表紙
市場調查報告書

多功能複合材料全球市場:技術、參與企業、成長預測:2019年∼2029年

Multifunctional Composites 2019-2029: Technology, Players, Market Forecasts

出版商 IDTechEx Ltd. 商品編碼 716063
出版日期 內容資訊 英文 201 Pages
商品交期: 最快1-2個工作天內
價格
多功能複合材料全球市場:技術、參與企業、成長預測:2019年∼2029年 Multifunctional Composites 2019-2029: Technology, Players, Market Forecasts
出版日期: 2019年04月30日內容資訊: 英文 201 Pages
簡介

本報告研究全球多功能複合材料市場,彙整市場定義和概要、按材料區分的技術開發和創新趨勢、主要企業及其行動、各種應用和應用產品、10年市場成長預測、主要企業簡介等情報。

第1章 摘要整理

第2章 簡介:纖維強化聚合物

  • 簡介:複合材料
  • 複合材料組合
  • FRP零件製造的各階段創新
  • 主要CFR企業
  • 全球碳纖維市場預測

第3章 功能性材料的結合:奈米碳和金屬化

  • 作為FRP添加劑的奈米碳作用
  • 將奈米碳材料加入複合材料的途徑
  • 奈米碳添加劑各種類型:CNT
  • CNT市場和主要企業
  • CNT Sheet趨勢和企業
  • 奈米碳添加劑的各種類型:CNT紗線
  • 作為上漿劑的奈米碳
  • 奈米碳添加劑的各種類型:石墨烯
  • 奈米碳添加劑的各種類型:石墨烯片
  • 主要企業
  • 簡介:將金屬加入聚合物複合材料
  • 嵌入式金屬箔、網目
  • 複合材料的金屬化纖維和織物:銅
  • 複合材料的金屬化纖維和織物:鎳
  • 金屬奈米線的結合

第4章 導電性和導熱率的強化

  • 導電性強化主要推動因素
  • 導電性複合材料途徑
  • 複合材料的靜電放電技術採用
  • 雷擊保護
  • EMI shielding
  • 導電性強化的奈米碳:CNT
  • 導電性強化的奈米碳:石墨烯
  • 導熱率強化的應用:概要
  • 透過複合材料除冰
  • 電熱除冰
  • 機電式除冰
  • 熱機械式除冰
  • 市場預測:除冰複合材料、其他

第5章 嵌入式感測器

  • 複合材料的結構健康監測 (structural health monitoring) 嵌入式感測器
  • 光纖感測器 (FOS) 比較
  • FBG感測器的進步
  • 分散型FOS的進步
  • 壓電嵌入式晶圓和奈米纖維
  • NDT用嵌入式壓電轉換器
  • 連續真空監測:航太SHM
  • SHM的印刷感測器
  • 嵌入式SHM奈米碳感測器
  • 航太和SHM
  • 風力渦輪葉片和SHM
  • 石油天然氣部門的複合材料感測器
  • 專利分析
  • 市場預測、其他

第6章 能量儲存和擷取

  • 嵌入式儲能和多功能複合材料
  • 簡介:結構性儲能
  • 鋰離子嵌入式電池和複合材料
  • 來自Formula E的教訓
  • 薄膜電池的活用
  • Stanford University:MES複合材料
  • 碳纖維可作為電極利用
  • 結構複合材料電池的進步和現況
  • Chalmers University□KTH:塗覆纖維
  • 結構性複合材料之超級電容器:主要零組件
  • Imperial College London:碳氣凝膠
  • Lamborghini Terzo Millennio:MIT research
  • BAE Systems:複合材料之超級電容器和電池
  • IMDEA:結構EDLC
  • 嵌入式儲能:結論
  • 能源擷取:簡介
  • Solar Skin
  • 嵌入式壓電纖維
  • 其他嵌入式擷取、其他

第7章 適應反應機制

  • 簡介
  • 應用和課題
  • 變形機翼時間軸
  • 壓電致動器材料
  • 形狀記憶合金
  • 電活性聚合物複合材料
  • UV光反應
  • 彎曲扭轉聯結器、其他

