Cover Image
市場調查報告書

環境氣體感測器 空氣品質感應器

Environmental Gas Sensors 2018-2028

出版商 IDTechEx Ltd. 商品編碼 387389
出版日期 內容資訊 英文 164 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
環境氣體感測器 空氣品質感應器 Environmental Gas Sensors 2018-2028
出版日期: 2018年05月11日 內容資訊: 英文 164 Slides
簡介

氣體傳感器在傳統上向來僅用於工業洩漏檢測和家用一氧化碳警報器,但化學氣體傳感器行業上小型化和降低成本的趨勢卻實現了新的環境監測生態系統。其市場規模預測在2014年為3億6100萬美元,2022年24億美元,並且到2027年將超過30億美元。

本報告涵括構成氣體感測器生態系統之廣泛技術,提供您6個市場區隔 (行動裝置,穿戴式,空氣品質 (IAQ) 、空氣清淨機,汽車,智慧城市)的分析與預測。

第1章 摘要整理

第2章 簡介

第3章 污染感測技術

  • 目前污染監測設備花費高昂
  • 氣體感測器提供替代選擇
  • 感測器產業
  • 化學感測器的歷史
  • 可偵測空氣污染物的濃度、其他

第4章 氣體感測器的小型化

  • 小型感測器:市場上轉換點
  • 使用MEMS製造業製造感測器
  • 扁平型電化學感測器、其他

第5章 環境感測器市場競爭分析

  • 氣體感測器的價值鏈
  • 氣體感測器製造商清單
  • 氣體感測器產業上近幾年的收購、其他

第6章 行動裝置的感測器

  • 行動裝置產業
  • 針對行動裝置的檢測原理
  • 整合感測器到智慧型手機的課題
  • 行動裝置部門的未來市場機會

第7章 穿戴式的感測器

  • 穿戴式技術產業
  • 手環上的感測器整合
  • 穿戴式感測器的技術要件
  • 成為模組化腕帶一部分的穿戴式感測器、其他

第8章 室內空氣品質 (IAQ) 檢測用感測器

  • 室內空氣品質 (IAQ)
  • 室內污染物質的原來
  • 決策上CO2暴露的影響
  • Home-Office監測:連網型環境、其他

第9章 空氣清淨機的感測器

  • 全球空氣清淨機市場
  • 空氣清淨方法
  • 空氣清淨機用微小檢測原理
  • 室內空氣品質 (IAQ) 的課題

第10章 汽車的感測器

  • 汽車污染:全球蔓延
  • 保護乘客的空氣品質感測器
  • 汽車氣體感測的課題
  • 汽車氣體感測器的未來機會

第11章 智慧城市的感測器

  • 智慧城市的簡介
  • 固定 vs. 行動感測網路
  • 個人 vs. 私人網路
  • 目前城市規模的污染監測計劃
  • 目前智慧城市大氣監測計劃、其他

第12章 其他應用

  • 終端型環境螢幕
  • AirCasting (空氣品質監測應用程式)

第13章 市場預測

  • 預測詳細內容·前提條件
  • 各市場的明細
  • 市場預測:出貨量
  • 市場預測:收益
  • 出貨量預測:檢測原理別
  • 收益預測:檢測原理別
  • 行動裝置的感測器:各數量
  • 行動裝置的感測器:各收益
  • 穿戴式的感測器:各數量
  • 穿戴式的感測器:各收益
  • 空氣品質螢幕的感測器:各數量
  • 空氣品質螢幕的感測器:各收益
  • 空氣清淨機的感測器:各數量
  • 空氣清淨機的感測器:各收益
  • 智慧城市感測器:各數量
  • 智慧城市感測器:各收益
  • 汽車感測器:各數量
  • 汽車感測器:各收益
  • 其他應用:各數量
  • 其他應用:各收益
  • 結論

第14章 企業簡介

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

The market for gas sensor will reach $3,100 million by 2028.

Poor air quality causes more deaths annually than HIV/AIDS and malaria combined. A lack of low cost environmental monitoring equipment prevents individuals from taking action to improve air quality. Currently environmental monitoring methods are expensive and provide low spatial coverage, making their usefulness to individuals limited.

