Cover Image
市場調查報告書

獨立能源交通工具 (EIEV):陸上、水域、空中區域運輸 (2018-2038年)

Energy Independent Electric Vehicles: Land, Water, Air 2018-2038

出版商 IDTechEx Ltd. 商品編碼 424443
出版日期 內容資訊 英文 242 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
獨立能源交通工具 (EIEV):陸上、水域、空中區域運輸 (2018-2038年) Energy Independent Electric Vehicles: Land, Water, Air 2018-2038
出版日期: 2018年02月28日 內容資訊: 英文 242 Slides
簡介

本報告提供陸上、水域、空中區域的各種獨立能源交通工具 (EIEV)的市場調查,EIEV定義和概要,EIEV的EH (能源採集)的重要性,高性能材料的使用趨勢,各交通工具種類的企業、大學、研究機關的技術開發,產品,計劃,其他配合措施範例,未來展望等彙整資料。

第1章 摘要整理

第2章 簡介

  • 獨立能源交通工具 (EIEV):能源、定義、功能
  • 定義、主要的功能
  • 能源採集是什麼?
  • 對EIEV來說重要的高功率能源採集的特徵
  • 高功率能源採集範例
  • 運輸機的能源採集
  • 間歇性發電
  • 矽以外主要的PV選擇
  • 薄型輕量菲涅耳透鏡聚光器
  • PV成本、效率趨勢
  • Lizard EIEV等

第3章 新形態:對EIEV來說的重要性

  • 膠體量子點噴霧
  • 目前的採集技術與未來的飛機用途
  • 機械性、電力的獨立能源交通工具 (EIEV)
  • e-fiber計劃範例
  • 歐洲的Powerweave計劃:飛艇 & 船舶
  • 混合壓電PV材料
  • 汽車輪胎用開發中的摩擦電力
  • EH (能源採集) 系統
  • Qualcomm的願景
  • 動態無線charging:EIEV的踏腳石
  • 韓國:來自道路的動態充電等

第4章 超高動力傳動效率

  • 概要
  • EH (能源採集) 的內部效率的改良 - 朝EIEV前進

第5章 超輕量化

  • 概要
  • 輕量化材料
  • 負載軸承和智慧介面電子產品
  • 結構化電子產品
  • 電子產品零組件的輕量化
  • 在自我修復技術上與MIT進行合作的藍寶堅尼
  • 使用了鋁的Tesla S底盤

第6章 下一代儲能

  • 概要
  • 儲能技術比較
  • 下一代電池:摘要
  • 鋰離子電池的其次為何?
  • 美國DOE的主電池成本預測
  • 鋰離子電池技術的下個候補
  • 鋰離子電池後的課題
  • 主流市場必要條件:性能、價格
  • 汽車用鋰電池的價格的變化
  • 電池價格趨勢
  • 技術的成熟度藍圖:各市場區隔
  • 鋰離子電池的下個技術
  • 基準:理論電池性能
  • 基準:實用電池性能
  • 矽陽極
  • 超級電容器儲能
  • 超級電容器儲能和混合 超級電容器
  • 鈉離子電池等

第7章 活動中的獨立能源交通工具 (EIEV)

第8章 陸上EIEV:公路式

  • Stella Lux 小客車 (荷蘭)
  • Sunswift eVe 小客車 (澳洲)
  • Immortus 小客車 (澳洲)
  • POLYMODEL 微EV (義大利)
  • Venturi 電動車 (義大利)
  • Dalian 遊覽車 (中國)
  • NFH-H 麵包車 (中國)
  • Kayoola 大型巴士 (烏干達)
  • Cargo Trike 微EV (英國)
  • Sunnyclist (希臘)
  • InfinitE Scooter
  • Hanergy (中國)
  • Sion (德國)
  • Clean Motion Midsummer (瑞典)
  • 移動式EIEV食品店 (中國)
  • 太陽能旅居車

