Cover Image
市場調查報告書

透明導電性薄膜 (TCF) 各種市場、技術、市場預測:2018-2028年

Transparent Conductive Films and Materials 2018-2028: Forecasts, Technologies, Players

出版商 IDTechEx Ltd. 商品編碼 235007
出版日期 內容資訊 英文 289 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
透明導電性薄膜 (TCF) 各種市場、技術、市場預測:2018-2028年 Transparent Conductive Films and Materials 2018-2028: Forecasts, Technologies, Players
出版日期: 2018年04月04日 內容資訊: 英文 289 Slides
簡介

本報告研究透明導電性薄膜(TCF)各種技術及市場,介紹ITO薄膜、ITO玻璃、銀奈米線、各種金屬網、石墨烯、碳奈米管、PEDOT等主要技術特徵、性能、優缺點、技術開發趨勢、主要企業及其行動、按應用和技術分類的市場分析,並彙整10年市場預測、主要企業採訪和簡介等情報。

第1章 摘要整理

第2章 技術分析

  • ITO玻璃分析:性能、製造、限制
  • LCD顯示器的ITO玻璃
  • ITO薄膜分析:性能、製造、市場趨勢
  • 繁盛及蕭條週期
  • ITO薄膜缺點
  • 銦價格波動及單一供應風險
  • 回收有用性
  • ITO-on-PET:設備製造能力
  • 可因應高溫的無銦金屬氧化物
  • 銀奈米線透明導電性薄膜:原理
  • 銀奈米線透明導電性薄膜:成長和沉積
  • 銀奈米線透明導電性薄膜:性能水準及提供價值
  • 銀奈米線透明導電性薄膜:柔軟性
  • 銀奈米線透明導電性薄膜:Haze、Migration、單一供應商風險
  • Ag NW、ITO製造成本比較
  • 銀奈米線透明導電性薄膜:既有商業應用市場
  • 銀奈米線透明導電性薄膜:最新市場趨勢及新聞
  • 日立化成的TCTF
  • Ag銀奈米線主要企業
  • 金屬網透明導電性薄膜:動作原理
  • DPT金屬網透明導電性薄膜:性能
  • DPT金屬網透明導電性薄膜:主要缺點
  • 主要企業
  • 壓紋加工/銘印金屬網TCF
  • Uni-Pixel金屬網性能
  • Unipixel和商用產品
  • 壓紋加工金屬網產率課題
  • Conductive Inkjet Technology圖像金屬網TCF
  • Ateml:投注資產至UniPixel
  • O-Film金屬網TCF技術
  • MNTech金屬網TCF技術
  • ITRI對透明導電性薄膜的行動
  • 軟性金屬網TCF
  • 金屬網:成本細項及產率
  • SWOT分析:壓紋加工金屬網TCF
  • 主要企業
  • SWOT分析:圖像金屬網TCF
  • 主要企業
  • 碳奈米管:背景
  • 基礎MWCNT產品度量
  • 基礎SWCNT產品度量
  • CNT設備製造能力:供應商、按CNT類型
  • 碳奈米管透明導電性薄膜:性能
  • 碳奈米管透明導電性薄膜:商業薄膜性能
  • 碳奈米管透明導電性薄膜:匹配指數
  • 碳奈米管透明導電性薄膜:機械柔軟性
  • 碳奈米管透明導電性薄膜:伸縮性微主要差異化因素
  • CNT的3D觸摸感應表面案例
  • 主要企業
  • 石墨烯:背景
  • 各種製造石墨烯的方法
  • 石墨烯形態的定量mapping
  • CVD
  • 轉移課題
  • CVD的Roll-to-roll轉移
  • CVD石墨烯新轉移方法
  • Sony的方法
  • CVD石墨烯製造成本
  • 石墨烯透明導電性薄膜:性能水準
  • 石墨烯透明導電性薄膜:柔軟性
  • 石墨烯透明導電性薄膜:薄度、阻隔水準
  • 石墨烯TCF的SWOT分析
  • 主要企業
  • PEDOT/PSS
  • PEDOT/PSS性能的大幅改善
  • PEDOT/PSS穩定性、空間均勻性
  • PEDOT/PSS TCF使用案例
  • 主要企業
  • 細線TCF技術
  • 細線大型觸控顯示器市場實績
  • SWOT分析:Microwire TCF
  • CimaTech自體組織奈米粒子技術
  • 各種TFC技術的定量標竿
  • 技術比較、其他

