表紙
市場調查報告書

EV (電動運輸設備) 用電動發動機:陸上車輛、船舶、飛機 (2020-2030年)

Electric Motors for Electric Vehicles: Land, Water, Air 2020-2030

出版商 IDTechEx Ltd. 商品編碼 926562
出版日期 內容資訊 英文 263 Slides
商品交期: 最快1-2個工作天內
價格
EV (電動運輸設備) 用電動發動機:陸上車輛、船舶、飛機 (2020-2030年) Electric Motors for Electric Vehicles: Land, Water, Air 2020-2030
出版日期: 2020年01月31日內容資訊: 英文 263 Slides
簡介

乘用車、巴士、小型、中型、大型卡車、微型EV、建築、農業、礦業用車輛、飛機、船舶等的EV (電動運輸設備) 用電動發動機市場,其規模預測在2030年將成長至超越1000億美元。

本報告調查了EV (電動運輸設備)用電動發動機市場,並統整了各類別的主要技術、主要設備、主要企業動向、分類別的市場規模變化和預測、未來展望等。

第1章 執行摘要、總論

  • 調查目的、調查範圍
  • 調查方法
  • 總論
  • 發動機需求:動力總成類型別
  • 預測:分類別
    • 概述
    • 建築
    • 農業
    • 礦業
    • 物流系統
    • 機場、越野道路
    • 巴士
    • 卡車
    • 汽車
    • 小型EV
    • 軍用車
    • 無人機
    • 飛機
    • 鐵路
    • 船舶
    • 家用、其他
  • EV用發動機技術細項
    • 建築部門
    • 農業部門
    • 礦業、物流系統部門
    • 巴士、卡車
    • 汽車、類汽車車輛
    • 兩輪車、軍用車、無人機
    • 載人飛機、電池電車
    • 船舶、家用機器人、其他
  • 發動機獲益性:車輛分類別
  • 釹的成本動向
  • 銷售額:地區別
  • 汽車用發動機技術:全球EV市佔率

第2章 簡介

  • 電動發動機的製造
  • 動作原理
  • EV用電動發動機的詳細區分
  • EV用發動機的優點比較
  • 主要發動機
  • 主要技術

第3章 EV用發動機的11個動向

  • 概述
  • 11個動向

第4章 發動機設計上的課題

  • Dana Corporation:TM4
  • 企業經驗與設計者的喜好
  • 從Tesla學到的教訓
  • 開關磁阻電動機
  • EV誘導發動機的進步
  • 48V油電混合車:超大型發動機市場的興起等

第5章 高PWR (馬力重量比) 用的軸流

  • 追求高馬力重量比
  • 專利分析:軸流發動機
  • Rolls Royce、Siemens、Yasa
  • AVID EVO
  • Equipmake
  • Magnax

第6章 大受歡迎的In-wheel motor

  • 概述
  • Lightyear
  • Elaphe
  • 日本電產等

第7章 越野用大型EV發動機

  • 概要:與越野不同的需求
  • 竹內製作所:TB216H油電混合小型挖土機
  • Caterpillar:全電動挖土機
  • Hyundai:電動挖土機
  • 軍用產品:概要
  • Balquon、Alke、Polaris、Columbia、Hummer、Green Wheel、Quantum FCT各公司的車輛
  • 大型軍用車 :BAE Systems、美國DOD、Millenworks、Oshkosh
  • 最近的進步
  • 電動船、船舶等

第8章 發動機控制技術

  • 概述
  • 主要動向
  • 直驅式馬達與傳動馬達
  • 功率半導體成為關鍵
  • 舉例
  • 普及與簡單化
  • 未來的48V輕度油電混合發動機控制器等
目錄

"By 2030, the market for EV motors will surpass $100bn and have many premium pricing opportunities."