第9章 太陽能跑車

  • World Solar Challe
  • 太陽能跑車技術:非太陽能零件
  • 太陽能跑車性能指標的改善
  • 太陽能跑車技術:PV
  • Power of One 太陽能跑車(加拿大)
  • Bethany 太陽能跑車(英國)
  • CUER Resolution 太陽能跑車(英國)
  • EVA 太陽能跑車(英國)
  • Nuna7 太陽能跑車(荷蘭)
  • Nuna8 太陽能跑車(荷蘭)
  • Drifter 2.0 太陽能跑車(美國)
  • 密西根大學的太陽能跑車

第10章 陸上EIEV:卸載

  • Vinerobot 微EV

第11章 海上運輸EIEV

  • REPSAIL船艇 (波蘭、土耳其等)
  • MARS (Mayflower Autonomous Research Ship) (英國、美國)
  • RENSEA船艇 (瑞典)
  • Turanor船艇 (德國)
  • Vaka Moana船艇 (荷蘭)
  • Sun21船艇 (瑞士)
  • Seaswarm船艇 (美國)
  • Inerjy EcoVert
  • SOELCAT船艇 (荷蘭)
  • SeaCharger自動太陽能船艇
  • Solarwave自動太陽能船艇
  • Solar Yacht Zhenfa Holdings
  • Energy Observer (法國)

第12章 EIEV潛水艇

  • Seaglider AUV船艇 (美國)
  • Cyro AUV jellyfish (美國)

第13章 EIEV內陸水運

  • 太陽能賽用船艇 (荷蘭)
  • Loon船艇 (加拿大)
  • Alster Sun (荷蘭、德國)
  • ECO Marine (日本)

第14章 EIEV飛艇

  • Nephelios (法國)
  • Northrop Grumman (美國)
  • Mitre DARPA (美國)
  • Lockheed Martin HALE-D (美國)
  • Dirisolar (法國)
  • Turtle (美國)

第15章 固定翼EIEV

  • 固定翼附著太陽能飛艇 (加拿大)
  • Atlantik Solar 2 UAV (瑞士)
  • Zephyr 7 UAV (德國)
  • Titan Aerospace UAV (美國)
  • Solar Eagle UAV (美國)
  • Facebook AQUILA UAV (英國、美國)
  • Aquila UAV (英國)
  • Silent Falcon UAV (美國)
  • Helios UAV (美國)
  • Sunstar (美國)
  • Sunseeker Duo (美國)
  • Solar Impulse (瑞士)
  • SolarStratos (瑞士)
  • China Aerospace

第16章 帶給各個運輸機器優點的EIEV技術

  • 獨立能源交通工具 (EIEV)的優點

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Title:
Energy Independent Electric Vehicles: Land, Water, Air 2018-2038
Market forecasts, technology timelines, new energy harvesting & regen., extreme powertrain efficiency.

"The electric vehicle industry will be $750 billion in 2028 with EIEV rising rapidly"

This report "Energy Independent Electric Vehicles Land, Water, Air 2018-2038" reveals how Energy Independent Electric Vehicles EIEV such as solar racers were a curiosity five years ago, too weak to lead to anything generally useful. Then a solar boat and plane went round the world and a solar plane is now being prepared that will rise from earth to 80,000 feet on sunshine alone. Entirely solar driven golf cars, small buses and passenger boats are on sale. Solar dirigibles for heavy lifting and long distance transport are being prepared for sale and this report reveals details of many solar cars demonstrated for mainstream use from 2020. They generate up to eight times as much electricity as predecessors: learn how and why.

Boats are being prepared that are entirely powered by electricity from on-board wind turbines and/or solar and/or tide and waves. These and other developments are about to be recognised as the kernel of a business of over $100 billion in EIEVs employing multi-mode energy harvesting, extreme powertrain efficiency and other new advances. Investment in these new technologies is de-risked by the fact that they will be useful way beyond EIEVs. The leading solar racer company has already spun off five businesses exploiting its discoveries in aerodynamics and the like.

The report shows how EIEVs have bigger potential than those navigationally autonomous vehicles that are all the rage right now. Indeed they leverage todays "autonomy" while also transforming the future of land vehicles, boats and aircraft with human drivers. Be first to learn the dramatic winners, losers and benefits to society of all this.