第3章 各種應用

  • 消費性電子產品出貨量預測
  • 智慧型手機成長
  • 中國品牌的中國市場佔比
  • 智慧型手機市場多樣分散化
  • 各種電容式觸控架構
  • 各種觸控螢幕架構佔比
  • 大螢幕觸控顯示器的光學觸控系統
  • 各種光學式觸控技術評估
  • 大面積電容式觸控螢幕的金屬網
  • OLED照明市場
  • 最新OLED照明市場的各種發表
  • OLED照明集積基板
  • 有機PV市場預測
  • 有機PV最新情報
  • 軟性OLED顯示器按部門市場預測
  • OLED顯示器收益:按技術
  • 智慧窗戶設備製造能力:按技術、企業
  • 智慧窗戶市場預測

第4章 市場預測

  • 預測TCF薄膜價格
  • 透明導電層10年預測:按技術
  • 透明導電性薄膜10年預測:按技術
  • 透明導電性玻璃10年預測:按技術
  • ITO薄膜10年預測:按應用
  • ITO玻璃10年預測:按應用
  • 銀奈米線TCF10年預測:按應用
  • 金屬網TCF10年預測:按應用
  • PEDOT TCF10年預測:按應用

第5章 企業介紹

有關IDTECHEX RESEARCH REPORTS AND CONSULTING

圖表

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Title:
Transparent Conductive Films and Materials 2018-2028:
Forecasts, Technologies, Players

Assessment of ITO alternatives including silver nanowires, metal mesh, carbon nanotubes, graphene and others.

The market for transparent conductive films and materials has been rapidly changing. This continuing transformation is taking place at all levels: technologies, applications and suppliers. In this report we provide the most comprehensive and authoritative view of this industry. In particular, this report provides:

  • Technology assessment: Detailed, data-driven and insightful analysis of all the existing and emerging transparent conducting layer technologies including ITO film, ITO glass, silver nanowires, silver nanoparticles, various metal mesh technologies (photolithography, direct printing, embossing, hybrid, and so on), graphene, carbon nanotubes, PEDOT, and others. Our analysis is based on years of global research and interaction with the key suppliers, innovators and end users.
  • Application analysis: Market size and trend analysis of 20 end applications. Here, we cover add-on and embedded touch technologies in mobiles, smart watches, tablets, notebooks, AiOs, automotive displays, and so on. We further cover rigid as well as flexible OLED display markets. We consider the adoption of p-cap in large-sized touch displays and focus on numerous emerging applications such as transparent LEDs, organic photovoltaics and other thin film photovoltaics, in-mold electronics, OLED lighting, transparent heating, and others.
  • Market forecasts: Granular ten-year market forecasts segmented by 20 applications and 10 technologies. The forecasts are provided in value and area (sqm).
  • Company profiles: This report provides insights, background intelligence or full profiles on 90 companies. This information is compiled through formal telephone interviews, on-site company visits, and numerous in-person interactions at tradeshows around the world.

This report is based upon years of research as we have been tracking and analysing TCF industry since 2008. In this time, we have witnessed first-hand the rise and fall of technologies and companies, and correctly predicted the consolidation and the technology shift periods of the past few years.

For our research, our team has interviewed all the key users and producers of various types of TCF technologies. Often we enjoy close relationships with the key industry players. Our team has also been independently analysing the end markets for many existing and emerging target applications. For example, we have produced market research reports and bespoke consulting projects on OLED lighting, wearable technology, in-mold electronics, smart windows, OPVs, DSSCs, perovskites, and touch screens. This enables us to assess the market from an application as well as technology point of view.

We have attended countless relevant events globally and organized our own sessions on the topic since 2008 in Europe, Asia, and the USA. Our team has also delivered around 22 masterclasses on the topic in different continents. We have also completed more than 12 major consulting projects helping our customers profit from changes in this sector. Our work has covered investment due diligence, custom market research, product positioning, customer development, and growth strategy.

This market study is the distilled and processed result of our continuous endeavours. Each year we have learned more about the market trends, the key questions, latest prices, etc. and fine-tuned our analysis, insight and forecasts to reflect the latest research.

Ten-year segmented market forecasts by 10 technologies and 20 applications. The real values are masked as are the legend colours. The legend sequences have also been altered. For accurate and full results including the actual data please consult the report.

The past: major technology shifts and market changes to date

Technology cycles are often short-lived in consumer electronic markets. Touch displays are also no exception. Indeed, we have witnessed many sweeping changes since 2008, the time when we started analysing this market.

Within the years that we have been covering the TCF market, we witnessed the rise of p-cap technology which essentially rendered resistive touch obsolete. In more recent years, we witnessed the rise of embedded (vs. add-on) touch technology, shifting the value from panel to displays makers and adversely affecting the addressable market for film supply.

In parallel to these technology shifts, the market composition of touch display technology also changed. Mobile phones exited the period of rapid unit sale growth whilst low-cost challenger companies appeared in emerging markets. Tablets first grew in sales but then reversed the trends, entering a period of sustained decline. Notebook sales stabilised but touch technology did not penetrate as rapidly as others had hoped whilst All-in-Ones generally undershot original industry expectations.

