表紙
市場調查報告書
商品編碼
927158

環境氣體感測器:2020-2030年

Environmental Gas Sensors 2020-2030

出版日期: | 出版商: IDTechEx Ltd. | 英文 198 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

預估環境感測器整體市場規模將於2030年超過38億美元。

本報告研究環境氣體感測器市場,彙整基於各種技術的氣體感測器分析 (Pellistor氣體感測器、紅外線(IR)氣體感測器、金屬氧化物半導體(MOS)氣體感測器、電化學(EC)氣體感測器、光學粒子監控(OPM)氣體感測器、光電檢測器(PID)、非對稱場離子移動譜(FAIMS)、石英晶體微天平(QCM)、小型氣體層析儀(GC));並提供6大主要市場區分分析 (汽車、空氣清淨機、智慧裝置 (行動)、智慧居家、智慧城市、可穿戴式),以及競爭分析、市場預測等情報。

第1章 摘要整理

第2章 簡介

第3章 汙染感測用小型氣體感測器

  • 目前的汙染監控裝置價格昂貴
  • 氣體感測器提供了替代方案
  • 感測器產業
  • 化學感測器歷史
  • 可檢測空氣汙染物質濃度
  • 工業設施的環境感測
  • 可利用的主要氣體感測器靈敏度
  • 小型氣體感測器的轉移
  • 使用MEMS製造的感測器製造
  • 傳統感測器和小型感測器的比較(1)
  • 小型感測器技術的比較
  • Pellistor氣體感測器
  • Pellistor氣體感測器的小型化
  • 金屬氧化物半導體(MOS)氣體感測器
  • N型 vs. P型MOS氣體感測器;其他

第4章 環境感測器市場競爭分析

  • 氣體感測器價值鏈
  • 氣體感測器製造商名單
  • 感測器製造商的商業模式
  • 波特五力分析
  • 環境監控裝置的品質保證
  • 10家製造商SWOT分析
  • 感測器製造商未來課題

第5章 行動裝置的感測器

  • 行動裝置產業
  • 適用於行動裝置的檢測原理
  • 氣體感測數據的消費者介面
  • 智慧型手機的感測器整合課題
  • 行動裝置部門的未來市場機會

第6章 可穿戴式感測器

  • 可穿戴式技術產業
  • 腕部配戴的感測器整合
  • 可穿戴式感測器技術要件
  • NotAnotherOne
  • 作為模組化腕帶一部分的可穿戴式感測器
  • 時尚配件的環境感測器整合
  • H2S專業氣體檢測器錶
  • 可穿戴式感測器未來機會

第7章 測量室內空氣品質的感測器

  • 室內空氣品質
  • 室內空氣汙染物質來源
  • CO2暴露對決策的影響
  • 居家和辦公室監控:連網環境
  • 目前的智慧居家監控供應商
  • 直接HVAC系統的感測器
  • 建築物內的HVAC系統
  • IAQ監控未來機會
  • 室內空氣品質測定課題

第8章 空氣清淨機的感測器

  • 全球空氣清淨機市場
  • 空氣淨化方法
  • 適用於空氣清淨機的小型檢測原理
  • 室內空氣品質監控課題

第9章 汽車的感測器

  • 汽車汙染:全球流行
  • 保護乘客的空氣品質感測器
  • 墨西哥城的空氣汙染監控車載感測器
  • 汽車氣體檢測課題
  • 汽車氣體感測器未來機會

第10章 智慧城市的感測器

  • 智慧城市簡介
  • 固定 vs. 行動感測網路
  • 個人 vs. 私人網路
  • 目前的都市整體污染監控計畫
  • 目前智慧城市空氣監控計畫
  • 空氣品質測定值的計算
  • 環境汙染物質的運輸基礎檢測
  • 空中汙染檢測
  • 行動監控:自行車的感測器
  • 透過氣體感測器的交通監控
  • Array of things計畫:芝加哥
  • 室外感測器節點結構
  • 智慧城市監控課題
  • 智慧城市的環境感測器未來機會