The report uses easily understood infograms, graphs and tables to present the discoveries and interpretation by globetrotting multi-lingual, PhD level analysts at IDTechEx. There are even latest inputs in 2017. 46 categories of electric vehicle are forecasted by number and value 2018-2038.

With a profusion of examples and new market research, the report explains why billions of dollars are already being spent on unmanned military and non-military aircraft that will stay aloft for 5-10 years - energy independent. Learn how some solar cars even donate electricity to the grid and others are intended to be mainstream in Germany, Australia, China and elsewhere. An Italian pizza van does all its travel and cooking using unfolding solar plus a telescopic, unfurling wind turbine used when it is stationary. In 2017, companies are already negotiating to license the design for series manufacture. Unmanned solar inflatable wings will carry heavy loads across Canada and there is much more going on with wind, wave, tide and other ambient power grabbed by boats, planes and so on. Readers see the future. For example, discover how remote communities and underdeveloped counties will prosper as a consequence.

Utilities and charging station networks are bypassed. Batteries become less important in EVs. Less battery may be needed - sometimes no battery at all - but the report forecasts multi-billion dollar businesses being created that make the unprecedentedly efficient powertrains, multi-mode energy harvesting, lightweighting and streamlining required. "Energy Independent Electric Vehicles Land, Water, Air 2018-2038" reveals how that includes new technology of regeneration including elimination of hot shock absorbers and disk brakes, electricity being produced instead. Learn how smart materials are planned - structural electronics replacing the components-in-a-box approach. The reinvented car, boat and plane awaits, easier to use., safer, greener, with lower cost of ownership and longer life. Previously impossible missions are identified and the boost to mobile robotics is revealed. Participate and invest before the herd. Here is the knowledge that gives you the power.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Definition, attitudes, overall trend
  • 1.2. Types of EIEV and related vehicles
    • 1.2.1. EIEV operational choices
  • 1.3. Key EIEV technologies
  • 1.4. Examples of EIEV technologies past, present and concept including vehicles likely to be further developed into being EIEVs ie "precursors". On land
  • 1.5. Technologies of EIEVs past, present and concept including vehicles likely to be further developed into being EIEVs ie "precursors". On and under water
  • 1.6. Technologies of EIEVs past, present and concept including vehicles likely to be further developed into being EIEVs ie "precursors". In the air
  • 1.7. Executive summary and conclusions: EIEV Technology roadmap
  • 1.8. Market forecast 2018 and 2028

2. INTRODUCTION

  • 2.1. Energy Independent Electric Vehicles: energy, definition and function
  • 2.2. Definition and primary features
  • 2.3. What is energy harvesting?
  • 2.4. Characteristics of the High Power Energy Harvesting essential to EIEVs
    • 2.4.1. Power density provided by different forms of HPEH
  • 2.5. Good features and challenges of the four most important EH technologies in order of importance
  • 2.6. High power energy harvesting: examples with intermittency and suppliers
  • 2.7. Efficiency achieved and theoretical potential for improving efficiency of energy harvesting in and on EIEVs
  • 2.8. Energy harvesting technologies with examples of good features in blue
    • 2.8.1. More EH in a vehicle
  • 2.9. Intermittent power generated
  • 2.10. Comparison of pn junction and photoelectrochemical photovoltaics
  • 2.11. Priorities for high power EH in EIEVs, for primary traction power, with examples
  • 2.12. Main PV options beyond silicon
  • 2.13. Chasing affordable, ultra-lightweight conformal PV for EIEVs
    • 2.13.1. Best Research Cell Efficiencies
  • 2.14. Thin, lightweight Fresnel lens concentrator
  • 2.15. PV cost and efficiency trends
  • 2.16. Lizard EIEVs
  • 2.17. Toyota view in 2017 with image of the new Prius Prime solar roof
  • 2.18. Transition to EIEV: India