Numerous non-touch markets were also in development mode. In the main however, these failed to grow out of the nascent states. The limitation was rarely the transparent conductor technology. Instead, these emerging technologies were often faced with a mighty incumbent and thus struggled to differentiate on performance and/or costs. Examples are OLED lighting and organic photovoltaics.

Within this time, we also witnessed the changing fortunes of various transparent conducting layer and materials technologies. ITO film was advancing rapidly on ITO glass due to thinness, robustness and lower cost until the rise of embedded touch adversely affected its addressable market. After a decade of development, ITO alternative technologies were beginning to make notable commercial in-roads until ITO film prices were slashed to prioritize market share protection, altering the market dynamics and pushing the industry into a period of difficult consolidation. This meant little or mediocre success for alternatives.

The present: ITO alternatives finally begin to swing into success territory

This market is never in a stationary state. Indeed, after the setback of the consolidation period, several leading ITO alternatives are being rejuvenated. Silver nanowires are finding some opportunity in low-cost mobile phones, in transparent LED film, in large-sized p-cap displays, and in transparent heaters. Silver nanowire production is also largely shifting to China, both for new Chinese and older non-Chinese players.

Metal mesh is continuing its advance. Its etched and embossed (hybrid) types had already found commercial success particularly in tablets and even in niche applications like transparent antennas. The rise of embedded touch had however adversely affected their addressable market, pushing this technology to also seek opportunity in the ultra large sized (>>55") segment of the display markets. Here, some suppliers are levering their old plasma display lines to offer etched metal films whilst other producers (of both etched and embossed types) are grappling with a difficult decision: whether to invest in a new undepreciated large-format (width) line or not. In the meantime, directly printed metal mesh technology is also making slow but steady incremental advances. It has already demonstrated sub-5-micron linewidths and is being transferred into pilot production.

Other ITO alternatives are also having to replot their paths. Carbon nanotube (or nanobuds) film suppliers now seem to realize that mainstream touch displays markets or markets requiring low resistivity are out of reach. They are hence seeking to capitalize on their differentiated attributes. In particular, they are leveraging the stretchability to develop 3D touch surfaces using in-mould electronic processes.

CVD graphene, on the other hand, is struggling to define a path out of its bleak prospects as a TCF material. It remains an over-priced and under-performing technology. The R2R growth and doping of the films have improved. However, cost effective, large-format, and high throughput R2R transfer remains elusive. The interest has certainly weakened with technology owners/developers shifting focus away from transparent conductor markets.

The future: new markets and continued innovation

Several applications will emerge in the future. We believe that flexible (not just plastic) OLED displays will be commercialized in the near future. This will create opportunities for flexible transparent conductor technologies. The touch sensor may initially be integrated as an add-on film but is likely to migrate into the cell layer ultimately potentially directly on the thin film encapsulation barrier films.

The p-cap technology will make its mark on large-sized (>>55") display technology, creating a notable market thanks to large unit size despite the comparatively low volumes. Touch technology on standalone monitors will also finally take off in line with changes in personal computing technology. Transparent heating applications, particularly in the automotive industry as window or mirror defrosters, will gain further acceptance. In-mould devices will also find success in both automotive and customer electronic applications.

Silver nanowire technology will continue its material innovation/improvements. It took the suppliers too long to effectively address the reliability (e.g., silver migration) issues, costing the technology dearly in reputation and setting back its commercialization. This issue is however largely addressed. The continuing focus will be on improving the resistance-haze trade-off whilst enabling the material/process ecosystem for effective photopatterning and etching of films (vs. current laser patterning). The latter is key if silver nanowires wants to penetrate high volume flexible displays or even replace ITO in some embedded designs.

The metal mesh technology will also not stand still. Direct printing will remain on its path of steady incremental improvements. The linewidths will get narrowed, the printing speeds higher, and the web widths wider. Technology will progress from pilot to higher volume production. Producers of large-format etched metal mesh will remain focused on large-sized displays, but we speculate that some prominent names will leave the business. In parallel, not all current producers of small to medium format etched or embossed metal mesh will transition to large format. The uncertainty around addressable market size, and the question marks over cost competitiveness in the absence of undepreciated legacy equipment, will put them off.

All in all, the total market for transparent conducting layers (glass and film) will double by 2028 compared to its 2017 value (in the considered applications). The short-term prospect however is stagnation. There will be some growth in use cases, but this will be offset by price squeezes. In the medium- to long-term, growth will be fuelled by the emergence of new and/or larger area applications.

