Cover Image
市場調查報告書

鈣鈦礦太陽能電池 (2018-2028年):技術、市場、企業

Perovskite Photovoltaics 2018-2028: Technologies, Markets, Players

出版商 IDTechEx Ltd. 商品編碼 346109
出版日期 內容資訊 英文 124 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
鈣鈦礦太陽能電池 (2018-2028年):技術、市場、企業 Perovskite Photovoltaics 2018-2028: Technologies, Markets, Players
出版日期: 2018年04月30日 內容資訊: 英文 124 Slides
簡介

2013年十大科學進步之一為鈣鈦礦太陽能電池,其效率的急速改善 (從2006年的2.2%成長至2014年的20.1%) 與低廉的材料、製造成本,展現出其莫大潛力。鈣鈦礦太陽能電池因其龐大潛力也吸引了DSSC、OPV等領域的矚目,許多企業及研究機構將其焦點由DSSC、OPV轉向鈣鈦礦。

本報告研究鈣鈦礦太陽能電池技術及市場,彙整鈣鈦礦太陽能電池結構/架構、發展推移、價值命題、實現商業化的努力、成本分析、商業機會分析及市場成長預測、各種PV技術標竿、架構及製造技術、材料選項、主要企業簡介等資訊。

第1章 鈣鈦礦PV:概要

  • 鈣鈦礦PV:概要
  • 鈣鈦礦是什麼?
  • 鈣鈦礦結構
  • 太陽光譜
  • 計算效率
  • 動作原理
  • 鈣鈦礦太陽能電池結構/架構
  • 鈣鈦礦太陽能電池開發時程
  • 鈣鈦礦太陽能電池演變
  • DSSC的PCE進步
  • 鈣鈦礦太陽能電池價值命題
  • 效率 vs 送電
  • The Achilles' Heel
  • 鈣鈦礦太陽能電池穩定性
  • 電流電壓曲線中的遲滯行為等

第2章 實現商業化的努力

  • 概要
  • 克服課題
  • 鹵化混合鈣鈦礦更加穩定
  • 具高穩定性的Hole-conductor-free可列印鈣鈦礦太陽能電池
  • 大型all-printed鈣鈦礦太陽能模組
  • 超穩定鈣鈦礦太陽能電池
  • 實驗性規模工作發電所
  • 實驗性規模工作設備發電容量
  • 靈活的鈣鈦礦太陽能電池
  • 大型roll-to-roll印刷鈣鈦礦太陽能電池
  • Microquanta Semiconductor等

第3章 成本分析

  • 全球PV產業推移
  • 發電成本
  • 主要國家的一般PV系統價格
  • 鈣鈦礦PV總發電成本
  • 鈣鈦礦模組成本推估
  • 未來鈣鈦礦PV系統:成本明細
  • 未來鈣鈦礦PV系統:成本明細假設等

第4章 商業機會及市場預測

  • 商業機會:摘要
  • 鈣鈦礦PV應用Roadmap
  • 智慧玻璃
  • BIPV/BAPV
  • 戶外傢俱
  • 汽車
  • 便攜式電子
  • 電力市場
  • 假設和分析
  • 市場預測等

第5章 各種PV技術標竿

  • PV技術分類:按世代
  • PV技術分類:按材料
  • 第三代PV技術:概要
  • 矽太陽能技術
  • 太陽電池的金三角
  • 技術開發Roadmap
  • 各種太陽能技術效率:電池和模組
  • PV生命週期和回收期
  • 各種PV技術價格
  • 各種PV技術太陽能裝置結構
  • 開路電壓 vs 光學能隙
  • 各種PV技術度量比較
  • 結晶矽
  • 砷化鎵
  • 氫化非晶矽
  • 碲化鎘
  • CIGS
  • CZTS
  • 染料敏化太陽電池
  • 有機PV
  • 量子點PV
  • 鈣鈦礦等

第6章 架構及製造

  • 矽及矽晶片的製造
  • 鈣鈦礦薄膜的沉積
  • 沉積過程的工程
  • 鈣鈦礦薄膜的沉積過程
  • One step先驅物沉積
  • 序列沉積過程
  • Two step旋鍍沉積
  • 噴霧塗層沉積
  • Slot-die塗層過程
  • 雙源真空沉積
  • 序列蒸氣沉積
  • Vapour-assisted法之解決方案過程等

第7章 材料選項

  • 材料組合
  • 有機離子
  • 全無機鈣鈦礦太陽能電池
  • 鹵素離子
  • 能隙調整
  • 鹵化鈣鈦礦的能隙及耐性因子
  • 可能性材料的改進
  • 介面層
  • 聚合物HTM
  • 基於苯胺衍生物的小分子HTM等

第8章 企業簡介

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

As one of the top ten science breakthroughs of 2013, perovskite solar cells have shown potential both in the rapid efficiency improvement (from 2.2% in 2006 to the latest record 20.1% in 2014) and in cheap material and manufacturing costs. Perovskite solar cells have attracted tremendous attention from the likes of DSSC and OPVs with greater potential. Many companies and research institutes that focused on DSSCs and OPVs now transfer attention to perovskites with few research institutes remaining exclusively committed to OPVs and DSSCs.

image1

Perovskite solar cells are a breath of fresh air into the emerging photovoltaic technology landscape. They have amazed with an incredibly fast efficiency improvement, going from just 2% in 2006 to over 20.1% in 2015.