This report is of vital interest to all in the electric vehicle value chain from materials and component suppliers to parts and motor manufacturers a product integrators. Indeed there is much here for vehicle manufacturers and it is essential reading for planners. Electric motors are the only components that appear in all electric vehicles. Even batteries are sometimes replaced by supercapacitors. Every year, IDTechEx rewrites its definitive study of such motors. This year a new assessment is particularly important because so many things are changing. The chapters reflect these changes. Firstly, the Executive Summary and Conclusions, complete in itself, presents new conclusions about the sales and technology trends. The proliferation of applications is reflected in the world's most detailed forecasts for 101 categories of land, water and airborne vehicle over 12 years giving number, kWh and gross GWh for motors: 3,636 data points. Beyond that, the percentage of each motor technology for the 101 categories is given for 2020 and 2030 plus historical regional data.

The Introduction explains design choices in lucid new infograms. Learn how and why for such choices as external and internal rotor, synchronous vs asynchronous and subsets of that with the latest on which applications are winning and why and the issues.

Reflecting the new realities, there is a comprehensive chapter on 11 new trends in EV motors and their industry. A subsequent chapter focuses on the surge in adoption for axial flux motors - why and where - then one dives into 48V mild hybrids and soon 48V full hybrids becoming a massive market for complex starter-motor-generators and sometimes two motor architectures.

There is a chapter on the newly important large motors up to megawatts for land, water and air vehicle and we cover those essential controllers now so often costing more than the motor and integrated into it. Which motor technologies scale well here?

The 260 page report is replete with new graphs, tables, infograms and interview information.

The report is based on over 20 years researching EV motors globally by PhD level analysts interviewing in local languages and distilling inputs from privileged databases including our own and our longstanding conferences and consultancy in the subject.

You even learn new principles of electric propulsion and their potential and the activities of a host of new start ups for this is truly the only up-to-date comprehensive report on the subject. The orientation is much more commercial than academic.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose and scope of this report
  • 1.2. Methodology
  • 1.3. Primary conclusions: markets
  • 1.4. Primary conclusions: technology
  • 1.5. Motor needs by type of powertrain
  • 1.6. Forecasts 2019-2030
    • 1.6.1. Forecast overview 2019-2030 (applicational sectors) - vehicle number thousand
    • 1.6.2. Forecast overview 2019-2030 (applicational sectors) - bnW
    • 1.6.3. Forecasts 2019-2030: Construction - vehicle number thousand
    • 1.6.4. Forecasts 2019-2030: Construction - bnW
    • 1.6.5. Forecasts 2019-2030: Agriculture - number thousand
    • 1.6.6. Forecasts 2019-2030: Agriculture - bnW
    • 1.6.7. Forecasts 2019-2030: Mining - vehicle number thousand
    • 1.6.8. Forecasts 2019-2030: Mining - bnW
    • 1.6.9. Forecasts 2019-2030: Intralogistics - vehicle number thousand
    • 1.6.10. Forecasts 2019-2030: Intralogistics - bnW
    • 1.6.11. Forecasts 2019-2030: Airport & off-road - vehicle number thousand
    • 1.6.12. Forecasts 2019-2030: Airport & off-road - bnW
    • 1.6.13. Forecasts 2019-2030: Buses - vehicle number thousand
    • 1.6.14. Forecasts 2019-2030: Buses - bnW
    • 1.6.15. Forecasts 2019-2030: Trucks - vehicle number thousand
    • 1.6.16. Forecasts 2019-2030: Trucks - bnW
    • 1.6.17. Forecasts 2019-2030: Cars- vehicle number thousand
    • 1.6.18. Forecasts 2019-2030: Cars- bnW
    • 1.6.19. Forecasts 2019-2030: Light Electric Vehicles - vehicle number thousand
    • 1.6.20. Forecasts 2019-2030: Light Electric Vehicles - bnW
    • 1.6.21. Forecasts 2019-2030: Military- vehicle number thousand
    • 1.6.22. Forecasts 2019-2030: Military- bnW
    • 1.6.23. Forecasts 2019-2030: Drones - vehicle number thousand
    • 1.6.24. Forecasts 2019-2030: Drones - bnW
    • 1.6.25. Forecasts 2019-2030: Aircraft - vehicle number thousand
    • 1.6.26. Forecasts 2019-2030: Aircraft - bnW
    • 1.6.27. Forecasts 2019-2030: Trains - vehicle number thousand
    • 1.6.28. Forecasts 2019-2030: Trains - bnW
    • 1.6.29. Forecasts 2019-2030: Marine - vehicle number thousand
    • 1.6.30. Forecasts 2019-2030: Marine - bnW
    • 1.6.31. Forecasts 2019-2030: Home & other - vehicle number thousand
    • 1.6.32. Forecasts 2019-2030: Home & other - bnW
  • 1.7. EV motor technology split 2020 and 2030
    • 1.7.1. Construction sector
    • 1.7.2. Agriculture sector
    • 1.7.3. Mining and intralogistics sectors
    • 1.7.4. Buses and trucks
    • 1.7.5. Cars and car-like vehicles
    • 1.7.6. Two wheel, military, drone
    • 1.7.7. Manned aircraft, battery trains
    • 1.7.8. Marine, home robot, other
  • 1.8. Motor profitability by vehicle sector 2030 explained
  • 1.9. Neodymium cost trends spell trouble
    • 1.9.1. Boiling the frog
    • 1.9.2. Permanent magnets more popular but eventually unnecessary?
  • 1.10. Regional sales
    • 1.10.1. China
    • 1.10.2. Europe
    • 1.10.3. USA
  • 1.11. Motor technologies for cars: global EV market shares