The technology composition will also change. Our forecasts suggest that ITO films will decline in the short term but will then stabilize in the long term. Silver nanowires have entered the growth phase and will rapidly grow, becoming a market in 2028 comparable to the 2028 ITO film market. The metal mesh will have mediocre growth in the medium term, but long-term aggregate prospects are strong for new applications particularly if direct printing becomes cost competitive and mature to overcome this technology's new CapEx issue. Graphene, CNT and PEDOT will remain locked out of mainstream markets but some (not all) will carve out success in niche applications based on their special attributes.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. 2018-2028 market forecasts segmented by 10 technologies (value)
  • 1.2. 2018-2028 market forecasts segmented by technology (area)
  • 1.3. 2018-2028 market forecasts segmented by 21 applications (value)
  • 1.4. 2018-2028 market forecasts segmented by major market groups (value)
  • 1.5. 2018-2028 ITO film forecasts segmented by 21 applications (value)
  • 1.6. 2018-2028 ITO glass forecasts segmented by 21 applications (value)
  • 1.7. 2018-2028 silver nanowire forecasts segmented by application (value)
  • 1.8. 2018-2028 metal mesh (etched) forecasts segmented by application (value)
  • 1.9. 2018-2028 metal mesh (embossed/hybrid) forecasts segmented by application (value)
  • 1.10. 2018-2028 metal mesh (directly printed) forecasts segmented by application (value)
  • 1.11. 2018-2028 all metal mesh forecasts segmented by application (value)
  • 1.12. 2018-2028 PEDOT forecasts segmented by application (value)
  • 1.13. 2018-2028 graphene forecasts segmented by application (value)