Photovoltaic (PV) technologies are basically divided into two big categories: wafer-based PV (also called 1st generation PV) and thin-film cell PV.

Traditional crystalline silicon (c-Si) cells (both single crystalline silicon and multi-crystalline silicon) and gallium arsenide (GaAs) cells belong to the wafer-based PVs. Among different single-junction solar technologies, GaAs exhibits the highest efficiency, followed by c-Si cells. The latter dominates the current PV market (about 90% market share).

Thin-film cells normally absorb light 10-100 times more efficiently than silicon, allowing the use of films of just a few microns thick. Cadmium telluride (CdTe) technology has been successfully commercialized, with more than 20% cell efficiency and 17.5% module efficiency record. CdTe cells currently take about 5% of the total market. Other commercial thin-film technologies include hydrogenated amorphous silicon (a-Si:H) and copper indium gallium (di)selenide (CIGS) cells, taking approximately 2% market share each today. Copper zinc tin sulphide technology has been developed for years and it will still require some time for real commercialization.

The emerging thin-film PVs are also called 3rd generation PVs, which refer to PVs using technologies that have the potential to overcome Shockley-Queisser limit or are based on novel semiconductors. The 3rd generation PVs include DSSC, organic photovoltaic (OPV), quantum dot (QD) PV and perovskite PV. The cell efficiencies of perovskite are approaching that of commercialized 2nd generation technologies such as CdTe and CIGS. Other emerging PV technologies are still struggling with lab cell efficiencies lower than 15%.

image2

High and rapidly improved efficiencies, as well as low potential material & processing costs are not the only advantages of perovskite solar cells. Flexibility, semi-transparency, tailored form factors, thin-film, light-weight are other value propositions of perovskite solar cells.

With so many improvements, perovskite solar cell technology is still in the early stages of commercialization compared with other mature solar technologies as there are a number of concerns remaining such as stability, toxicity of lead in the most popular perovskite materials, scaling-up, etc. Crystalline silicon PV modules have fallen from $76.67/W in 1977 to $0.4-0.5/W with fair efficiency in early 2015.

  • Will perovskite solar cells be able to compete with silicon solar cells which dominate the PV market now?
  • What is the status of the technology?
  • What are the potential markets?
  • Who is working on it?

Those questions will be answered in this report.

The report will also benchmark other photovoltaic technologies including crystalline silicon, GaAs, amorphous silicon, CdTe, CIGS, CZTS, DSSC, OPV and quantum dot PV. Cost analysis is provided for future perovskite solar cells. A 10-year market forecast is given based on different application segments. Possible fabrication methods and material choices are discussed as well.

The market forecast is provided based on the following applications:

  • Smart glass
  • BIPV
  • Outdoor furniture
  • Perovskites in tandem solar cells
  • Utility
  • Portable devices
  • Third world/developing countries for off-grid applications
  • Automotive
  • Others

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. OVERVIEW OF PEROVSKITE PVS

  • 1.1. Research-cell efficiencies of different solar technologies
  • 1.2. Overview of perovskite PV
  • 1.3. What is perovskite?
  • 1.4. Perovskite structure
  • 1.5. Solar spectrum
  • 1.6. Calculating efficiency
  • 1.7. Working principle
  • 1.8. Structures/architectures of perovskite solar cells
  • 1.9. Perovskite solar cell development timeline
  • 1.10. Perovskite solar cell evolution
  • 1.11. Progress in PCEs of DSSC
  • 1.12. Value propositions of perovskite solar cells
  • 1.13. Efficiency versus transmission
  • 1.14. The Achilles' Heel
  • 1.15. Stability of perovskite solar cells
  • 1.16. Hysteresis behaviour in the current-voltage curves

2. EFFORTS TOWARDS COMMERCIALIZATION

  • 2.1. Overview
  • 2.2. Efforts to overcome challenges
  • 2.3. Mixture halide perovskite is more stable
  • 2.4. Hole-conductor-free printable perovskite solar cell with high stability
  • 2.5. Large-area all-printed perovskite solar modules
  • 2.6. Ultra-stable perovskite solar cells
  • 2.7. Pilot-scale power station
  • 2.8. Pilot-scale capacity
  • 2.9. Flexible perovskite solar cells
  • 2.10. Large scale roll-to-roll printed perovskite solar cells
  • 2.11. Microquanta Semiconductor

3. COST ANALYSIS

  • 3.1. Global PV industry growth 1993 - 2017
  • 3.2. Cost of generating electricity
  • 3.3. PV module prediction based on learning curve
  • 3.4. Typical PV system prices in selected countries
  • 3.5. Total energy generation cost of perovskite PVs
  • 3.6. Perovskite module cost estimation
  • 3.7. Future perovskite PV system cost breakdown
  • 3.8. Future perovskite PV system cost breakdown assumption
  • 3.9. Breakdown of future p-type silicon tandem system with perovskite stack

