表紙
市場調查報告書

機器人感測器:技術,市場及預測 2017-2027年

Sensors for Robotics - Technologies, Markets and Forecasts 2017-2027

出版商 IDTechEx Ltd. 商品編碼 410002
出版日期 內容資訊 英文 228 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
機器人感測器:技術,市場及預測 2017-2027年 Sensors for Robotics - Technologies, Markets and Forecasts 2017-2027
出版日期: 2017年02月28日內容資訊: 英文 228 Slides
簡介

機器人感測的市場規模,預計至2027年達到161億美元以上。視覺系統預計至2027年達到單獨57億美元,力感測達69億美元,家用機器人的多感測器達36億美元。

本報告提供機器人感測器市場相關調查,產業用、協同機器人,自主式行動機器人,自主式車輛、自動駕駛,機器人無人機,農業用機器人,及家用機器人等,各機器人工學應用的感測系統的案例研究,市場預測,及主要企業簡介等資訊。

第1章 摘要整理、結論

第2章 機器人感測的簡介

  • 簡介
  • 機器人、機器人感測的課題
  • 定義

第3章 協同機器人 (協作式機器人)

  • 工業機器人
  • 合作、協同機器人定義
  • 力量控制機器人:真的協同機器人
  • 力量控制機器人:特徵
  • 力量控制機器人 :案例研究
  • 協作式機器人比較、其他

第4章 倉庫/物流用機器人的自主式行動機器人 (ARMS)

  • 倉庫/物流應用的行動機器人
  • KIVA
  • 梭子機器人:價格
  • 零售的ARMs
  • 特殊應用的ARMs:醫療、其他

第5章 家用機器人

  • 家用機器人
  • 家用機器人:機器人吸塵器
  • 家用機器人:機器人割草機

第6章 自主式交通工具:汽車、無人機

  • 自主式交通工具及安全性的冗長性的概念
  • A.I.的感測器融合
  • Google的自主式交通工具實驗
  • LIDAR:降低成本策略
  • 機器人工學的應用:機器人自動駕駛車
  • 機器人無人機
  • LIDAR - 機器人工學的應用:機器人無人機

第7章 農業用機器人

  • 農業的自動化的促進要素
  • 完全自主式無人大型曳引機
  • 自主式雜草消除機器人
  • 高光譜影像:精密農業的未來
  • 在農業中使用航空影像的優點
  • 市售的無人農業用無人機

第8章 機器人的光學感測器:視覺誘導機器人 (VGR)

  • 工業機器人的取放 & 願景
  • 機器人視覺的必要性
  • 視覺誘導機器人 (VGR)
  • 企業
  • VGR的硬體設備的改善:影像感測的革新
  • 工業機器人的VGR:預測
  • VGR預測
  • 產業用協同機器人的VGR:預測、其他

第9章 行動機器人及自主式交通工具的視覺:LIDAR的登場

  • 自主式交通工具、行動機器人的視覺
  • LIDAR
  • 相位陣列
  • MEMS鏡子掃描機
  • 先進行動機器人,零售以及其他應用的視覺系統:預測、其他

第10章 機器人工學其他的光學感測器:超級及多頻譜影像感測器

  • 高光譜遙測影像感測器
  • 其他應用程式的高光譜遙測影像感測器
  • 市售的高光譜遙測影像感測器
  • GeoVantage 、其它

第11章 家用機器人的感測器

第12章 機器人工學的力感測

  • 機器人工學的力感測
  • EPSON的壓電阻力應力感測器
  • Bosch的APAS智慧介面
  • 協同機器人力感測的方法、其他

第13章 市場預測

  • 視覺系統的預測
  • 力感測的預測
  • 家用機器人感測器的預測

第14章 企業簡介

  • Bionic Robotics
  • Carbon Robotics
  • DeepField Robotics
  • Fanuc Robotics
  • iniLabs
  • OptoForce Ltd
  • Roboception
  • Universal Robots
  • Velodyne LiDAR

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄
a

The report focuses on sensor technologies and components in robotics applications that are currently under development and are enjoying increased visibility, investment and growth. This is mainly due to the capabilities sensors are expected to enable in robotics. Simply put, smarter, sensor-enabled robots that can make decisions based on sensory feedback are expected to have massive societal impact, as such robotic systems will proliferate in many more market segments than current robotic systems address. Vision systems alone will be a market of $5.7 Billion by 2027, force sensing will reach over $6.9 Billion while the multiple sensors in domestic robots will account for $3.6 Billion, representing almost 30% of their value.