2. TECHNOLOGY ASSESSMENT

  • 2.1. ITO film and glass
    • 2.1.1. ITO glass assessment: performance, manufacture & limitations
    • 2.1.2. ITO glass in LCD displays
    • 2.1.3. ITO film assessment: performance, manufacture and market trends
    • 2.1.4. The Boom and Bust Cycle
    • 2.1.5. ITO film shortcomings: flexibility
    • 2.1.6. ITO film shortcomings: limited sheet conductivity
    • 2.1.7. ITO film shortcomings: limited sheet resistance
    • 2.1.8. ITO film shortcomings: index matching
    • 2.1.9. ITO film shortcomings: thinness
    • 2.1.10. ITO film shortcomings: price falls and commoditization
    • 2.1.11. ITO films: current prices (2018)
    • 2.1.12. Indium's single supply risk: real or exaggerated?
    • 2.1.13. Recycling comes to the rescue?
    • 2.1.14. Indium: price fluctuations drive innovation
    • 2.1.15. Indium-free metal oxides win in high temperature applications
  • 2.2. Silver nanowires
    • 2.2.1. Silver nanowire transparent conductive films: principles
    • 2.2.2. Silver nanowire transparent conductive films: growth and deposition
    • 2.2.3. Silver nanowire transparent conductive films: performance levels and value proposition
    • 2.2.4. Silver nanowire transparent conductive films: flexibility
    • 2.2.5. Silver nanowire transparent conductive films: haze, migration, and single supplier risk
    • 2.2.6. Comparing manufacturing cost of Ag NW and ITO
    • 2.2.7. Silver nanowire transparent conductive films: target markets
    • 2.2.8. Silver nanowire transparent conductive films: existing commercial applications on the market
    • 2.2.9. Cambrios: rebirth possible under TPK?
    • 2.2.10. C3Nano: low haze technology, high funding and strong investors
    • 2.2.11. BASF: Silver nanowire transparent conductive films
    • 2.2.12. N&B silver nanowire TCFs (Korea)
    • 2.2.13. Nuovo Film: Chinese Ag NW supplier/coater making rapid progress?
    • 2.2.14. Duksan Hi-Metal: success in transparent heaters for automotive?
    • 2.2.15. Silver nanowire transparent conductive films: other companies (Dowa and Showa Denko)
    • 2.2.16. Silver nanowire transparent conductive films: other companies (Huake and Seiko PMC Corp)
    • 2.2.17. Silver nanowire transparent conductive films: other companies (Nanogap and NanoCnet)
    • 2.2.18. Updates on others active or inactive (InnovaDynamics, Sinovia, Bluenano, Seahshell, Carestream, Noritake, Henkel etc.)
    • 2.2.19. Hitachi Chemical's TCTF
  • 2.3. Metal mesh
    • 2.3.1. Metal mesh transparent conductive films: operating principles
    • 2.3.2. Photopatterning for metal mesh production: leading production process but will it scale beyond depreciated assets?
    • 2.3.3. Metal mesh: photolithography followed by etching
    • 2.3.4. Fujifilm's photo-patterned metal mesh TCF
    • 2.3.5. Mitsubishi Paper Mills Limited: Silver halide based metal mesh TCF
    • 2.3.6. Early success of silver halide based metal mesh TCFs
    • 2.3.7. Toppan Printing's copper mesh transparent conductive films
    • 2.3.8. Dai Nippon Printing's transparent conductive film technology
    • 2.3.9. DNP focusing on EMI shield and transparent antenna?
    • 2.3.10. 3M's photo-patterned metal mesh TCF
    • 2.3.11. Elotech metal mesh
    • 2.3.12. Tanaka Metal's metal mesh technology
    • 2.3.13. Rolith's novel photo patterning technique
    • 2.3.14. Panasonic's Large Area Metal Mesh
    • 2.3.15. Sharp(Foxconn): large-area metal mesh films
    • 2.3.16. GiS (integrator): Large area metal mesh displays
    • 2.3.17. Improving invisibility of metal mesh
    • 2.3.18. SWOT analysis on photo patterned metal mesh TCFs
    • 2.3.19. Embossing followed by printing/filling to create imbedded ultrafine metal mesh?
    • 2.3.20. Embossing/Imprinting metal mesh TCFs
    • 2.3.21. Uni-Pixel's metal mesh performance (no longer active)
    • 2.3.22. Unipixel's limited example of commercial products (no longer active)
    • 2.3.23. Yield issues caused UniPixel to ultimately fail and never deliver?
    • 2.3.24. Ateml offloads assets to UniPixel (no longer active)
    • 2.3.25. Conductive Inkjet Technology's photo-patterned metal mesh TCF (no longer active?)
    • 2.3.26. O-Film's metal mesh TCF technology: the basics
    • 2.3.27. Will O-Film rejuvenate its metal mesh business after disappointing sales?
    • 2.3.28. MNTech's metal mesh TCF technology (the incident)
    • 2.3.29. J-Touch: substantial metal mesh capacity
    • 2.3.30. Nanoimprinting metal mesh with 5um linewidth
    • 2.3.31. Metal mesh TCF is flexible
    • 2.3.32. Cost breakdown of metal mesh and yield
    • 2.3.33. SWOT analysis on embossed metal mesh TCFs
    • 2.3.34. Key players
    • 2.3.35. Direct printing: finally making a comeback in metal mesh TCF as a viable ultrafine technology?
    • 2.3.36. Direct printed metal mesh transparent conductive films: performance
    • 2.3.37. Direct printed metal mesh transparent conductive films: major shortcomings
    • 2.3.38. Komura Tech: improvement in gravure offset printed fine pattern (<5um) metal mesh TCF ?
    • 2.3.39. Shashin Kagaku: offset printed metal mesh TCF
    • 2.3.40. Komori: gravure offset all-printed metal mesh film?
    • 2.3.41. Asahi Kasei: taking steps to commercialize its R2R ultrafine printing process
    • 2.3.42. How is the ultrafine feature R2R mold fabricated?
    • 2.3.43. Konica Minolta: inkjet printing large area fine pitch metal mesh TCFs with <10um linewidth?
    • 2.3.44. Gunze: S2S screen printing finds a market fit?
    • 2.3.45. Toray's photocurable screen printed paste for fine line metal mesh
    • 2.3.46. Ishihara Chemical's gravure printed photo-sintered Cu paste