第11章 其他應用

  • 手持式環境監測
  • AirCasting

第12章 市場預測

  • 預測細節和假設
  • 按市場區分的細項
  • 市場預測:按市場區分的銷售台數
  • 市場預測:按市場區分的市場額
  • 按檢測原理的銷售台數預測
  • 按檢測原理的市場額預測
  • 智慧裝置的感測器:數量
  • 智慧裝置的感測器:收益
  • 可穿戴式的感測器:數量
  • 可穿戴式的感測器:收益
  • 空氣清淨機的感測器:數量
  • 空氣清淨機的感測器:收益
  • 智慧城市的感測器:數量
  • 智慧城市的感測器:收益
  • 智慧居家的感測器:數量
  • 智慧居家的感測器:收益
  • 汽車的感測器:數量
  • 汽車的感測器:收益
  • 其他應用:數量
  • 其他應用:收益
  • 結論
目錄

"The total market for environmental sensors will be over $3.8 billion by 2030."

Poor air quality causes more deaths annually than HIV/AIDS and malaria combined. A lack of low-cost environmental monitoring equipment prevents individuals from taking action to improve air quality. Currently environmental monitoring methods are expensive and provide low spatial coverage, making their usefulness to individuals limited.

Sensors are based on tried and tested technology, new methods of manufacture are enabling smaller, lower power and more selective sensors. This has led to a tipping point in the industry, enabling the integration of sensors into low cost devices and into everyday consumer electronics such as mobile phones and wearable devices. In the future, a range of detection principles will be used to assess the wide range of pollutants in the environment.

At the same time, sensors will play a key role in IoT development and will be used extensively in smart home and smart city programmes. Heating, ventilation and air conditioning (HVAC) systems, air purifiers, smart windows and other applications will employ sensors to improve the quality of life of individuals across the world. We expect a growing market for gas sensors used in smart homes and smart cities.

In this report, we forecast the market for environmental gas sensors from 2020 to 2030. The atmospheric pollutants under examination include CO2, volatile organic compounds, NOx, Ammonia, SO2 and CO. Many pollutants exist at similar concentrations in the region of parts per billion (ppb). Consequently, there is a greater need for selective sensors in environmental monitoring. Another focus is the particle pollutant of micron size, as the concern of smog is growing.

This report covers gas sensors based on techniques of:

  • Pellistor gas sensor
  • Infrared (IR) gas sensor
  • Metal oxide semiconductor (MOS) gas sensor
  • Electrochemical (EC) gas sensor
  • Optical particle monitor (OPM) gas sensor
  • Photoionization detectors (PID)
  • Field Asymmetric Ion Mobility Spectrometry (FAIMS)
  • Quartz crystal microbalance (QCM)
  • And miniaturised gas chromatograph (GC)

These techniques were compared with the traditional methods such as ultraviolet adsorption or filter dynamics measurement system. Gas sensors present an opportunity to attain good spatial coverage on environmental information, unobtainable with traditional monitoring methods. Microelectromechanical systems and screen-printing techniques open the door to miniaturising these sensors, which is the key for the future use of these gas sensors

The market forecast is based on six major market segments:

  • automotive
  • air purifier
  • smart devices (mobile)
  • smart home
  • smart city
  • and wearables.

The environmental sensor market is currently dominated by the automotive industry, where sensors are used to automate air flow into the driver's compartment. Over the coming years, IDTechEx expect to see large increases in sales across several new markets, primarily to the mobile device and air purifier industries.

We provide a comprehensive study on current available devices that use gas sensors to monitor environment, including sensors in mobile devices, wearables, air purifiers, automobiles, smart cities, and to measure indoor air quality.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. New technology is unlocking the market
  • 1.2. Comparison of miniaturised sensor technologies
  • 1.3. Trends by detection principles
  • 1.4. The gas sensor value chain
  • 1.5. Key players in each sensor type
  • 1.6. List of gas sensor manufacturers
  • 1.7. Major market segments