The report focuses on:

  • Visual perception sensors, which will remain a key element in the development and growth of the market for robotic sensors as well as key advances in vision-related hardware such as the development of high speed -low noise CMOS image sensors, active lighting schemes as well as the development of advanced 2D and 3D vision. LIDAR systems and others..

image1

  • Force sensing which is allowing for improved safety, enabling the roll out of robots that comply with regulatory requirements in limiting forces. This force limiting capability has led to the emergence of robotic systems that can safely work alongside humans.
  • At the same time force sensing enables gradations in applied forces at the end-effector, hence widening the range of parts that robots can handle. As a result, we are witnessing an expansion of the use of robotic systems in segments that were previously incompatible with existing robotic systems.

image2

As a result of the introduction of these new features in robots, increased uptake of robotic systems in new and existing sectors and applications is expected; it is due to improved performance and the introduction of robots with new and expanded capabilities. These include but are not limited to communication capabilities, environmental perception, and sensor-enabled mobility which in turn enable concepts such as collaborative robots, advanced mobile robots and autonomous vehicles. The features of these robots as well as their sensor requirements are described in detail in the report.

The effects of the development of the above key sensor technologies are studied and ten year forecasts are given for sensing systems on robotic applications such as:

  • industrial and collaborative robotics
  • autonomous mobile robotics
  • autonomous vehicles and automated driving
  • robotic drones
  • agricultural robots
  • domestic robots

Overall, the timing factor in the above considerations has been critical; a few key technology developments in recent years aligned in order to lead to the growth of robotic sensing we are experiencing. For instance, massive strides in software development and the creation of learning algorithms for data fusion went hand in hand with significant costs reductions in sensor componentry while achieving high performance. These trends, that are expected to continue, have influenced the underlying assumptions in this report, and have shaped the forecasts within it.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Introduction
  • 1.2. The rise of artificial intelligence
  • 1.3. Drivers for increasing robotic adoption - the 4th industrial revolution
  • 1.4. Drivers for increasing robotic adoption - collaborative robotics
  • 1.5. Drivers for increasing robotic adoption - mobile robotics & autonomous driving
  • 1.6. Robotic visual and force sensing
  • 1.7. Robotic sensing: why now?
  • 1.8. Robotic sensing
  • 1.9. Robotic sensing forecasts
  • 1.10. Ten year forecasts for vision systems (units, market value)
  • 1.11. Ten year forecasts for force sensing (market value)
  • 1.12. Ten year forecasts for domestic robots (market value)
  • 1.13. The ethics of artificial intelligence

2. INTRODUCTION

  • 2.1. Introduction to robotic sensing
  • 2.2. Challenges in robotics and robotic sensing (1)
  • 2.3. Challenges in robotics and robotic sensing (2)
  • 2.4. Challenges in robotics and robotic sensing (3)
  • 2.5. Definitions (1)
  • 2.6. Definitions (2)
  • 2.7. Definitions (3)
  • 2.8. Definitions (4)

3. COLLABORATIVE ROBOTS

  • 3.1. Industrial robots
  • 3.2. Collaborative robot definitions
  • 3.3. The force limited robot: a true collaborative robot
  • 3.4. Force limited collaborative robots: features (1)
  • 3.5. Force limited collaborative robots: features (2)
  • 3.6. Force limited collaborative robots - case studies (1)
  • 3.7. Force limited collaborative robots - case studies (2)
  • 3.8. Force limited collaborative robots - case studies (3)
  • 3.9. Force limited collaborative robots - case studies (4)
  • 3.10. Force limited collaborative robots - case studies (5)
  • 3.11. Force limited collaborative robots - case studies (6)
  • 3.12. A comparison of collaborative robots
  • 3.13. A comparison of force limited robots