    • 2.3.47. Toppan Forms: Ag salt inks to achieve 4um printed metal mesh?
    • 2.3.48. Key players (Komori, LG Chem, Pchem, Goss, etc.)
    • 2.3.49. Key players
    • 2.3.50. Print and Plate
    • 2.3.51. Eastman Kodak: Transparent ultra low-resistivity RF antenna using printed Cu metal mesh technology
    • 2.3.52. Kuroki/ITRI: printed seed layer and plate Cu metal mesh?
    • 2.3.53. Replacing photolithography with photoresist printing for ultra fine metal mesh
    • 2.3.54. LCY gravure printing photoresist then etching
    • 2.3.55. Screen Holding: gravure printing photoresist then etching
    • 2.3.56. Consistent Materials' photoresist for metal mesh
    • 2.3.57. Other
    • 2.3.58. Nippon Glass: Cu metal mesh TCF on flexible glass
    • 2.3.59. Metal mesh on glass for automotive industry (Micro)
  • 2.4. Carbon nanotubes
    • 2.4.1. Introduction to Carbon Nanotubes (CNT)
    • 2.4.2. CNTs: ideal vs reality
    • 2.4.3. Not all CNTs are equal
    • 2.4.4. Different production processes (laser ablation and arc discharge)
    • 2.4.5. Different production processes (catalytic CVD)
    • 2.4.6. Benchmarking of different CNT production processes
    • 2.4.7. Price position of CNTs (from SWCNT to FWCNT to MWCNT)
    • 2.4.8. Production capacity globally
    • 2.4.9. Carbon nanotube transparent conductive films: performance
    • 2.4.10. Carbon nanotube transparent conductive films: performance of commercial films on the market
    • 2.4.11. Carbon nanotube transparent conductive films: matched index
    • 2.4.12. Carbon nanotube transparent conductive films: mechanical flexibility
    • 2.4.13. Carbon nanotube transparent conductive films: stretchability as a key differentiator for in-mould electronics
    • 2.4.14. Example of 3D touch-sensing surface with CNTs
    • 2.4.15. Example of wearable device using CNT
    • 2.4.16. Key players
  • 2.5. Graphene
    • 2.5.1. Graphene: background
    • 2.5.2. Numerous ways of making graphene
    • 2.5.3. Quantitative mapping of graphene morphologies on the market
    • 2.5.4. Graphene platelet-type: pricing trends and strategies
    • 2.5.5. CVD Graphene
    • 2.5.6. Growth process of CVD graphene
    • 2.5.7. The key role of oxygen in CVD graphene growth
    • 2.5.8. R2R Growth?
    • 2.5.9. The transfer challenge
    • 2.5.10. Roll-to-roll transfer of CVD graphene
    • 2.5.11. Novel methods for transferring CVD graphene
    • 2.5.12. Sony's approach to transfer of CVD process
    • 2.5.13. Wuxi Graphene Film Co's CVD graphene progress
    • 2.5.14. LG Electronics: R2R CVD graphene targeting TCFs?
    • 2.5.15. Ningbo Soft Carbon Electronics: R2R CVD graphene growth and transfer
    • 2.5.16. 2D Carbon (Changzhou)Ltd: Moving away from CVD type graphene film?
    • 2.5.17. Direct CVD graphene growth on an insulating substrate?
    • 2.5.18. Graphene transparent conductive film: performance levels
    • 2.5.19. Doping as a strategy for improving graphene TCF performance
    • 2.5.20. Be wary of extraordinary results for graphene
    • 2.5.21. Graphene transparent conducting films: flexibility
    • 2.5.22. Graphene transparent conducting films: thinness and barrier layers
    • 2.5.23. SWOT analysis on graphene TCFs
    • 2.5.24. Key players
  • 2.6. PEDOT
    • 2.6.1. PEDOT:PSS
    • 2.6.2. Patterning PEDOT:PSS
    • 2.6.3. Performance of PEDOT:PSS has drastically improved
    • 2.6.4. PEDOT:PSS is now on a par with ITO-on-PET
    • 2.6.5. PEDOT:PSS is mechanically flexible
    • 2.6.6. PEDOT:PSS is stretchable and can be thermoformed
    • 2.6.7. Stability and spatial uniformity of PEDOT:PSS
    • 2.6.8. Nippon Chemi-Con's polymeric transparent conductive film
    • 2.6.9. Commercial product using PEDOT:PSS
    • 2.6.10. Use case examples of PEDOT:PSS TCFs
    • 2.6.11. Force Foundation: PEDOT used in solution coated smart windows
    • 2.6.12. Use case examples of PEDOT:PSS TCFs
    • 2.6.13. Key players
  • 2.7. Other
    • 2.7.1. Fine wire TCF technology
    • 2.7.2. UC Nano: Microwire and metal mesh for large area touch?
    • 2.7.3. Displax: large area multi-touch capacitive touch
    • 2.7.4. Performance of fine wire large-sized touch displays on the market
    • 2.7.5. SWOT analysis on micro wire TCFs
    • 2.7.6. CimaTech's self-assembled nanoparticle technology (no longer active)
    • 2.7.7. Examples of Cima Nanotech's technology (no longer active)
    • 2.7.8. ClearJet's inkjet printed nanoparticle-based TCFs: a failure?
    • 2.7.9. E-Fly Corporation's sputtered silver film: an alternative to metal mesh for large area touch?
    • 2.7.10. Young Fast/Nitto Denko: ITO-metal alloy as an alternative to metal mesh for large area touch?
    • 2.7.11. Quantitative benchmarking of different TCF technologies
    • 2.7.12. Technology comparison
    • 2.7.13. Stretchable and in-mold transparent conductive film
    • 2.7.14. In-mold electronics: processes and requirements
    • 2.7.15. Stretchable conductive inks for in-mold electronics
    • 2.7.16. Target applications for in-mould electronics
    • 2.7.17. Product examples using in-mold conductive inks
    • 2.7.18. Stretchable carbon nanotube transparent conducting films
    • 2.7.19. Product examples of carbon nanotube in-mold transparent conductive films
    • 2.7.20. PEDOT transparent conductive films
    • 2.7.21. Product examples of in-mold and stretchable PEDOT:PSS transparent conductive films
    • 2.7.22. In-mold and stretchable metal mesh transparent conductive films
    • 2.7.23. Stretchable silver nanowire transparent conductive films
    • 2.7.24. Other in-mold transparent conductive film technologies

