表紙
市場調查報告書
商品編碼
926561

農業用EV (電動運輸設備) 、機器人學的全球市場:2020-2030年

Electric Vehicles and Robotics in Agriculture 2020-2030

出版日期: | 出版商: IDTechEx Ltd. | 英文 215 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

全球農業用EV (電動運輸設備)及機器人學市場預測在2030年將成長至超過30億美元的規模。

本報告調查了全球農業、林業、草皮管理的EV (電動運輸設備)及機器人學市場,並統整了農業課題、各類別的主要技術、主要設備、主要企業動向、農業用EV的販售價格、販售台數、市場規模變化與預測等。

第1章 執行摘要、總論

第2章 簡介

  • 農業的課題
  • 需求與排放
  • 排放管制:推動純電動設備
  • 農業中的溫室與局部排放
  • 極度缺乏水
  • 人口增加與糧食需求增加
  • 農業:地區別
  • 主要收穫量:持平
  • 農業從事者的高齡化與往都市的移動
  • 包含垂直農法的室內農業案例
  • 農業用EV的動力總成動向
  • LPWAN、IOT:EV及資產

第3章 市場機會

  • 來自英國的見解
  • 來自日本的見解
  • 農業機器的經濟
  • 轉型成小型、低速、便宜的機器人
  • 農業用機器人學與超高精準度
  • 商業模式

第4章 農業、林業、草皮用EV (電動運輸設備)

  • 概要:無人機、陸上EV、群集
  • 轉型成小型、低速、便宜的機器人群集
  • 群集機器人:陸上、空域
    • SAGA□SwarmFarm
  • 低成本標準軟體:DroneAG
  • Hopping無人機:Crop Hopper
  • 農業用陸上EV:概要
  • 草皮維護用機器人
  • 電動機器人除草機:FarmWise、Naio等
  • 拖拉機
    • 概述
    • Autonxt
    • Belarus Tractors
    • CNH Industrial
    • Farmtrac
    • Fendt (AGCO)
    • John Deere
    • STW
  • 播種機
    • AGCO (Fendt) Xaver
  • 搬運裝置
    • Alke
    • Nelson Mandela University
  • 林業、草皮用
    • 概述
    • 林業:Logset□Sennebogen

第5章 實現技術

  • 主要7技術
  • Traction motor
  • 電池、超級電容

第6章 農業用的零排放微網格

  • 充電方法
  • 太陽能 vs 柴油引擎:成本分析
  • University of Sydney□Tesla
  • 可搬式太陽能發電機組
  • 太陽能 + 電池的微網格
  • 零排放微網格:太陽能、水力、風力等

第7章 農業用汽車車輛

  • 農業的自動化:用途別
  • 市場、技術的對應度:農業活動別
  • 無人拖拉機:AGCO、ATC、KUBOTA、YANMAR、Kinze、CNH
  • 機器人果實採收機
  • 機器人超精密鋤草

第8章 自動技術:LIDAR、雷達等

  • 自動零件、整合
  • Lidar
  • 雷達
  • AI軟體、運算平台
目錄

Title:
Electric Vehicles and Robotics in Agriculture 2020-2030
Farming, forestry, robotics, hybrid, pure electric.

Fast growing market will pass $3 billion before 2030.

The new 215 page report, "Electric Vehicles and Robotics in Agriculture 2020-2030" is unique in its breadth and depth. It embraces farming, forestry and turf care in the form of robotics, some initially with diesel vehicles. Mostly however, hybrid and pure electric agricultural vehicles are covered, mostly not robotic as yet.

There is no nostalgia from the past or rambling text, the results of the research being presented mainly in new infograms, graphs and timelines all focussed on the present, including much news from 2020, and future to 2030. Grasp the challenges of this industry from Japan and China to the UK and USA and the remarkable new technologies and systems approaches being adopted and what comes next.

This report is intended to assist all in the value chains of the agricultural sector in the wide sense of including turf care and forestry. Its topic is electrification and robotics because most of the time the two go together and their effect on this industry is pivotal. The up-to-date interviews, analysis and forecasts were prepared by globe-trotting, multi-lingual IDTechEx analysts at PhD level. The depth is unprecedented but it is presented without equations, the emphasis being commercial and societal impact.

The 34 page Executive Summary and Conclusions is sufficient for those in a hurry, with a critical appraisal listing 14 forces on the industry, seven reasons for going electric being compared, two infograms of the farm of the future, detail on main trends such as precision and ultra-precision farming, 18 primary conclusions brought alive with tables and graphics, adoption timelines, patent trend graph. See 16 categories forecasted by units, unit price and market value 2020-2030.

The Introduction then looks at problems, needs, emissions, water shortage, food demand increase and change in mix, regional differences in crops and approaches, crop yield and farmer age, wage and tractor purchasing trends. Here is the electric vehicle powertrain choice emerging and types becoming favoured in agriculture all being mainly in pie charts, graphs, tables and infograms.

Chapter 3 concerns Opportunities. See the UK compared with Japan, the economics of agricultural machines, the interest in small, even swarming robots in fields and precision forms indoors. The value chain and robotics as a service are analysed.

Chapter 5 brings it alive with over 70 organisations making or developing electric and robotic vehicles for agriculture, forestry, turf electric vehicles compared. Specific comparisons include lawnmowing robots and weeding robots for farms, for example. Electric tractors are a particular focus with seven illustrated case studies. Planters, transporters and forestry are also illustrates and there are critical comparisons throughout.