4. AUTONOMOUS MOBILE ROBOTICS (AMR)

  • 4.1. Mobile robots in warehouse/logistics applications
  • 4.2. KIVA
  • 4.3. ... before KIVA was Amazon
  • 4.4. ... before KIVA was Amazon (2) on the importance of software and hardware
  • 4.5. ... before KIVA was Amazon (3) the wisdom of the crowd
  • 4.6. An expanded definition of collaborative robots?
  • 4.7. Shuttle robots: pricing
  • 4.8. AMRs in retail (1)
  • 4.9. AMRs in retail (2)
  • 4.10. AMRs in retail (3)
  • 4.11. AMRs in specialized applications - medical
  • 4.12. AMRs in specialized applications - medical (2)

5. DOMESTIC ROBOTS

  • 5.1. Introduction
  • 5.2. Robotic cleaners
  • 5.3. Robotic lawnmowers

6. AUTONOMOUS VEHICLES: CARS AND DRONES

  • 6.1. Autonomous vehicles and the concept of redundancy in safety
  • 6.2. Sensor fusion as A.I.
  • 6.3. Testing Google's autonomous vehicles
  • 6.4. LIDAR - cost reduction strategies
  • 6.5. LIDAR - investment
  • 6.6. Robotic autonomous cars - autonomy definitions
  • 6.7. Robotic autonomous cars - forecasts
  • 6.8. Robotic drones
  • 6.9. Robotic drones/UAVs - levels of autonomy

7. AGRICULTURAL ROBOTS

  • 7.1. Drivers for automation in agriculture
  • 7.2. Fully autonomous driverless large tractors
  • 7.3. Autonomous weed killing robots (LIDAR navigation)
  • 7.4. Hyperspectral imaging: the future of precision agriculture
  • 7.5. Benefits of using aerial imaging in farming
  • 7.6. Unmanned agriculture drones on the market

8. OPTICAL SENSORS IN ROBOTS - VISION GUIDED ROBOTICS

  • 8.1. Bin picking & vision in industrial robotics
  • 8.2. The need for robotic vision
  • 8.3. Vision guided robotics (VGR) technologies
  • 8.4. 2D & 3D machine vision
  • 8.5. 3D machine vision - stereo cameras
  • 8.6. 3D machine vision - structure light
  • 8.7. 3D machine vision - projected texture
  • 8.8. 3D machine vision - light profiling
  • 8.9. 3D machine vision - LASER profilers & time of flight
  • 8.10. The players
  • 8.11. Innovation in image sensing - hardware improvements in VGR
  • 8.12. Innovation in image sensing - iniLabs -DVS
  • 8.13. Innovation in image sensing - SNAP Sensor
  • 8.14. Vision systems in industrial robots - ten year forecasts (numbers)
  • 8.15. Vision systems in industrial robots - ten year forecasts (value)
  • 8.16. Vision systems in industrial collaborative robots - ten year forecasts (numbers and value)
  • 8.17. Vision systems in industrial collaborative robots - ten year forecasts (numbers)
  • 8.18. Vision systems in industrial collaborative robots - ten year forecasts (value)

