.10. Suppliers of lactide and polylactic acid
    • 3.1.11. Current and future applications of polylactic acid
    • 3.1.12. Polylactic acid: a SWOT analysis
    • 3.1.13. Opportunities in the lifecycle of PLA
  • 3.2. Polyesters: other polyesters
    • 3.2.1. Introduction to polyesters from diacids and diols
    • 3.2.2. The range of available biobased polyesters
    • 3.2.3. Biobased polyester suppliers
    • 3.2.4. Polyethylene terephthalate (PET)
    • 3.2.5. Biobased MEG and PET: monomer production
    • 3.2.6. Biobased MEG and PET: polymer applications
    • 3.2.7. Biobased PDO and PTT: monomer production
    • 3.2.8. Biobased PDO and PTT: polymer applications
    • 3.2.9. Biobased BDO and PBT: monomer production
    • 3.2.10. Biobased BDO and PBT: polymer applications
    • 3.2.11. Biobased terephthalic acid
    • 3.2.12. Biobased succinic acid and PBS: monomer production
    • 3.2.13. Biobased succinic acid and PBS: polymer applications
    • 3.2.14. Polyethylene furanoate
    • 3.2.15. Biobased furfural compounds: 5-HMF
    • 3.2.16. Biobased FDCA and PEF: monomer production
    • 3.2.17. Biobased FDCA and PEF: polymer applications
  • 3.3. Polyamides
    • 3.3.1. Introduction to biobased polyamides
    • 3.3.2. Range of available biobased monomers and polyamides
    • 3.3.3. Biobased monomer and polyamide suppliers
    • 3.3.4. C6: adipic acid, hexamethylenediamine and caprolactam
    • 3.3.5. C10: sebacic acid and decamethylenediamine
    • 3.3.6. C11: 11-aminoundecanoic acid
    • 3.3.7. C12: Dodecanedioic acid
    • 3.3.8. Polyamide properties, applications and opportunities
  • 3.4. Other polymers
    • 3.4.1. Other biobased polymers
    • 3.4.2. Polyester polyols, polyurethanes and polyisocyanates
    • 3.4.3. Cargill: vegetable oil derived polyols
    • 3.4.4. Covestro and Reverdia: Impranil eco Succinic acid based polyester polyols
    • 3.4.5. BASF: Sovermol 830 Castor oil derived polyether-ester polyol
    • 3.4.6. Covestro: PDI and Desmodur eco N 7300 polyisocyanurate
    • 3.4.7. Biobased polyolefins
    • 3.4.8. Biobased polyolefins: challenging but in demand
    • 3.4.9. Braskem: I'm green Polyethylene
    • 3.4.10. Biobased isosorbide as a comonomer
    • 3.4.11. Roquette: POLYSORB isosorbide
    • 3.4.12. Mitsubishi Chemical Corporation: Durabio

4. NATURALLY OCCURRING BIOPLASTICS AND BIOBASED POLYMERS

  • 4.1. Polyesters: poly(hydroxyalkanoates)
    • 4.1.1. Introduction to poly(hydroxyalkanoates)
    • 4.1.2. Suppliers of PHAs
    • 4.1.3. PHAs: microstructures and properties
    • 4.1.4. Properties of common PHAs
    • 4.1.5. Biosynthetic pathways to PHAs
    • 4.1.6. Fermentation, recovery and purification
    • 4.1.7. PHAs: a SWOT analysis
    • 4.1.8. Applications of PHAs
    • 4.1.9. Opportunities in PHAs
    • 4.1.10. Applications of PHAs: present and future
    • 4.1.11. Risks in PHAs
    • 4.1.12. PHAs are only made in small quantities
    • 4.1.13. PHA production facilities
    • 4.1.14. Newlight Technologies
    • 4.1.15. Danimer Scientific
  • 4.2. Polysaccharides
    • 4.2.1. Cellulose
    • 4.2.2. Nanocellulose
    • 4.2.3. Forms of nanocellulose
    • 4.2.4. Nanocellulose up close
    • 4.2.5. Applications of nanocellulose
    • 4.2.6. CelluForce
    • 4.2.7. The Exilva project
    • 4.2.8. Manufacturing thermoplastic starch
    • 4.2.9. Plantic
    • 4.2.10. Seaweed extracts as a packaging material
    • 4.2.11. Loliware
    • 4.2.12. Ooho! by Notpla
    • 4.2.13. Evoware
  • 4.3. Proteins: synthetic spider silk
    • 4.3.1. Spider Silk Without Spiders
    • 4.3.2. Manufacturing synthetic spider silk
    • 4.3.3. Applications for Spider Silk
    • 4.3.4. Bolt Threads
    • 4.3.5. Spiber
    • 4.3.6. Kraig Biocraft Laboratories

5. DESIGNING AND ENGINEERING BIOLOGICAL SYSTEMS

  • 5.1. Designing and engineering biological systems
  • 5.2. Manipulating the central dogma
  • 5.3. The vast scope of synthetic biology
  • 5.4. Cell factories for biomanufacturing: a range of organisms
  • 5.5. The techniques and tools of synthetic biology
  • 5.6. DNA synthesis
  • 5.7. Gene editing
  • 5.8. What is CRISPR?
  • 5.9. Strain Construction and optimisation
  • 5.10. Framework for developing industrial microbial strains
  • 5.11. The Problem with Scale

6. MARKET TRENDS AND ANALYSIS

  • 6.1. Global plastics production to pass 600 million tonnes by 2030
  • 6.2. Awareness around single use plastic pollution
  • 6.3. Are biodegradable plastics the solution?
  • 6.4. Reduced carbon dioxide emissions directives
  • 6.5. Feedstock competition: food or fuel (or plastics)?
  • 6.6. The price of oil affects the size of the Green Premium
  • 6.7. Will consumers pay more for green products?
  • 6.8. Global production capacities of bioplastics (2019)
  • 6.9. Global production capacities of bioplastics by market segment (2019)
  • 6.10. Global production capacities of bioplastics by region (2019)
  • 6.11. Bioplastics and automotive applications
  • 6.12. Bioplastics: processability
  • 6.13. Bioplastics: application in packaging
  • 6.14. Bioplastics: applicability for flexible packaging
  • 6.15. Bioplastics: applicability for rigid packaging
  • 6.16. Bioplastics: forecast production capacity by material
  • 6.17. Bioplastics: forecast production by polymer type
  • 6.18. Bioplastics: forecast by region
  • 6.19. Drivers and restraints of market growth
  • 6.20. Switching to biobased plastics: why so slow?