表紙
市場調查報告書

有人電力飛機 (MEA) 市場:2018年∼2028年

Manned Electric Aircraft 2020-2030

出版商 IDTechEx Ltd. 商品編碼 357119
出版日期 內容資訊 英文 152 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
有人電力飛機 (MEA) 市場:2018年∼2028年 Manned Electric Aircraft 2020-2030
出版日期: 2019年05月30日內容資訊: 英文 152 Slides
簡介

本報告提供有人電力飛機 (MEA) 市場長期的展望調查,彙整MEA化的理由,MEA的課題與市場機會,構成MEA的主要技術概要及各技術部門趨勢,獨立能源交通工具 (EIV)的可能性,MEA銷售台數·價格的預測,主要經營者的配合措施範例等資料。

第1章 摘要整理·總論

第2章 簡介

  • 過去吸取的經驗
  • 目前情形
  • 其他範例:一個機體提供複數的動力傳動選擇的趨勢
  • 第一個商用4座位混合
  • 競賽:新的電池·燃料電池面板
  • HY4 4人乘坐燃料電池飛機的DLR計劃
  • Airbus的新自主式飛機
  • 零污染航空運輸 - 4人乘坐飛機HY4最初飛行
  • Zee.Aero 的第一架電動·VOTL飛機
  • Hamilton的雜技機
  • Airbus的都會空中載具原型將在2017年末準備好
  • Zunum-Boeing
  • Uber空中計程車
  • air taxi
  • Zee.Aero 2017年飛行
  • 豐田在日本「支援都會空中載具計劃」
  • chAIR
  • EUFanWing的期待高漲

第3章 電動饋線定期客機的進步

  • 簡介

第4章 動力傳動的各種類型

  • 電子動力傳動是什麼?
  • 是純電子還是混合?
    • 案例:PC Aero Elektra One
    • 案例:E-Genius, SUGAR Volt
  • 混合電力飛機的各種類型
    • 並聯混合
    • 串聯式油電混合
  • 典型性的混合工作週期及其案例
    • 工作週期
    • Bye Aerospace 及 XTI USA
    • Cambridge University Song hybrid
    • Equator P2 Xcursion
    • 生質燃料太陽能混合
    • DARPA VTOL
  • Airbus的混合電力飛機:概要
  • 輕度 vs 斯特朗混合:汽車吸取的經驗
  • EV動力傳動及技術預測
  • 獨立能源型電動車 (EIV)
  • 主要EIV技術
  • 馬達和馬達生成器
  • Range extender

第5章 能源儲存

  • 選項
  • 電動車的能源儲存技術所扮演的角色
  • 強化鋰離子電池的安全
  • 各種系統的運行原理
  • 從超級電容器儲能到鋰離子電池
  • 未來混合&pure電子機和能源儲存的選項的選配:其他產業的教訓
    • 未來的能源儲存選擇製圖
  • 鋰離子電池與超級電容器儲能
  • 透過結構性電子的超輕量化

第6章 能源採集和能源的再生

  • 定義和背景
  • Best Research-Cell Efficiencies

第7章 獨立能源交通工具 (EIV)

  • 獨立能源型電動車
  • 還沒有大型混合
  • 傳統飛機的電力電子技術
  • 客機地上的電動車化
  • 旋轉電子機械和電力電子技術的改良上莫大潛在性
  • 未來的設計:NASA的見解

第8章 都會空中載具 (天空飛的汽車):是必要,還是可能?

  • 都會空中載具:必要,還是可能?
  • Aeromobil的都會空中載具:斯洛伐克出生的都會空中載具?
  • 豐田:燃料電池,還是都會空中載具?
  • 都會空中載具機場的利用
  • 只有單一坐位有可能實行嗎?
  • Elon Musk, Larry Page 及 Nikhil Goel

第9章

  • DeLorean VTOL電力飛機
  • 空中及 GyroDrive
  • 都市區的交通堵塞有效:更佳替代手段
  • 混合VTOL都會空中載具的實行可能性

第10章 CAFE TENTH ELECTRIC AIRCRAFT SYMPOSIUM REPORT

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Title:
Manned Electric Aircraft 2020-2030
Market/ technology forecasts, project appraisals, hybrid/ pure electric, VTOL/ CTOL, crewed and autonomous passenger transport.

From almost nothing, expect a $2 billion market in 12 years and rapid growth thereafter.

The 152 page new IDTechEx report, "Manned Electric Aircraft 2020-2030" does not pull its punches.

Its densely packed new infograms and forecasts of both technology and sales clearly present what are often surprising results. They come from new facts-based analysis over 100 participating companies, conferences, databases, interviews and more by its globe-trotting PhD level researchers.