3. NEW FORMATS ARE VERY IMPORTANT FOR EIEVS

  • 3.1. New formats are very important for EIEVs
  • 3.2. Colloidal Quantum Dot spray on solar?
  • 3.3. But mostly still silicon today
  • 3.4. Harvesting technologies now and in future for air vehicles
  • 3.5. Overlap between mechanically and electrically energy independent vehicles
    • 3.5.1. Examples of e-fiber projects aimed at use in vehicles
    • 3.5.2. European Powerweave project: airships & sails
  • 3.6. Hybrid piezo photovoltaic material
  • 3.7. Triboelectricity is being developed for car tires
  • 3.8. EIEVs - more than adding something to a vehicle
  • 3.9. EH system
  • 3.10. Qualcomm vision - next enabling and transitional technologies
  • 3.11. Autonomous operation + EIEV: a synergistic ecosystem
  • 3.12. Dynamic wireless charging - stepping stone to EIEV
    • 3.12.1. Korea - dynamic charging from road
  • 3.13. Dynamic charging will use very low cost electricity
  • 3.14. Reinventing wind turbines for use on boats, ships, aircraft, land vehicles wind turbines for use on boats, ships, aircraft, land vehicles
    • 3.14.1. Energy positive large buses will come

4. EXTREME POWERTRAIN EFFICIENCY

  • 4.1. Overview
  • 4.2. Internal vehicle efficiency improvement by EH - progress towards EIEVs

5. EXTREME LIGHTWEIGHTING

  • 5.1. Overview
  • 5.2. Lightweighting materials
    • 5.2.1. De-icing heater as part of an aircraft wing
    • 5.2.2. Use of aluminium and plastics to have microcar weight
  • 5.3. Load-bearing and smart skin electrics/ electronics are part of the EIEV end-game
  • 5.4. Structural electronics (referring to electrics and electronics) is the end game for most EIEV components
  • 5.5. Lightweighting of electronic components
  • 5.6. Lamborghini collaborate with MIT on self healing car
  • 5.7. Tesla S chassis largely made of aluminium

6. NEXT GENERATION ENERGY STORAGE

  • 6.1. Overview
  • 6.2. Energy storage technologies in comparison
  • 6.3. Next generation batteries: summary
  • 6.4. Why post lithium-ion batteries now?
  • 6.5. Li-ion performance will plateau even with new materials
    • 6.5.1. US DOE projections of traction battery cost
  • 6.6. What are post Li-ion battery technology candidates?
  • 6.7. Challenges for post Li-ion batteries
  • 6.8. Mainstream market requirements: Performance and price
  • 6.9. Automotive lithium battery price evolution at pack level
  • 6.10. Battery price trends per sector
  • 6.11. Technology maturity roadmap per market segment
  • 6.12. Technologies of post lithium-ion batteries
  • 6.13. Benchmarking of theoretical battery performance
  • 6.14. Benchmarking of practical battery performance
  • 6.15. Why silicon anode batteries?
    • 6.15.1. Silicon anode
  • 6.16. Motivation - why lithium sulfur batteries?
  • 6.17. Challenges of lithium sulfur battery
  • 6.18. Why solid state li-ion or other batteries?
    • 6.18.1. Solid state batteries?
  • 6.19. Lithium capacitor
  • 6.20. Supercapacitors
  • 6.21. Supercapacitors and hybrid supercapacitor
    • 6.21.1. Nomenclature
  • 6.22. Lithium capacitors technology performance of products available today
  • 6.23. Sodium ion batteries
  • 6.24. Summary of technology challenges for future traction batteries
  • 6.25. Bundesverband Solare Mobilität - Federal Association of Solar Mobility

7. ENERGY INDEPENDENT ELECTRIC VEHICLES IN ACTION

8. EIEVS ON LAND, ON-ROAD

  • 8.1. Stella Lux passenger car Netherlands
  • 8.2. Sunswift eVe passenger car Australia
  • 8.3. Immortus passenger car, Australia
  • 8.4. POLYMODEL micro EV Italy
  • 8.5. Venturi Eclectic passenger car Italy
  • 8.6. Dalian tourist bus China
  • 8.7. NFH-H microbus China
  • 8.8. Kayoola large bus Uganda
  • 8.9. Cargo Trike micro EV UK
  • 8.10. Sunnyclist Greece
  • 8.11. InfinitE Scooter
  • 8.12. Hanergy China
  • 8.13. Sion Germany
  • 8.14. Clean Motion Midsummer Sweden
  • 8.15. Mobile EIEV grocery store China
  • 8.16. Solar motor home