3. APPLICATIONS:

  • 3.1. Consumer electronics (small phones, tablets, AiO, Notebooks, Smart Watches etc)
    • 3.1.1. Consumer electronic device shipment forecasts
    • 3.1.2. Smart phones have been growing in size
    • 3.1.3. Chinese brands are stealing market share in China
    • 3.1.4. Smart phone market is highly diverse and fragmented
    • 3.1.5. Different capacitive add-on touch architectures
    • 3.1.6. Different capacitive embedded touch architectures
    • 3.1.7. Transition from add-on to embedded touch
  • 3.2. Ultra large area touch screens
    • 3.2.1. Optical touch systems for large area touch displays
    • 3.2.2. Assessing different optical touch technologies
    • 3.2.3. Metal mesh in large area capacitive touch
    • 3.2.4. Metal mesh in large area capacitive touch screens
    • 3.2.5. Non metal mesh large area capacitive displays
    • 3.2.6. Finewire larger area capacitive large-sized displays
  • 3.3. Transparent LED
    • 3.3.1. Transparent LEDs: need for low resistance flexible TCF
  • 3.4. OLED lighting: solid-state, efficient, cold, surface emission, flexible......?
    • 3.4.1. Performance challenge for R2R OLED lighting
    • 3.4.2. Price targets as set by LED and other lighting sources
    • 3.4.3. Current state of sheet-to-sheet
    • 3.4.4. Current status with R2R OLED lighting
    • 3.4.5. OLED lighting market
    • 3.4.6. Transparent Electrodes for OLED Lighting
    • 3.4.7. Requirements for Conductivity of Transparent Anode
    • 3.4.8. Analysis for Square Single Stack Panels by Cambrios
    • 3.4.9. Calculations showing the stringent sheet resistance requirements for TCF in OLED lighting
    • 3.4.10. Silver nanowires for OLED lighting
  • 3.5. Organic photovoltaics
    • 3.5.1. Organic photovoltaics (OPV): the dream and the reality (so far)?
    • 3.5.2. Basics of OPV operation
    • 3.5.3. Typical OPV device architectures (single vs multi-junction)
    • 3.5.4. Film morphology control (bulk heterojunction) is critical
    • 3.5.5. Solution vs evaporation
    • 3.5.6. Progress in solution processing so far (2010 TO NOW)
    • 3.5.7. Progress in tandem cell evaporation so far (2007 to NOW)
    • 3.5.8. OPV products and prototypes
    • 3.5.9. OPV installations
    • 3.5.10. Current status of commercial players and outlook
    • 3.5.11. Market Forecast for Organic photovoltaics
  • 3.6. Flexible displays
    • 3.6.1. The early years of flexible displays
    • 3.6.2. Flexible EPD suppliers in 2017
    • 3.6.3. Flexible LCD
    • 3.6.4. First step towards flexible: OLED on plastic substrate
    • 3.6.5. The rise of plastic and flexible AMOLED
    • 3.6.6. Plastic displays in mass production
    • 3.6.7. But fully flexible displays are finally coming?
    • 3.6.8. Large flexible displays demonstrated by LG
    • 3.6.9. From rigid OLED, to flexible and foldable OLED
    • 3.6.10. Changes in touch technology for flexible displays
    • 3.6.11. Market forecasts for rigid, plastic and flexible OLED displays
  • 3.7. Automotive
    • 3.7.1. Printed rear window de-foggers
    • 3.7.2. Printing on polycarbonate car windows?
    • 3.7.3. Metal mesh in window and mirror defrosters
    • 3.7.4. Automotive touch market in sqm (2018 to 2028)

4. MARKET FORECASTS

  • 4.1. TCF film prices used in our projections
  • 4.2. 2018-2028 market forecasts segmented by 10 technologies (value)
  • 4.3. 2018-2028 market forecasts segmented by technology (area)
  • 4.4. 2018-2028 market forecasts segmented by 21 applications (value)
  • 4.5. 2018-2028 market forecasts segmented by major market groups (value)
  • 4.6. 2018-2028 ITO film forecasts segmented by 21 applications (value)
  • 4.7. 2018-2028 ITO glass forecasts segmented by 21 applications (value)
  • 4.8. 2018-2028 silver nanowire forecasts segmented by application (value)
  • 4.9. 2018-2028 metal mesh (etched) forecasts segmented by application (value)
  • 4.10. 2018-2028 metal mesh (embossed/hybrid) forecasts segmented by application (value)
  • 4.11. 2018-2028 metal mesh (directly printed) forecasts segmented by application (value)
  • 4.12. 2018-2028 all metal mesh forecasts segmented by application (value)
  • 4.13. 2018-2028 PEDOT forecasts segmented by application (value)
  • 4.14. 2018-2028 graphene forecasts segmented by application (value)