There are going to be some dramatic winners and losers in all this. Amazing new technologies are in the pipeline. The report explains the significance of such things as distributed thrust with up to 30 thrusters, ionic thrust, rise-and-glide, cryogenic fuel cell, superconducting motors and powertrain and other routes to even airliners going pure electric. For example, grasp how power electronics, regenerative propellers and solar/ supercapacitor bodywork will assist.

This is a story of three options for new manned electrically-driven aircraft. Small fixed-wing pure-electric is strongly trading now. Larger hybrid and pure electric aircraft up to regional aircraft will be with us within ten years - a huge addressable market. The wild card is vertical-takeoff pure-electric aircraft as air taxis and personal aircraft with huge challenges and opportunities assessed.

The IDTechEx report, "Manned Electric Aircraft 2020-2030" has a comprehensive Executive Summary and Conclusions with ten primary conclusions then electric powertrain types explained with timelines by IDTechEx and leading players. See their future evolution and how the top down approach of More Electric Aircraft MEA contributes. Addressable markets are scoped such as pilot training need by region, the number of elderly Cessnas urgently needing replacement plus the long range and the city and airport VTOL opportunity. The VTOL market barriers and costs are examined with FAA and other views. 42 key players are compared here. Projects are then examined for payback, geography, range by type and years ahead and more. Learn motor types by project and kW/kg, technology timelines to 2050, adoption dynamics 2020-2030. When will the killer blow of lower up-front price happen by type/ year 2020-2040? See Siemens, NASA, Airbus, Uber and IDTechEx projections to 2040 for everything from regulations to adoption of new principles of flight. For 2019-2030 see the new IDTechEx number and value market forecasts by year for seven categories of electric manned aircraft with assumptions and explanation.

The Introduction then examines powertrain options in more detail and gives the complexity roadmap as influenced by electrification, in-mold electronics, wireless boards and more. What new functions get added? What are the many options for energy harvesting at both aircraft and board level? See emissions, regulations and legislative drivers 2020-2040 and benchmark land transport.

Chapter 3 Technologies explores progress to the end game of energy independence. Energy storage, batteries, motors (ten trends), power electronics and energy harvesting get detailed treatment with many examples.

Chapter 4 gives detail and analysis on ten important developers and manufacturers and their views and many programs involving both startlingly new technology and new electric aircraft. Throughout the report there are many examples of recent activity, interviews and intentions with many illustrations making it all very easy to grasp from battery reduction to technology transfer arriving from drones and Tesla cars. Only IDTechEx gives this big picture with technical depth in its report, "Manned Electric Aircraft 2020-2030". The future has arrived and traditional aircraft companies not paying attention will be in danger.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Manned aircraft: why go electric?
    • 1.1.1. Definition
    • 1.1.2. Strongest justification 2020-2030
    • 1.1.3. Additional justification mainly earning from 2030-2050
  • 1.2. Primary conclusions
    • 1.2.1. Progression: coming at it from both ends
    • 1.2.2. Leading developers
    • 1.2.3. VTOL vs CTOL
    • 1.2.4. Hybrid fixed wing
    • 1.2.5. Hybrid VTOL
    • 1.2.6. Pure electric VTOL
    • 1.2.7. The industry is at a fault line
    • 1.2.8. Traditional aerospace companies have mostly had a top down approach
    • 1.2.9. Formidable new competitors arrive
    • 1.2.10. Regional differences
  • 1.3. Categorisation of manned electric aircraft and powertrains
    • 1.3.1. Aircraft types
    • 1.3.2. Powertrain types
  • 1.4. Major challenges associated with crewed electric aircraft
  • 1.5. More electric aircraft
  • 1.6. Addressable markets
    • 1.6.1. Current short and medium-range addressable market
    • 1.6.2. Current long-range addressable market
    • 1.6.3. New addressable market VTOL, ESTOL
  • 1.7. VTOL market barriers and costs
    • 1.7.1. VTOL market barriers
    • 1.7.2. VTOL costs
    • 1.7.3. Comparison of VTOL options
  • 1.8. Project analysis
    • 1.8.1. Overview of projects
    • 1.8.2. 42 key players and models by category
    • 1.8.3. Some successful full-scale crewed flight tests
    • 1.8.4. Example of much lower TCO and operating cost: Bye Aerospace eFlyer 2
    • 1.8.5. Projects - Geographical Distribution
    • 1.8.6. Project analysis - anticipated range and climb
    • 1.8.7. Project analysis - lightweighting
  • 1.9. Analysis of electric motor types in electric aircraft
  • 1.10. Timelines 2020 to 2050
    • 1.10.1. Adoption of crewed electric aircraft 2020-2050
    • 1.10.2. Adoption dynamics, hybrid, pure electric 2020-2030 with examples
    • 1.10.3. The killer blow of lower cost for electric aircraft by year and size 2020-2040
    • 1.10.4. View to 2050 from major players
    • 1.10.5. Regulatory barriers, legislative drivers, certification 2020-2050
  • 1.11. Market size
    • 1.11.1. Market forecast value by type $M 2019-2039
    • 1.11.2. Market forecast 2019-2030 number vs value
    • 1.11.3. Forecast assumptions
    • 1.11.4. Run before you can walk?