9. SOLAR RACERS

  • 9.1. World Solar Challenge
    • 9.1.1. Other solar races
  • 9.2. Solar racer technologies - non solar parts
  • 9.3. Improvement of solar racer performance parameters
  • 9.4. Solar racer technologies - photovoltaics
  • 9.5. Power of One solar racer car Canada
  • 9.6. Bethany solar racer UK
  • 9.7. CUER Resolution solar racer UK
  • 9.8. EVA solar racer UK
  • 9.9. Nuna 7 solar racer Netherlands
  • 9.10. Nuna 8 solar racer Netherlands
  • 9.11. Drifter 2.0 solar racer USA
  • 9.12. University of Michigan solar racer

10. EIEVS ON LAND, OFF-ROAD

  • 10.1. Vinerobot micro EV Europe

11. EIEVS ON WATER SEAGOING

  • 11.1. REPSAIL boat Poland, Turkey etc
  • 11.2. Mayflower Autonomous Research Ship (MARS) UK,USA
  • 11.3. RENSEA boat Iceland, Norway, Sweden
  • 11.4. Turanor boat Germany
  • 11.5. Vaka Moana boat Netherlands
  • 11.6. Sun21 boat Switzerland
  • 11.7. Seaswarm boat USA
  • 11.8. Inerjy EcoVert
  • 11.9. SOELCAT boat Netherlands
  • 11.10. SeaCharger autonomous solar boat
  • 11.11. Solarwave autonomous solar boat
  • 11.12. Solar Yacht Zhenfa Holdings
  • 11.13. Energy Observer France

12. EIEVS SEAGOING UNDERWATER

  • 12.1. Seaglider AUV boat USA
  • 12.2. Cyro AUV jellyfish USA

13. EIEVS INLAND WATER

  • 13.1. Solar racing boats Netherlands
  • 13.2. Loon boat Canada
  • 13.3. Alster Sun Netherlands, Germany
  • 13.4. Energy independent ship opportunity
  • 13.5. ECO Marine Japan
  • 13.6. Go With The Flow Technologies

14. EIEVS AIRBORNE INFLATABLE

  • 14.1. Nephelios airship France
  • 14.2. Northrop Grumman airship USA
  • 14.3. Mitre DARPA airship USA
  • 14.4. Lockheed Martin HALE-D airship USA
  • 14.5. Dirisolar airship France
  • 14.6. Turtle airship USA
  • 14.7. Brunel solar powered autonomous aircraft

15. EIEVS FIXED WING

  • 15.1. Solarship inflatable fixed wing aircraft Canada
  • 15.2. Atlantik Solar 2 UAV Switzerland
  • 15.3. Zephyr 7 UAV UK, Germany
  • 15.4. Titan Aerospace UAV USA
  • 15.5. Solar Eagle UAV USA
  • 15.6. Facebook AQUILA UAV US, UK
  • 15.7. Aquila UAV USA, UK
  • 15.8. Silent Falcon UAV USA
  • 15.9. Helios UAV USA
  • 15.10. Sunstar USA
  • 15.11. Sunseeker Duo USA
  • 15.12. Solar Impulse Switzerland
  • 15.13. SolarStratos Switzerland
  • 15.14. China Aerospace
  • 15.15. Upper Atmosphere Dual Aircraft Platform vs Solar Plane
  • 15.16. Arctic Solar Drone

16. EIEV TECHNOLOGY SPAWNS ADVANCES FOR ALL VEHICLES

  • 16.1. EIEV technology spawns advances for all vehicles
  • 16.2. Energy Independent Electric Vehicles: here come the benefits
Back to Top