5. COMPANY INSIGHTS, BACKGROUNDS AND/OR PROFILES BASED ON PRIMARY INFORMATION

  • 5.1.1. 2D Carbon (Changzhou)
  • 5.1.2. 3M
  • 5.1.3. Agfa
  • 5.1.4. Arkema
  • 5.1.5. Asahi Kasei
  • 5.1.6. Atmel
  • 5.1.7. BASFT
  • 5.1.8. Bluenano*
  • 5.1.9. Bluestone Global Tech
  • 5.1.10. C3Nano
  • 5.1.11. Cambrios
  • 5.1.12. Canatu
  • 5.1.13. Carestream
  • 5.1.14. Charmtron
  • 5.1.15. Chimei Innolux
  • 5.1.16. CimaNanotech
  • 5.1.17. ClearJet
  • 5.1.18. Conductive Inkjet Technologies
  • 5.1.19. Consistent Materials
  • 5.1.20. Dai Nippon Printing
  • 5.1.21. Displax
  • 5.1.22. Dontech
  • 5.1.23. Duskan Hi Metal
  • 5.1.24. Eastman Kodak
  • 5.1.25. E-Fly Corp
  • 5.1.26. Eikos
  • 5.1.27. Elotech
  • 5.1.28. Epigem
  • 5.1.29. Evonik
  • 5.1.30. Force Foundation
  • 5.1.31. Fujifilm
  • 5.1.32. Fujitsu
  • 5.1.33. GiS
  • 5.1.34. Goss International
  • 5.1.35. Graphene Frontier
  • 5.1.36. Graphene Square
  • 5.1.37. Gunze
  • 5.1.38. Henkel
  • 5.1.39. Heraeus
  • 5.1.40. Hitachi Chemical
  • 5.1.41. Holst Centre
  • 5.1.42. Huake
  • 5.1.43. Ishihara Chemical
  • 5.1.44. ITRI
  • 5.1.45. J-Touch
  • 5.1.46. Kodak
  • 5.1.47. Komori
  • 5.1.48. Komoro
  • 5.1.49. KomuraTech
  • 5.1.50. Konica Minolta
  • 5.1.51. Kuroku
  • 5.1.52. LG Electronics
  • 5.1.53. LG Chem
  • 5.1.54. LYC Chemical
  • 5.1.55. Micro
  • 5.1.56. MicroContinium
  • 5.1.57. Mitsubishi Paper Mills
  • 5.1.58. MNTech
  • 5.1.59. Multitaction
  • 5.1.60. N&B
  • 5.1.61. Nagase
  • 5.1.62. NanoCnet
  • 5.1.63. Nanogap
  • 5.1.64. Nanomade
  • 5.1.65. Nanopyxis
  • 5.1.66. Neonode
  • 5.1.67. Ningbo Soft Carbon
  • 5.1.68. Nippon Chemicon
  • 5.1.69. Nippon Glass
  • 5.1.70. Nitto Denko
  • 5.1.71. Noritake
  • 5.1.72. Nuovo Film
  • 5.1.73. Ocsial
  • 5.1.74. O-Film
  • 5.1.75. OLED Works
  • 5.1.76. Panasonic
  • 5.1.77. Perceptive Pixel
  • 5.1.78. PolyIC
  • 5.1.79. PolyInk
  • 5.1.80. Raymore/NanoIntegris
  • 5.1.81. Rolith
  • 5.1.82. Samsung
  • 5.1.83. Screen Holding
  • 5.1.84. Seashell
  • 5.1.85. Seiko PMC
  • 5.1.86. Sharp (Foxconn)
  • 5.1.87. Shashin Kagaku
  • 5.1.88. Showa Denko
  • 5.1.89. Sinovia
  • 5.1.90. Sony
  • 5.1.91. SWenT/Chasm
  • 5.1.92. TactoTek
  • 5.1.93. Tanaka Metal
  • 5.1.94. Toda Kogya
  • 5.1.95. Toppan Forms
  • 5.1.96. Toppan Printing
  • 5.1.97. Toray
  • 5.1.98. TPK
  • 5.1.99. UCNano
  • 5.1.100. Unidym
  • 5.1.101. Uni-Pixel
  • 5.1.102. Visual Planet
  • 5.1.103. WuxiGraphene
  • 5.1.104. XiNano
  • 5.1.105. YoungFast
  • 5.1.106. Zytronic

* We have also included companies that may no longer be active for the sake of completeness. These companies often played a role in the earlier days of the growth of ITO alternative industry.

Back to Top