表紙
市場調查報告書
商品編碼
1108022

生物塑料 2023-2033年:技術、市場、參與者和預測

Bioplastics 2023-2033: Technology, Market, Players, and Forecasts

出版日期: | 出版商: IDTechEx Ltd. | 英文 175 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
生物塑料 2023-2033年:技術、市場、參與者和預測
生物基 PLA、PET、PEF、聚酯、聚烯烴、聚□胺、聚氨酯、PHA 和多醣,用於包裝、汽車、紡織、農業、消費品和循環經濟中的其他應用。

到 2033 年,生物塑料行業的產能將以 10.1% 的複合年增長率增長至 7,078 千噸。

生物塑料製造商正在迅速擴大生產規模,預計該行業未來十年的複合年增長率將達到 10.1%。製造商受到品牌所有者的推動,以滿足脫碳承諾、消費者對可持續性的需求以及一次性使用化石塑料禁令。在本報告中,IDTechEx 探討了生物塑料市場增長的驅動因素,分析了關鍵技術和新興技術,檢查了報廢選項,討論了應用,並預測了市場的機遇和增長。

塑料需求增長

儘管我們越來越意識到塑料對我們的環境構成的威脅,但塑料需求仍在繼續增長。到 2050 年,全球塑料消費量將翻一番。為了應對塑料對環境和氣候變化的影響,該行業正在向循環經濟轉型。然而,即使每年生產的所有塑料都 100% 回收利用,仍然需要原始原料來滿足不斷增長的消費。生物塑料——由生物基原料合成的塑料——可以在這裡取代現有的化石塑料。鑑於它們的生物基來源,這些塑料是現有化石基塑料的低碳足跡和可持續選擇。

從死亡谷中爬出來

生物塑料行業始於幾十年前,但在 2010 年代,該行業深陷死亡谷,一系列破產和業務重新定位遠離該領域表明了這一點。這種下滑是由對該領域看漲的初始投資的反衝驅動的,並且是將生產規模擴大到商業水平時的一個重大瓶頸。此外,與布倫特原油價格大幅下跌相比,生物塑料的相對成本較高,使得生物塑料與傳統塑料的競爭不力,從而加劇了下降趨勢。

然而,最近的變化已經扭轉了生物塑料行業的潮流,重振了其增長方式。最重要的是,品牌所有者本身已經轉向可持續發展的需求。這是由兩方面推動的:消費者拉動持續增強,立法變化(加上對未來變化的預期)朝著可持續性發展——例如一次性使用化石塑料禁令。由 IPCC 報告支持的 COP26 基石會議也推動了品牌所有者對脫碳的承諾。這種過剩的需求正在推動製造商更快地擴大產能,許多品牌所有者建立了合作夥伴關係以加速擴大規模。

按類型劃分的生物塑料技術成熟度

            來源:IDTechEx

許多公司開始克服商業規模瓶頸,隨著技術的發展,生物塑料的生產成本越來越低。此外,消費者現在更願意為可持續生物塑料支付溢價。總體而言,這些因素正在推動生物塑料朝著更實惠和比傳統塑料更具競爭力的方向發展。這得益於最近布倫特原油價格的飆升,這使得生物塑料成為更具吸引力的替代品。

插入式破壞者

採用生物塑料顛覆塑料行業的一個主要因素是嵌入式材料。這些是生物基原料或構建塊,可以直接替代現有原料。通過替換插件,製造商可以輕鬆地促進從化石到生物基的過渡。可以使用相同的工藝,而不是建立全新的工廠,並且最終產品的特性不會改變。這也意味著可以使用現有塑料產品的成熟的報廢選擇,特別是可以大大提高塑料產品可持續性的回收流。使用插件,可以使用質量平衡等監管鏈模型對生物基材料進行追蹤,從而在整個價值鏈中就可持續材料的來源和流程創造透明度和信任。總體而言,塑料市場將更容易採用與其他生物塑料相比具有強大優勢的即插即用生物塑料。

生物塑料面臨的挑戰

然而,幾種生物塑料類型仍有許多挑戰需要克服。為了真正實現可持續發展並成為循環經濟的一部分,生物塑料必須設計用於報廢處理。例如,最廣泛生產的 100% 生物基塑料材料 PLA 可以進行工業堆肥,但這對堆肥沒有任何價值,因此該行業的承購商很少。同時,與直接使用的生物基 PET 不同,回收 PLA 需要專用的基礎設施,這種基礎設施不常見且採用起來非常昂貴。相反,大多數 PLA 管理不善或進入垃圾填埋場。

全球最大的塑料組 PP 和 PE 仍然沒有主要的生物塑料解決方案。生物石腦油用於製造生物基 PP 和 PPE,但從生物醇和含氧化合物合成生物石腦油效率低下(因為過程中會產生廢氧)。此外,這使化學製造商與生物燃料和生物能源競爭原料。另一方面,生物石腦油可以由植物油製成,但由於地緣政治不穩定,這些原材料會受到價格波動的影響。

仍處於示範或中試規模的較年輕的生物塑料類型顯示出有前景的特性。然而,他們尚未開發出大量應用,這對於開發對材料的需求至關重要。處於這些利基市場的公司需要與品牌所有者和配方設計師建立合作夥伴關係,以擴大他們的應用組合。

IDTechEx 按生物塑料類型劃分的 10 年市場預測

該報告按生物塑料類型對市場進行細分和討論,著眼於每個細分市場的驅動因素和製約因素。這些細分市場是在10 年預測中推斷出來的,以探索這些細分市場的技術準備情況、市場顛覆的潛力以及計劃中的產能擴張前景。