第8章 自我修復複合材料

  • "自我修復" 複合材料零件途徑
  • 透過快速聚合的自我修復
  • 透過可逆交聯劑的自我修復、其他

第9章 數據和電力傳輸

  • 簡介
  • 利用表面波
  • 塗覆碳纖維
  • 水平對齊CNT
  • 嵌入式無線感測器網路、其他

第10章 複合材料零件的完全整合型3D電子系統

  • 何為IME?
  • IME:電路製造的3D友善製程
  • 3D列印:功能性纖維
  • 3D列印:具嵌入式感測器的複合材料
  • 3D列印:結構電子、其他

第11章 企業簡介

  • Acellent Technologies
  • Continuous Composites
  • DexMat
  • Imperial College Composites Centre
  • Inca Fiber
  • N12 Technologies
  • Tortech Nano Fiber

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Fiber reinforced polymers have gained market maturity in numerous sectors and are forecast to maintain a consistent growth in both the medium and long term. This uptake is driven by their favourable blend of properties most notably being the lightweight mechanical performance.

The key next iteration for these products will be the concept of multifunctionality. This is the idea of making a structural part carry out additional role(s) beyond their current primary mechanical task. The added functionality can be diverse, and the emerging applications be outlined below.

This technical research was carried out through extensive primary research from IDTechEx analysts. For commercial or near-commercial technologies granular 10-year market forecasts are provided and company profiles of key emerging players are provided alongside this report. The overall market for smart composite material with embedded functionality is expected to exceed 5 kilotons by 2029.

image1

Enhanced thermal and electrical conductivity is already commercially employed and is gaining more traction. This report explores the many routes into enhanced conductivity most notably through the inclusion of nanocarbon (graphene and CNTs) or metallic additives, coatings, mats, and wires. The main drivers for thermal conductivity are de-icing, heated tooling, and thermal dissipation. Electrical conductivity is again driven by the transportation sector with lightning strike protection, EMI shielding, electrostatic coating, and complete circuitry the main applications.

Embedded sensors can provide real-time part monitoring both in-production and in-operation. Structural health monitoring is challenging for composite parts with the aim to detect delamination, cracks or any other sign of mechanical fatigue. There are numerous competitive technologies in this field including a range of fiber optic sensors (FOS), piezoelectric wafers, and more. The obvious application is again in aerospace and defense but the role in Oil & Gas, overwrapped pressure vessels, and more should not be overlooked and are outlined in this report.

Energy harvesting and storage is a key area in an increasingly electrified transport sector. There has been minimal success in truly embedding energy harvesting devices with the continued emergence of solar skins deployed on the surface. However, energy storage is an important multifunctional development. IDTechEx believe this will go through two stages: the first-stage is embedding conventional Li-ion batteries within the composite laminar structures and the final goal is to have the composite act as a battery or supercapacitor itself. It is this second stage that has coined the termed "massless energy" where there are the greatest long-term opportunities.

Data and power transmission carried out by the composite part could remove the need for wires or signals and provide both robust and lightweight solutions. There are numerous attempts to achieve this utilising very diverse technology approaches ranging from the utilisation of electrically insulative coatings on carbon fibers to propagating surface waves between different dielectric layers.

Adaptive response mechanisms with embedded actuators is not a new concept with the idea or morphing or shape-changing wings over a century old. However, new innovations and deployment tests in both active and passive actuation makes this idea all the closer. Self-healing does not enable any electric functionality but is highly explored within the research community and sought after by end-users. Autonomic vs Nonautonomic and extrinsic vs intrinsic strategies and advancements for fiber reinforced polymers are outlined and analysed.

Fully embedded circuitry and electronic componentry can be perceived as a future end-goal for this field. This report looks at the different routes into enabling this utilising both in-mold electronics and 3D printing.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Introduction to multifunctional polymer composites
  • 1.2. Status of multifunctional composites by application
  • 1.3. What is structural electronics?
  • 1.4. Multifunctional composite forecasts
  • 1.5. What is the end goal?