Sensors are based on tried and tested technology, new methods of manufacture are enabling smaller, lower power and more selective sensors. This has led to a tipping point in the industry, enabling the integration of sensors into low cost devices and into everyday consumer electronics such as mobile phones and wearable devices. In the future, a range of detection principles will be used to assess the wide range of pollutants in the environment. By 2028, more than 700 million sensors will be used in mobile phones.

At the same time, sensors will play a key role in IoT development and will be used extensively in smart home and smart city programmes. Heating, ventilation and air conditioning (HVAC) systems, air purifiers, smart windows and other applications will employ sensors to improve the quality of life of individuals across the world. We expect a growing market for gas sensors used in smart homes and smart cities.

In this report, we forecast the market for environmental gas sensors from 2018 to 2028. The atmospheric pollutants under examination include CO2, volatile organic compounds, NOx, Ammonia, SO2 and CO. Many pollutants exist at similar concentrations in the region of parts per billion (ppb). Consequently, there is a greater need for selective sensors in environmental monitoring. Another main focus is the particle pollutant of micron size, as the concern of smog is growing.

This report covers biosensors based on techniques of:

  • Pellistor gas sensor
  • Infrared gas sensor
  • metal oxide semiconductor (MOS) gas sensor
  • electrochemical gas sensor
  • and optical particle monitor (OPM) gas sensor

These techniques were compared with the traditional methods such as ultraviolet adsorption or filter dynamics measurement system. Gas sensors present an opportunity to attain good spatial coverage on environmental information, unobtainable with traditional monitoring methods. Microelectromechanical systems and screen printing techniques open the door to miniaturising these sensors, which is the key for the future use of these gas sensors

The market forecast is based on six major market segments:

  • automotive
  • air purifier
  • smart devices (mobile)
  • smart home
  • smart city
  • and wearables.

The environmental sensor market is currently dominated by the automotive industry, where sensors are used to automate air flow into the drivers' compartment. Over the coming years, IDTechEx expect to see large increases in sales across several new markets, primarily to the mobile device and air purifier industries.

We provide a list of main manufacturers of gas sensors, and a SWOT analysis of ten. We also give a comprehensive study on current available devices that using gas sensor to monitor environment, including sensors in mobile devices, wearable, air purifiers, automobiles, smart cities and to measure indoor air quality.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. New technology is unlocking the market
  • 1.2. Major market segments
  • 1.3. Key players in each sensor type
  • 1.4. Trends by detection principles

2. INTRODUCTION

  • 2.1. The global challenge of air pollution
  • 2.2. Effects of outdoor air pollution
  • 2.3. Indoor air pollution is also an issue
  • 2.4. The seven most common atmospheric pollutants
  • 2.5. International air quality standards
  • 2.6. Need for environmental monitoring
  • 2.7. Types of environmental sampling
  • 2.8. Potential uses for low cost air quality monitors

3. TECHNOLOGIES FOR POLLUTION SENSING

  • 3.1. Current pollution monitoring instruments are costly
  • 3.2. Gas sensors offer an alternative
  • 3.3. Sensor industry
  • 3.4. History of chemical sensors
  • 3.5. Concentrations of detectable atmospheric pollutants
  • 3.6. Environmental sensing in industrial facilities
  • 3.7. Five common detection principles for gas sensors
  • 3.8. Introduction to pellistor gas sensors
  • 3.9. Introduction to infrared gas sensors
  • 3.10. Introduction to metal oxide (MOS) gas sensors
  • 3.11. Introduction to electrochemical gas sensors
  • 3.12. Introduction to optical particle detection
  • 3.13. Current research in gas sensors: carbon nanotubes
  • 3.14. Current research in gas sensors: zeolites
  • 3.15. Current research in gas sensors: graphene
  • 3.16. Transition to new manufacturing methods
  • 3.17. Energy harvesting technologies for gas sensors
  • 3.18. Sensors in comparison with traditional equipment
  • 3.19. Limitations of gas sensing devices

4. MINIATURIZATION OF GAS SENSORS

  • 4.1. Miniaturized sensors: a tipping point in the market
  • 4.2. Sensor fabrication using MEMS manufacturing
  • 4.3. Flat electrochemical sensors
  • 4.4. Comparison between classic and miniaturised sensors
  • 4.5. Miniaturisation of pellistor gas sensors
  • 4.6. Miniaturisation of infrared gas sensor
  • 4.7. Miniaturisation of electrochemical gas sensors
  • 4.8. Miniaturisation of MOS gas sensors
  • 4.9. Comparison of miniaturised sensor technology