2. INTRODUCTION

  • 2.1. Electric motor construction: mainly internal rotor
  • 2.2. Three operating principles compared
  • 2.3. Electric motor subtypes important for EVs
  • 2.4. EV motor benefits compared
  • 2.5. EV applications for the three motor types
  • 2.6. Motor choice for pure electric cars and vans
  • 2.7. Electric motors for other pure electric vehicles
  • 2.8. Technology choices - a closer look
    • 2.8.1. Let us get technical
    • 2.8.2. A deeper dive
    • 2.8.3. Spectrum of choice: benefits, challenges, uses
    • 2.8.4. PMAC vs BLDC technology
    • 2.8.5. Conductor format, optimisation, integration

3. ELEVEN IMPORTANT TRENDS IN EV MOTORS 2020-2030

  • 3.1. Overview
  • 3.2. Eleven trends
    • 3.2.1. Increasing percentage of vehicle cost
    • 3.2.2. Integration
    • 3.2.3. Multifunction
    • 3.2.4. Proliferation: vehicle has more motors
    • 3.2.5. Much bigger motors needed
    • 3.2.6. Vertical integration: Vehicle makers design their own motors
    • 3.2.7. Less cooling
    • 3.2.8. Voltage increase:
    • 3.2.9. New principles of electrical propulsion
    • 3.2.10. New materials: structural electronics
    • 3.2.11. Acquisitions and partnerships

4. MOTOR DESIGN ISSUES

  • 4.1. Trend to broad capability
  • 4.2. Dana Corporation - TM4
  • 4.3. Company experience and designer preferences
  • 4.4. Lessons from Tesla the automotive market leader
    • 4.4.1. Overview
    • 4.4.2. Trying to catch Tesla
    • 4.4.3. Tesla 3 Permanent Magnet Switched Reluctance Motor
    • 4.4.4. Motor design advice from Tesla
  • 4.5. Progress with switched reluctance
    • 4.5.1. Patent analysis
    • 4.5.2. Visedo synchronous reluctance assistant
    • 4.5.3. Advanced Electric Machines
    • 4.5.4. Eco Motor Works Canada
    • 4.5.5. Nidec Japan
  • 4.6. EV induction motor advances
    • 4.6.1. CCE Thyssen Krupp
    • 4.6.2. Tesla improves induction motors
  • 4.7. 48V hybrid vehicles: very large motor market emerging
    • 4.7.1. Basic 48V mild hybrid: cleverer motor, stronger battery are key
    • 4.7.2. Examples and timeline for cars
    • 4.7.3. Ongoing incremental improvements at modest cost
    • 4.7.4. Functions vs architectures
    • 4.7.5. 48V full hybrid can be primitive or maximum benefit
    • 4.7.6. Continental
    • 4.7.7. Eaton 48V full hybrid truck
    • 4.7.8. Mercedes integrated starter generator ISG mild hybrid
    • 4.7.9. Audi
    • 4.7.10. Bentley
    • 4.7.11. Jaguar Land Rover
    • 4.7.12. Schaeffler
    • 4.7.13. Valeo, Hyundai Mobis, Delphi, Tenneco, Bosch, IFEVS