2. INTRODUCTION

  • 2.1. The global challenge of air pollution
  • 2.2. Effects of outdoor air pollution
  • 2.3. Indoor air pollution is also an issue
  • 2.4. The seven most common atmospheric pollutants
  • 2.5. International air quality standards
  • 2.6. Need for environmental monitoring
  • 2.7. Types of environmental sampling
  • 2.8. Potential uses for low cost air quality monitors

3. MINIATURIZED GAS SENSORS FOR POLLUTION SENSING

  • 3.1. Current pollution monitoring instruments are costly
  • 3.2. Gas sensors offer an alternative
  • 3.3. Sensor industry
  • 3.4. History of chemical sensors
  • 3.5. Concentrations of detectable atmospheric pollutants
  • 3.6. Environmental sensing in industrial facilities
  • 3.7. Sensitivity for main available gas sensors
  • 3.8. Transition to miniaturised gas sensors
  • 3.9. Sensor fabrication using MEMS manufacturing
  • 3.10. Comparison between classic and miniaturised sensors (1)
  • 3.11. Comparison of miniaturised sensor technologies
  • 3.12. Pellistor gas sensors
  • 3.13. Miniaturisation of pellistor gas sensors
  • 3.14. Metal oxide semiconductors (MOS) gas sensors
  • 3.15. N-type vs. p-type MOS gas sensors
  • 3.16. MOS advancements and drawbacks
  • 3.17. Methods to improve the specificity of MOS sensors
  • 3.18. Miniaturisation Of MOS Gas Sensors
  • 3.19. Suppliers for MOS sensors
  • 3.20. BOSCH Sensortec MOS sensors
  • 3.21. Alphasense MOS sensors
  • 3.22. AMS MOS sensors
  • 3.23. Alternative MOS sensors: conducting polymer-based gas sensors
  • 3.24. Electrochemical (EC) gas sensors
  • 3.25. Specificity of EC sensors
  • 3.26. Flat electrochemical sensors
  • 3.27. Miniaturisation of electrochemical gas sensors
  • 3.28. Suppliers for Electrochemical sensors
  • 3.29. Infrared gas sensors
  • 3.30. Sensitivity, selectivity and interference of IR gas sensors
  • 3.31. Light source and detector
  • 3.32. list of common gases that are detected by IR gas sensors
  • 3.33. Laser suppliers for gas sensing (1)
  • 3.34. Laser suppliers for gas sensing (2)
  • 3.35. Suppliers for IR gas sensors
  • 3.36. Senseair IR gas sensors
  • 3.37. Redfinch project: prototype of micro IR gas sensor
  • 3.38. Mirsense: multiSense
  • 3.39. THzDC
  • 3.40. Electronic nose (e-Nose)
  • 3.41. Algorithms and software to solve the multiple gas detection
  • 3.42. Alpha Szenszor Inc.
  • 3.43. Airsense: PEN3 portable electronic nose
  • 3.44. UST triplesensor-the artificial nose
  • 3.45. Sensigent: Cyranose Electronic Nose
  • 3.46. Aryballe
  • 3.47. Some of the commercial eNose
  • 3.48. Photoionization detectors (PID)
  • 3.49. PID lamps
  • 3.50. Suppliers for PID sensors
  • 3.51. Other technology: Ion Mobility Spectrometry (IMS)
  • 3.52. Other technology: Field Asymmetric Ion Mobility Spectrometry (FAIMS)
  • 3.53. Other technology: Miniaturised GC
  • 3.54. Other technology: Quartz crystal microbalance (QCM)
  • 3.55. Current research in gas sensors: carbon nanotubes
  • 3.56. Current research in gas sensors: zeolites
  • 3.57. Current research in gas sensors: graphene
  • 3.58. Energy harvesting technologies for gas sensors
  • 3.59. Limitations of gas sensing devices

4. COMPETITIVE ANALYSIS OF THE ENVIRONMENTAL SENSOR MARKET

  • 4.1. The gas sensor value chain
  • 4.2. List of gas sensor manufacturers
  • 4.3. Sensor manufacturer business models
  • 4.4. Porters' five force analysis of industry
  • 4.5. Quality assurance for environmental monitoring equipment
  • 4.6. SWOT analysis of 10 manufacturers
  • 4.7. Future challenges for sensor manufacturers