4. COMMERCIAL OPPORTUNITIES AND MARKET FORECAST

  • 4.1. Summary of commercial opportunity
  • 4.2. Application roadmap of perovskite photovoltaics
  • 4.3. Unique features are required where silicon PVs cannot provide
  • 4.4. Smart glass
  • 4.5. BIPV/BAPV
  • 4.6. Outdoor furniture
  • 4.7. Vehicles
  • 4.8. Portable Electronics
  • 4.9. Power market
  • 4.10. Efficiencies have been improved fast, but...
  • 4.11. Fierce cost competition demonstrates challenge
  • 4.12. Another opportunity in the power market
  • 4.13. Tandem solar cell progress
  • 4.14. Assumptions & analysis
  • 4.15. Market forecast in values
  • 4.16. Market segment by value in 2023 & 2028

5. TECHNOLOGY BENCHMARKING OF DIFFERENT PV TECHNOLOGIES

  • 5.1. Photovoltaic technology classification by generation
  • 5.2. Photovoltaic technology classification by material
  • 5.3. Third-generation PV technologies: overview
  • 5.4. Silicon solar technologies
  • 5.5. Golden triangle of solar cells
  • 5.6. Technology development roadmap
  • 5.7. Efficiencies of Different Solar Technologies: Cells and Modules
  • 5.8. Life cycle of PV and energy payback times
  • 5.9. Price of different PV technologies
  • 5.10. Solar device structures of different PV technologies
  • 5.11. Open-circuit voltage versus optical bandgap
  • 5.12. Maximum photo energy utilisation
  • 5.13. Metrics comparison of different PV technologies
  • 5.14. Crystalline silicon
  • 5.15. Gallium arsenide
  • 5.16. Hydrogenated amorphous silicon
  • 5.17. Cadmium telluride
  • 5.18. Copper indium gallium (di)selenide
  • 5.19. Copper zinc tin sulphide
  • 5.20. Dye-sensitized solar cell
  • 5.21. Organic photovoltaic
  • 5.22. Quantum dot photovoltaic
  • 5.23. Perovskite

6. ARCHITECTURE AND FABRICATION

  • 6.1. Production of silicon and silicon wafers
  • 6.2. Deposition of perovskite films
  • 6.3. Engineering the deposition process
  • 6.4. Processing planar heterojunction without TiO2
  • 6.5. Deposition processes for perovskite films
  • 6.6. One step precursor deposition
  • 6.7. Sequential deposition process
  • 6.8. Two step spin-coating deposition
  • 6.9. Spray coating deposition
  • 6.10. Slot-die coating process
  • 6.11. Dual source vacuum deposition
  • 6.12. Sequential vapour deposition
  • 6.13. Vapour-assisted solution process

7. MATERIAL OPTIONS

  • 7.1. Material combinations
  • 7.2. Organic ions in perovskite
  • 7.3. All-inorganic perovskite solar cells
  • 7.4. Halogen ions in perovskite
  • 7.5. Bandgap tuning
  • 7.6. Bandgap and tolerance factor of halide perovskite and corresponding PV parameters
  • 7.7. Possible material improvement
  • 7.8. Interface layers
  • 7.9. Polymer HTMs
  • 7.10. Small molecule HTMs based on phenylamine derivatives
  • 7.11. Small molecule HTMs without phenylamine derivatives

8. COMPANY PROFILES

  • 8.1. Companies currently working on perovskites
    • 8.1.1. CSIRO
    • 8.1.2. Dyesol
    • 8.1.3. Fraunhofer ISE
    • 8.1.4. FrontMaterials
    • 8.1.5. Microquanta Semiconductor
    • 8.1.6. Oxford Photovoltaics
    • 8.1.7. Saule Technologies
    • 8.1.8. Solaronix
    • 8.1.9. Solar-Tectic
    • 8.1.10. Solliance
    • 8.1.11. Xiamen Weihua Solar
  • 8.2. Companies working on other emerging PVs
    • 8.2.1. Alta Device
    • 8.2.2. Amor
    • 8.2.3. Belectric
    • 8.2.4. CraynNano AS
    • 8.2.5. Crystalsol GmbH
    • 8.2.6. DisaSolar
    • 8.2.7. Eight19
    • 8.2.8. Flexink
    • 8.2.9. G24 Power
    • 8.2.10. Heliatek
    • 8.2.11. NanoGram
    • 8.2.12. National Research Council Canada
    • 8.2.13. New Energy Technologies
    • 8.2.14. Polyera Corporation
    • 8.2.15. Raynergy Tek Incorporation
    • 8.2.16. SolarPrint
    • 8.2.17. Sumitomo Chemical and CDT
    • 8.2.18. Ubiquitous Energy
    • 8.2.19. VTT Technical Research Centre of Finland
Back to Top