5. AXIAL FLUX FOR HIGH POWER-TO-WEIGHT RATIO

  • 5.1. Chasing high power to weight ratio: history
  • 5.2. Patent analysis: axial flux motors
  • 5.3. Rolls Royce, Siemens, Yasa
  • 5.4. AVID EVO claim 10 kW/kg: lands $70 million of orders
  • 5.5. Equipmake reconfigured PM motor
  • 5.6. Magnax axial flux

6. IN-WHEEL MOTORS NOW POPULAR

  • 6.1. Overview
    • 6.1.1. Widespread adoption at last: BYD, Olli
    • 6.1.2. Protean 360 degree wheel
  • 6.2. Lightyear axial flux in-wheel
    • 6.2.1. Range sells cars
    • 6.2.2. Less battery with in-wheel motors
  • 6.3. Elaphe enabling 1000km on land
  • 6.4. Nidec Japan

7. HEAVY DUTY EV MOTORS OFF-ROAD

  • 7.1. Overview: Needs are different from on-road
  • 7.2. Takeuchi TB216H hybrid mini excavator
  • 7.3. All-electric Caterpillar excavator
  • 7.4. Hyundai electric excavator
  • 7.5. Asynchronous/ induction in mining vehicles
  • 7.6. What next?
  • 7.7. Military overview
  • 7.8. Vehicles by Balquon, Alke, Polaris, Columbia, Hummer, Green Wheel, Quantum FCT
  • 7.9. Larger military vehicles by BAE Systems, US DOD, Millenworks, Oshkosh
  • 7.10. Latest progress
    • 7.10.1. Autonomous off-road vehicles
    • 7.10.2. Otokar armored vehicle Turkey
    • 7.10.3. Nikola utility-task all-terrain vehicle USA
    • 7.10.4. TARDEC USA
    • 7.10.5. Arquus replacement for Humvee Sweden
    • 7.10.6. GE, DARPA and QinetiQ US UK
    • 7.10.7. GM Defense, Chevrolet Silverado USA
    • 7.10.8. Fuel cell main battle tanks?
  • 7.11. Electric boats and ships: a long history?
    • 7.11.1. Marine Market Segments
    • 7.11.2. Torqeedo: Moving Up to 100kW!
    • 7.11.3. Torqeedo Inboards and Outboards
    • 7.11.4. Key Growth Market: C&I Vessels
    • 7.11.5. Focus of emissions regulation
    • 7.11.6. Emission control areas (ECA)
    • 7.11.7. Unprecedented global cap on Sulphur
    • 7.11.8. World's First Pure Electric Container Ship

8. MOTOR CONTROL TECHNOLOGY

  • 8.1. Overview
  • 8.2. Major trends
  • 8.3. Direct drive or transmission
  • 8.4. View of Ultimate Transmissions
  • 8.5. Power semiconductors are key
  • 8.6. Examples
  • 8.7. Proliferation drives simplification
    • 8.7.1. Elimination of motor control
    • 8.7.2. Shared components: University of Berlin, Infineon
    • 8.7.3. Bidirectional Charge- and Traction-System (BCTS) Continental
  • 8.8. Future 48V mild hybrid motor controllers: TT/ AB Microelectronics