5. SENSORS IN MOBILE DEVICES

  • 5.1. The mobile device industry
  • 5.2. Suitable detection principles for mobile devices
  • 5.3. Consumer interface for gas sensing data
  • 5.4. Challenges for sensor integration into smartphones
  • 5.5. Future market opportunities in the mobile device sector

6. SENSORS IN WEARABLES

  • 6.1. The wearable technology industry
  • 6.2. Sensor integration in wrist wear
  • 6.3. Technology requirements of wearable sensors
  • 6.4. NotAnotherOne
  • 6.5. Wearable sensors as part of modular wrist straps
  • 6.6. Environmental sensor integration in fashion accessories
  • 6.7. H2S Professional Gas Detector watch
  • 6.8. Future opportunities for wearable sensors

7. SENSORS TO MEASURE INDOOR AIR QUALITY

  • 7.1. Indoor air quality
  • 7.2. Sources of indoor air pollutants
  • 7.3. Effects of CO2 exposure on decision making
  • 7.4. Home and office monitoring: a connected environment
  • 7.5. Current smart home monitoring vendors
  • 7.6. Sensors to direct HVAC systems
  • 7.7. HVAC systems in buildings
  • 7.8. Future opportunities for IAQ monitoring
  • 7.9. Challenges for indoor air quality measurement

8. SENSORS IN AIR PURIFIERS

  • 8.1. The global air purifier market
  • 8.2. Methods of air purification
  • 8.3. Suitable miniaturised detection principles for air purifiers
  • 8.4. Challenges in indoor air quality monitoring

9. SENSORS IN AUTOMOBILES

  • 9.1. Automobile pollution: a global epidemic
  • 9.2. Air quality sensors safeguarding passengers
  • 9.3. Car mounted sensors monitoring air pollution in Mexico City
  • 9.4. Challenges for automobile gas sensing
  • 9.5. Future opportunities for automobile gas sensors

10. SENSORS IN SMART CITIES

  • 10.1. Introduction to smart cities
  • 10.2. Fixed vs mobile sensing networks
  • 10.3. Personal vs private networks
  • 10.4. Current city wide pollution monitoring programmes
  • 10.5. Current smart city air monitoring projects
  • 10.6. Calculated air quality measurements
  • 10.7. Transport based sensing of environmental pollutants
  • 10.8. Airborne pollution sensing
  • 10.9. Mobile monitoring: sensors on bicycles
  • 10.10. Traffic monitoring with gas sensors
  • 10.11. Array of things project - Chicago
  • 10.12. Anatomy of an outdoor sensor node
  • 10.13. Challenges for smart city monitoring
  • 10.14. Future opportunities for environmental sensors in smart cities

11. OTHER APPLICATIONS

  • 11.1. Handheld environmental monitors
  • 11.2. Aircasting

12. MARKET FORECASTS

  • 12.1. Forecast details and assumptions
  • 12.2. Breakdown by market segments
  • 12.3. Market forecast: unit sales by market segments
  • 12.4. Market forecast: market value by market segments
  • 12.5. Unit sales forecast by Detection Principle
  • 12.6. Market value Forecast by Detection Principle
  • 12.7. Sensors in Smart Devices, by Volume
  • 12.8. Sensors in Smart Devices, by Revenue
  • 12.9. Sensors in Wearables, by Volume
  • 12.10. Sensors in Wearables, by Revenue
  • 12.11. Sensors in Air Purifier by Volume
  • 12.12. Sensors in Air Purifier by Revenue
  • 12.13. Sensors in Smart City by Volume
  • 12.14. Sensors in Smart City by Revenue
  • 12.15. Sensors in Smart Home by Volume
  • 12.16. Sensors in Smart Home by Revenue
  • 12.17. Sensors in Automotive by Volume
  • 12.18. Sensors in Automotive by Revenue
  • 12.19. Other applications, by volume
  • 12.20. Other application, by Revenue
  • 12.21. Conclusions