2. INTRODUCTION

  • 2.1. Powertrain options
    • 2.1.1. Overview
    • 2.1.2. Rolls Royce view of electric aircraft powertrain options
  • 2.2. NASA studies of issues
  • 2.3. Complexity roadmap
    • 2.3.1. Radical simplification
    • 2.3.2. Aircraft example
    • 2.3.3. How it is done: electrification, wireless and structural electronics
    • 2.3.4. Very useful new functions can then be added
  • 2.4. Emissions, regulations, legislative drivers 2020-2040
  • 2.5. Follower

3. TECHNOLOGIES

  • 3.1. Progress towards the end game
    • 3.1.1. Energy independent electric vehicles
    • 3.1.2. Energy storage
    • 3.1.3. Motors
    • 3.1.4. Other key enabling technologies
    • 3.1.5. Structural supercapacitors ZapGo, Lamborghini Terzo Millennio and aircraft later
  • 3.2. Batteries
    • 3.2.1. Aircraft battery demand
    • 3.2.2. Lithium-ion battery design
    • 3.2.3. What does an EV battery pack look like? What is needed?
    • 3.2.4. Bye Aerospace battery lessons learned
    • 3.2.5. Even better batteries and supercapacitors a real prospect: future W/kg vs Wh/kg
    • 3.2.6. Active electrode options: changing too fast?
    • 3.2.7. Li-ion battery adoption by type of EV
    • 3.2.8. Future types of battery for EVs
    • 3.2.9. Alternative battery technologies for future EVs
    • 3.2.10. Other options
    • 3.2.11. Progress to less and no battery
  • 3.3. Motors
    • 3.3.1. Overview
    • 3.3.2. Market dynamics 2020-2030
    • 3.3.3. Analysis of electric motor types in ten electric aircraft
    • 3.3.4. Traction machine types used to propel electric vehicles land, water, air
    • 3.3.5. Examples of traction machine technologies by operating principle
    • 3.3.6. Traction machine-with-controller value market: new vehicles 2030 % by vehicle application
    • 3.3.7. Where the profit will lie: traction machine value gross margin 2030 % by sector
    • 3.3.8. Ten traction machine trends 2020-30
    • 3.3.9. Permanent magnets more popular but eventually unnecessary?
  • 3.4. Power electronics
    • 3.4.1. Taking more percentage of aircraft cost
    • 3.4.2. NASA improvement map
    • 3.4.3. Voltage increase
    • 3.4.4. More and more power electronics: complexity, proliferation, added types
  • 3.5. Energy harvesting
    • 3.5.1. Overview
    • 3.5.2. EH transducer principles and materials
    • 3.5.3. EH technologies by actual and potential usefulness
    • 3.5.4. Challenges of EH technologies
    • 3.5.5. Integrated multi-mode energy harvesting
    • 3.5.6. EV end game: Energy Independent Vehicles EIV
    • 3.5.7. Lessons from UAVs

4. IMPORTANT PROJECTS AND MANUFACTURERS: EXAMPLES

  • 4.1. Airbus
    • 4.1.1. eCriCri, E-fan, CityAirbus, Vahana, EPJ
    • 4.1.2. Air Race E
  • 4.2. Boeing
    • 4.2.1. VTOL X-plane and PAV
  • 4.3. GE Aviation
  • 4.4. Joby Aviation
  • 4.5. Kitty Hawk
  • 4.6. Lilium
  • 4.7. NASA
    • 4.7.1. Requirement study
    • 4.7.2. Distributed thrust: X57 Maxwell
    • 4.7.3. Cryogenic hydrogen fuel cell
  • 4.8. Rolls Royce
    • 4.8.1. Hybrid testbed
    • 4.8.2. VTOL
    • 4.8.3. ACCEL highest speed
    • 4.8.4. Lightweight superconducting electric motor: regional aircraft
  • 4.9. Tesla Aircraft
  • 4.10. United Technologies X-plane
  • 4.11. Volocopter
Back to Top