5. COMPETITIVE ANALYSIS OF THE ENVIRONMENTAL SENSOR MARKET

  • 5.1. The gas sensor value chain
  • 5.2. List of gas sensor manufacturers
  • 5.3. Recent acquisitions in the gas sensor industry
  • 5.4. Sensor manufacturer business models
  • 5.5. Porters' five force analysis of industry
  • 5.6. Quality assurance for environmental monitoring equipment
  • 5.7. SWOT analysis of 10 manufacturers
  • 5.8. Future challenges for sensor manufacturers

6. SENSORS IN MOBILE DEVICES

  • 6.1. The mobile device industry
  • 6.2. Suitable detection principles for mobile devices
  • 6.3. Consumer interface for gas sensing data
  • 6.4. Challenges for sensor integration into smartphones
  • 6.5. Future market opportunities in the mobile device sector

7. SENSORS IN WEARABLES

  • 7.1. The wearable technology industry
  • 7.2. Sensor integration in wrist wear
  • 7.3. Technology requirements of wearable sensors
  • 7.4. Wearable sensors as part of modular wrist straps
  • 7.5. Environmental sensor integration in fashion accessories
  • 7.6. Future opportunities for wearable sensors

8. SENSORS TO MEASURE INDOOR AIR QUALITY

  • 8.1. Indoor air quality
  • 8.2. Sources of indoor air pollutants
  • 8.3. Effects of CO2 exposure on decision making
  • 8.4. Home and office monitoring: a connected environment
  • 8.5. Current smart home monitoring vendors
  • 8.6. Sensors to direct HVAC systems
  • 8.7. HVAC systems in buildings
  • 8.8. Future opportunities for IAQ monitoring
  • 8.9. Challenges for indoor air quality measurement

9. SENSORS IN AIR PURIFIERS

  • 9.1. The global air purifier market
  • 9.2. Methods of air purification
  • 9.3. Suitable miniaturised detection principles for air purifiers
  • 9.4. Challenges in indoor air quality monitoring

10. SENSORS IN AUTOMOBILES

  • 10.1. Automobile pollution: a global epidemic
  • 10.2. Air quality sensors safeguarding passengers
  • 10.3. Car mounted sensors monitoring air pollution in Mexico City
  • 10.4. Challenges for automobile gas sensing
  • 10.5. Future opportunities for automobile gas sensors

11. SENSORS IN SMART CITIES

  • 11.1. Introduction to smart cities
  • 11.2. Fixed vs mobile sensing networks
  • 11.3. Personal vs private networks
  • 11.4. Current city wide pollution monitoring programmes
  • 11.5. Current smart city air monitoring projects
  • 11.6. Calculated air quality measurements
  • 11.7. Transport based sensing of environmental pollutants
  • 11.8. Airborne pollution sensing
  • 11.9. Mobile monitoring: sensors on bicycles
  • 11.10. Traffic monitoring with gas sensors
  • 11.11. Array of things project - Chicago
  • 11.12. Anatomy of an outdoor sensor node
  • 11.13. Challenges for smart city monitoring
  • 11.14. Future opportunities for environmental sensors in smart cities

12. OTHER APPLICATIONS

  • 12.1. Handheld environmental monitors
  • 12.2. Aircasting

13. MARKET FORECASTS

  • 13.1. Forecast details and assumptions
  • 13.2. Breakdown by market
  • 13.3. Market forecast: unit sales
  • 13.4. Market forecast: market value
  • 13.5. Unit sales forecast by detection principle
  • 13.6. Market value forecast by detection principle
  • 13.7. Sensors in smart devices by volume
  • 13.8. Sensors in smart devices by revenue
  • 13.9. Sensors in wearables by volume
  • 13.10. Sensors in wearables by revenue
  • 13.11. Sensors in air purifier by volume
  • 13.12. Sensors in air purifier by revenue
  • 13.13. Sensors in smart city by volume
  • 13.14. Sensors in smart city by revenue
  • 13.15. Sensors in smart home by volume
  • 13.16. Sensors in smart home by revenue
  • 13.17. Sensors in automotive by volume
  • 13.18. Sensors in automotive by revenue
  • 13.19. Other applications by volume
  • 13.20. Other application by revenue
  • 13.21. Conclusions

14. COMPANY PROFILES

Back to Top