2. INTRODUCTION TO FIBER REINFORCED POLYMERS

  • 2.1. Introduction to composites
  • 2.2. Composite combinations
  • 2.3. Innovations at each step to manufacture an FRP part
  • 2.4. Main CFRP players
  • 2.5. Global forecast for carbon fiber

3. INCORPORATION OF FUNCTIONAL MATERIALS: NANOCARBON AND METALLIZATION

  • 3.1. Role of nanocarbon as additives to FRPs
  • 3.2. Routes to incorporating nanocarbon material into composites
  • 3.3. Types of nanocarbon additives: CNT
  • 3.4. CNT market and main players
  • 3.5. Trends and players for CNT sheets
  • 3.6. Types of nanocarbon additives: CNT yarns
  • 3.7. Nanocarbon as fiber sizings
  • 3.8. Types of nanocarbon additives: Graphene
  • 3.9. Types of nanocarbon additives: Graphene platelets
  • 3.10. Graphene main players
  • 3.11. Introduction to incorporating metal to polymer composites
  • 3.12. Embedded metal foils and meshes
  • 3.13. Metallized fiber and fabrics for composites - copper
  • 3.14. Metallized fiber and fabrics for composites - nickel
  • 3.15. Incorporation of metal nanowires

4. ENHANCED ELECTRICAL AND THERMAL CONDUCTIVITY

  • 4.1. Key drivers for electrical conductivity enhancements
  • 4.2. Routes to electrically conductive composites
  • 4.3. Technology adoption for electrostatic discharge of composites
  • 4.4. Lightning Strike Protection
  • 4.5. EMI shielding
  • 4.6. Nanocarbon for enhanced electrical conductivity - CNTs
  • 4.7. Nanocarbon for enhanced electrical conductivity - Graphene
  • 4.8. Enhanced thermal conductivity - application overview
  • 4.9. Composite de-icing - introduction
  • 4.10. Composite de-icing strategies - overview
  • 4.11. Composite de-icing strategies - comparison
  • 4.12. Electrothermal de-icing - fixed wing aircraft
  • 4.13. Electrothermal de-icing - helicopters
  • 4.14. Electrothermal de-icing - Nanocarbon patents
  • 4.15. Electrothermal de-icing - CNT research
  • 4.16. Electrothermal de-icing - Graphene research
  • 4.17. Electromechanical expulsion - de-icing composites
  • 4.18. Thermomechanical expulsion - de-icing composites
  • 4.19. EU projects related to De-Icing
  • 4.20. De-icing wind turbines
  • 4.21. Composite material with embedded de-icing technology market forecast
  • 4.22. Heated composites tooling
  • 4.23. Conductive composites for thermal dissipation
  • 4.24. Pitch-based carbon fiber for higher thermal conductivity
  • 4.25. Nanocomposites for enhanced thermal conductivity - CNTs
  • 4.26. Nanocomposites for enhanced thermal conductivity - graphene

5. EMBEDDED SENSORS

  • 5.1. Embedded sensors for structural health monitoring of composites - introduction
  • 5.2. Embedded sensors for structural health monitoring of composites - types
  • 5.3. Embedded sensors for structural health monitoring of composites - methods
  • 5.4. Comparison of fiber optic sensors (FOS) for composite SHM
  • 5.5. Advancements in FBG sensors for composites
  • 5.6. Coating FBG for inclusion in a composite part
  • 5.7. Advancements in distributed FOS
  • 5.8. Interrogator for FOS in composite SHM
  • 5.9. Piezoelectric embedded wafers and nano-fibres
  • 5.10. Embedded piezoelectric transducers for NDT
  • 5.11. Continuous Vacuum Monitoring for aerospace SHM
  • 5.12. Printed sensors for SHM
  • 5.13. Nanocarbon Sensors for embedded SHM
  • 5.14. Utilising the structural fibers for sensing
  • 5.15. Aerospace incorporation for SHM
  • 5.16. SHM for wind turbine blades
  • 5.17. Composite sensors for the oil & gas sector
  • 5.18. Embedding sensors in composite overwrapped pressure vessels
  • 5.19. Sensing infusion and curing in composite manufacturing
  • 5.20. Patent Analysis
  • 5.21. Market Forecast