Chapter 6 scopes the six key enabling technologies with the seventh - autonomy - being the subject of chapter 7. "Electric Vehicles and Robotics in Agriculture 2020-2030" will be the reference book of this industry, updates being regularly incorporated as the subject is now changing rapidly.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Primary conclusions: where we are headed
  • 1.3. Why we need electric agricultural vehicles
  • 1.4. Farm of the future arriving now
  • 1.5. Trends in types of farming
  • 1.6. Primary conclusions: impediments to change
  • 1.7. Primary conclusions: industrial trends EV and robotic
  • 1.8. Primary conclusions: regional
  • 1.9. Primary conclusions: technical
  • 1.10. Primary conclusions: agricultural EV adoption
  • 1.11. Patent analysis
  • 1.12. Market forecasts agriculture electric vehicles 2020-2030 - number thousand
  • 1.13. Market forecasts agriculture electric vehicles 2020-2030 - unit price $ thousand
  • 1.14. Market forecasts agriculture electric vehicles 2020-2030 - market value $ billion

2. INTRODUCTION

  • 2.1. The problem with agriculture
  • 2.2. Needs and emissions
  • 2.3. Emission push for pure electric equipment
  • 2.4. Greenhouse and local emissions in agriculture
  • 2.5. Extreme water shortage
  • 2.6. Growing population and growing demand for food
  • 2.7. Agriculture by region
  • 2.8. Major crop yields are plateauing
  • 2.9. Aging farmer population and urban migration
  • 2.10. The case for indoor farming including vertical farming
    • 2.10.1. Challenges in vertical farming
    • 2.10.2. Indoor farming robotics experiments and concepts
  • 2.11. Powertrain trends for electric vehicles in agriculture
  • 2.12. LPWAN and IOT to EVs and assets

3. OPPORTUNITIES

  • 3.1. View from the UK
  • 3.2. View from Japan
  • 3.3. Economics of agricultural machines
  • 3.4. Transition towards to swarms of small, slow, cheap robots
  • 3.5. Agricultural robotics and ultra precision = value chain upheaval
  • 3.6. Business models between RaaS and equipment sales

4. AGRICULTURE, FORESTRY, TURF ELECTRIC VEHICLES IN ACTION

  • 4.1. Overview: drones, land EVs and swarming
  • 4.2. Transition to swarms of small, slow, cheap robots
  • 4.3. Swarming robots: land and air
    • 4.3.1. SAGA and SwarmFarm
  • 4.4. Low cost standard software: DroneAG
  • 4.5. Hopping drones: Crop Hopper
  • 4.6. Land based EVs for agriculture: Overview
  • 4.7. Turf care robots
  • 4.8. Electric robot weeders: FarmWise, Naio etc
  • 4.9. Tractors
    • 4.9.1. Overview
    • 4.9.2. Autonxt
    • 4.9.3. Belarus Tractors
    • 4.9.4. CNH Industrial
    • 4.9.5. Farmtrac
    • 4.9.6. Fendt (AGCO)
    • 4.9.7. John Deere
    • 4.9.8. STW
  • 4.10. Planters
    • 4.10.1. AGCO (Fendt) Xaver
  • 4.11. Transporters
    • 4.11.1. Alke
    • 4.11.2. Nelson Mandela University
  • 4.12. Forestry and turf
    • 4.12.1. Overview
    • 4.12.2. Forestry: Logset, Sennebogen

5. ENABLING TECHNOLOGIES

  • 5.1. Seven key EV enabling technologies for agricultural EVs
  • 5.2. Traction motors
    • 5.2.1. Overview
    • 5.2.2. Choices of motor position
  • 5.3. Batteries and supercapacitors
    • 5.3.1. Overview
    • 5.3.2. Future W/kg vs Wh/kg 2020-2030
    • 5.3.3. Energy density 2020-2030
    • 5.3.4. Li-ion battery cost (industrial) $/kWh) 2005-2030

6. ZERO EMISSION MICROGRIDS FOR AGRICULTURE

  • 6.1. How to charge the vehicles: start with solar for zero emission
  • 6.2. Solar vs diesel cost analysis
  • 6.3. Solar bodywork: agricultural vehicles University of Sydney, Tesla
  • 6.4. Mobile solar gensets
  • 6.5. Envision Solar transportable solar charger tracks the sun
  • 6.6. Anatomy of a typical solar + battery microgrid
  • 6.7. Zero emission microgrids: solar, water, wind reinvented
    • 6.7.1. Overview
    • 6.7.2. New options beyond solar: relocatable, much less intermittent
    • 6.7.3. Open tide "tide stream" power options mimic wind power options
    • 6.7.4. Comparison of off-grid technology options
    • 6.7.5. New power generating technology kVA comparison
    • 6.7.6. Airborne Wind Energy developers
    • 6.7.7. Why AWE may be better than a conventional wind turbine
    • 6.7.8. eWind specifically targets AWE for farms
    • 6.7.9. Open sea wave power technologies for aquaculture

7. AUTONOMOUS VEHICLES IN AGRICULTURE

  • 7.1. Agriculture autonomy by application
  • 7.2. Market and technology readiness by agricultural activity
  • 7.3. Driverless tractors: AGCO, ATC, Kubota, Yanmar, Kinze, CNH
  • 7.4. Robotic fresh fruit harvesting
  • 7.5. Robotic ultra precision weeding

8. AUTONOMY TECHNOLOGY: LIDAR, RADAR ETC.

  • 8.1. Autonomy components and integration
  • 8.2. Lidars
  • 8.3. Radars
  • 8.4. AI software and computing platform