9. VISION IN MOBILE ROBOTICS AND AUTONOMOUS VEHICLES: THE EMERGENCE OF LIDAR

  • 9.1. Vision in autonomous vehicles and mobile robotics
  • 9.2. LIDAR - an overview
  • 9.3. LIDAR: LIght Detection And Ranging
  • 9.4. Principle of operation
  • 9.5. Basic components
  • 9.6. LIDAR or... LIDAR?
  • 9.7. Velodyne 3D LIDAR
  • 9.8. Neptec Opal
  • 9.9. Scanse
  • 9.10. Comparing low cost LIDAR options
  • 9.11. Performance comparison of different LIDARs on the market or in development
  • 9.12. Quanergy
  • 9.13. M8 Specifications
  • 9.14. innoviz
  • 9.15. Leddar Tech solid state LIDAR
  • 9.16. MIT and DARPA: Single chip LIDAR
  • 9.17. Other LIDAR related products: SLAM: Simultaneous localization and mapping
  • 9.18. Other LIDAR related products: 3D Flash LIDAR camera from Advanced Scientific Concepts
  • 9.19. Flash LIDAR: A visualization from ASC - Continental
  • 9.20. Scanning methods for outdoor LIDAR applications
  • 9.21. Phased array - examples
  • 9.22. Phased array - examples (2)
  • 9.23. MEMS mirror scanners (1)
  • 9.24. MEMS mirror scanners (2)
  • 9.25. Toposens - Terabee : complementing LIDAR with ultrasound
  • 9.26. Sonar - Radar - Cameras
  • 9.27. Comparing LIDAR, radar and camera performance
  • 9.28. Vision systems in advanced mobile robotics; logistics, retail and other applications - ten year forecasts (units, market value)
  • 9.29. Ten year forecasts for AMRs (units)
  • 9.30. Ten year forecasts AMRs (market value)
  • 9.31. Ten year forecasts for vision in AMR (total market value)
  • 9.32. Vision systems in advanced mobile robotics: Drones forecasts
  • 9.33. Vision systems in mobile robotics: Fully autonomous car forecasts

10. OTHER OPTICAL SENSORS IN ROBOTS - HYPER- AND MULTISPECTRAL IMAGE SENSORS

  • 10.1. Hyperspectral image sensors
  • 10.2. Hyperspectral imaging in other applications
  • 10.3. Hyperspectral imaging sensors on the market
  • 10.4. Common multi-spectral sensors on the market
  • 10.5. GeoVantage
  • 10.6. Headwall hyperspectral cameras
  • 10.7. Hyper and multispectral vision systems in agricultural robots - ten year forecasts (units, unit price, market value)
  • 10.8. Ten year forecasts (units)
  • 10.9. Ten year forecasts (market value)

11. SENSORS IN DOMESTIC ROBOTS

  • 11.1. Introduction
  • 11.2. Ten year forecasts (units, price, market value)
  • 11.3. Ten year forecasts (number of units)
  • 11.4. Ten year forecasts (average price)
  • 11.5. Ten year forecasts (total market value)

12. FORCE SENSING IN ROBOTICS

  • 12.1. Force sensing in robotics
  • 12.2. EPSON piezoresistive force sensors
  • 12.3. Other force sensors
  • 12.4. End effector force sensing in industrial robots - ten year market forecasts (units, market value)
  • 12.5. Ten year market forecasts (units)
  • 12.6. Ten year market forecasts (total market value)
  • 12.7. End effector force sensing in collaborative robots - ten year market forecasts (units, market value)
  • 12.8. Ten year market forecasts (units)
  • 12.9. Ten year market forecasts (market value)
  • 12.10. Blue Danube: skins for collaborative robots
  • 12.11. Bosch APAS smart skin
  • 12.12. Carbon Robotics capacitive sensor
  • 12.13. Force sensing approaches for collaborative robots
  • 12.14. Force sensing approaches: series elastic actuators
  • 12.15. Joint-force sensing and force sensing skins collaborative robots - ten year forecasts (market value)
  • 12.16. Ten year forecast for collaborative robots (market value)
  • 12.17. Ten year forecast for force sensing skins (market value)

13. MARKET FORECASTS

  • 13.1. Vision systems ten year forecasts for different robots (units, market value)
  • 13.2. Vision systems ten year forecasts for different robots (market value)
  • 13.3. Force sensing ten year forecasts (market value)
  • 13.4. Sensors for domestic robots ten year forecasts (market value)

14. COMPANY PROFILES

  • 14.1. Bionic Robotics
  • 14.2. Carbon Robotics
  • 14.3. DeepField Robotics
  • 14.4. Fanuc Robotics
  • 14.5. iniLabs
  • 14.6. OptoForce Ltd
  • 14.7. Roboception
  • 14.8. Universal Robots
  • 14.9. Velodyne LiDAR
Back to Top