6. ENERGY STORAGE AND HARVESTING

  • 6.1. Embedded energy storage for multifunctional composites
  • 6.2. Introduction to structural energy storage
  • 6.3. Composites with Li-ion embedded batteries
  • 6.4. Lessons from Formula E
  • 6.5. Utilisation of thin film batteries for embedded energy storage
  • 6.6. Stanford University - MES composite
  • 6.7. Carbon fiber is useable as an electrode
  • 6.8. Evolution and status of structural composite batteries
  • 6.9. Chalmers University and KTH - coated fibers
  • 6.10. Structural composite supercapacitor - main components
  • 6.11. Electrolyte options for supercapacitors
  • 6.12. Imperial College London - carbon aerogels
  • 6.13. Lamborghini Terzo Millennio - MIT research
  • 6.14. BAE Systems - composite supercapacitor and batteries
  • 6.15. Significant technology demonstrators
  • 6.16. IMDEA - Structural EDLC
  • 6.17. Metal oxide nanowires for structural supercapacitors
  • 6.18. Structural composite hybrid energy storage
  • 6.19. Key challenges still to be tackled
  • 6.20. Embedding energy storage conclusions
  • 6.21. Energy harvesting introduction
  • 6.22. Solar Skins
  • 6.23. Embedded Piezoelectric fibers
  • 6.24. Other embedded harvesters.

7. ADAPTIVE RESPONSE MECHANISMS

  • 7.1. Introduction
  • 7.2. Applications and Challenges
  • 7.3. Morphing wings timeline
  • 7.4. Introduction to modes of active morphing
  • 7.5. Piezoelectric Actuator Materials
  • 7.6. Piezoelectric actuators for morphing composites
  • 7.7. Shape Memory Alloys
  • 7.8. Electroactive polymer composites
  • 7.9. Flexsys - adaptive compliant wing
  • 7.10. Active morphing airfoil
  • 7.11. Active winglets
  • 7.12. Corrugated Morphing Skins
  • 7.13. Passive Morphing
  • 7.14. Response to UV-light
  • 7.15. Bend-Twist coupling

8. SELF-HEALING COMPOSITES

  • 8.1. Routes to "self-healing" composite parts
  • 8.2. Self-healing through rapid polymerisation
  • 8.3. Self-healing through reversible crosslinkers

9. DATA AND POWER TRANSMISSION

  • 9.1. Data and power transmission - introduction
  • 9.2. Utilising surface waves for internal data transmission
  • 9.3. Coated carbon fibers for data transmission
  • 9.4. Horizontally aligned CNTs for data transmission
  • 9.5. Embedded wireless sensor networks

10. FULLY-INTEGRATED 3D ELECTRONIC SYSTEMS IN COMPOSITE PARTS

  • 10.1. What is the end goal?
  • 10.2. What is in-mold electronics (IME)?
  • 10.3. IME: 3D friendly process for circuit making
  • 10.4. Molding electronics in 3D shaped composites
  • 10.5. 3D Printing of functional fibers
  • 10.6. 3D Printing of composites with embedded sensors - generative design and SHM
  • 10.7. 3D Printing of Structural Electronics

11. COMPANY PROFILES

  • 11.1. Acellent Technologies
  • 11.2. Bekaert
  • 11.3. Continuous Composites
  • 11.4. DexMat
  • 11.5. Imperial College Composites Centre
  • 11.6. Inca Fiber
  • 11.7. N12 Technologies
  • 11.8. Tortech Nano Fiber
  • 11.9. TWI
  • 11.10. Villinger R&D