本報告提供以下信息

  • 循環經濟中的生物塑料
  • 生物塑料領域的企業活動、趨勢和主題

技術趨勢

  • 合成生物基單體聚合技術分析
  • 分析提取天然聚合物的技術
  • 生物基聚合物的技術成熟度
  • 企業活動、合作夥伴關係、破產和行業發展
  • 生物塑料和循環經濟整合的驅動力
  • 行業面臨的主要挑戰
  • 合成和天然生物塑料的新興技術
  • 生物塑料特性、加工性和應用

市場預測與分析

  • 13 種生物基聚合物類型的 10 年顆粒市場預測
  • 分析材料的可加工性和包裝應用
  • 主要市場應用

來自 IDTechEx 的分析師訪問權限

所有報告購買都包括最多 30 分鐘的電話時間,專家分析師將幫助您將報告中的主要發現與您正在解決的業務問題聯繫起來。這需要在購買報告後三個月內使用。

目錄

1。執行摘要

  • 1.1.什麼是生物塑料?
  • 1.2.全球塑料供應將繼續成倍增長
  • 1.3.循環經濟中的生物塑料
  • 1.4.環境成本:塑料污染大潮
  • 1.5。從單醣中導航生物基聚合物
  • 1.6.從植物油中探索生物基聚合物
  • 1.7.合成生物基聚合物和單體:重點公司
  • 1.8.天然存在的生物基聚合物:關鍵公司
  • 1.9.聚乳酸 (PLA)
  • 1.10。 PET和PEF
  • 1.11。其他合成生物基聚合物
  • 1.12。聚□胺特性、應用和機會
  • 1.13。聚羥基鏈烷酸酯 (PHA)
  • 1.14.多醣
  • 1.15。布倫特原油價格對生物塑料行業的影響
  • 1.16。走出死亡之谷:生物塑料變得富有成效
  • 1.17.生物塑料:技術成熟度
  • 1.18.原料價格上漲
  • 1.19。 2023-2033年生物塑料全球總產能預測

2。簡介

  • 2.1.報告範圍
  • 2.2.關鍵術語和定義
  • 2.3.什麼是生物塑料?
  • 2.4.全球塑料供應將繼續成倍增長
  • 2.5.脫碳經濟
  • 2.6.循環經濟中的生物塑料
  • 2.7.環境成本:塑料污染大潮
  • 2.8.塑料廢物管理金字塔
  • 2.9.回收聚合物
  • 2.10。 "可生物降解" 是什麼意思?
  • 2.11.生物塑料的三大家族
  • 2.12.聚合物類型:熱塑性塑料、熱固性塑料和彈性體
  • 2.13.可用的生物基單體範圍
  • 2.14.從單醣中導航生物基聚合物
  • 2.15。從植物油中探索生物基聚合物
  • 2.16.替代的四個驅動因素
  • 2.17.綠色溢價
  • 2.18.布倫特原油價格對生物塑料行業的影響
  • 2.19.走出死亡之谷:生物塑料變得富有成效
  • 2.20。生物塑料:技術成熟度
  • 2.21.原料價格上漲
  • 2.22。世界各地的塑料法規
  • 2.23。食物、土地和水的競爭
  • 2.24。綠色轉型:監管鏈
  • 2.25。產銷監管鏈:質量平衡 (1)
  • 2.26。產銷監管鏈:質量平衡 (2)

3。生物基合成聚合物:聚乳酸 (PLA)

  • 3.1.什麼是聚乳酸?
  • 3.2. PLA的生產
  • 3.3. PLA生產工藝
  • 3.4.乳酸:細菌發酵還是化學合成?
  • 3.5.用於發酵的最佳乳酸菌菌株
  • 3.6.用於乳酸發酵的工程酵母菌株
  • 3.7.發酵、回收和純化
  • 3.8.丙交酯的聚合與 PLA 的微觀結構
  • 3.9. PLA 報廢選項
  • 3.10. PLA的水解
  • 3.11.丙交酯和聚乳酸的供應商
  • 3.12.聚乳酸的當前和未來應用
  • 3.13.聚乳酸:SWOT 分析
  • 3.14. PLA生命週期中的機遇
  • 3.15. TotalEnergies Corbion
  • 3.16.自然作品
  • 3.17.巴斯夫:ecovioR
  • 3.18.結論

4。生物基合成聚合物:其他合成生物基聚酯

  • 4.1.二酸和二醇聚酯簡介
  • 4.2.可用的生物基聚酯範圍
  • 4.3.生物基聚酯供應商
  • 4.4.聚對苯二甲酸乙二醇酯 (PET)
  • 4.5。生物基 MEG 和 PET:單體生產
  • 4.6.生物基 MEG 和 PET:工業和應用
  • 4.7.生物基 MEG 和 PET:SWOT
  • 4.8.生物基 PDO 和 PTT:單體生產
  • 4.9.生物基 PDO 和 PTT:聚合物應用
  • 4.10。生物基 BDO:單體生產
  • 4.11.生物基 BDO 技術已獲得 Genomatica 的許可
  • 4.12.生物基 BDO 和 PBT:聚合物應用
  • 4.13.生物基對苯二甲酸 (TPA)
  • 4.14.生物基琥珀酸:單體生產
  • 4.15。生物基琥珀酸和 PBS:聚合物應用
  • 4.16.聚乙烯夫喃酸酯 (PEF)
  • 4.17.生物基糠醛化合物:5-HMF
  • 4.18.生物基 FDCA:單體生產
  • 4.19.生物基 FDCA 和 PEF:聚合物應用

5。生物基合成聚合物:聚□胺

  • 5.1.生物基聚□胺簡介
  • 5.2.聚□胺的生物基合成路線
  • 5.3.一系列可用的生物基單體和聚□胺
  • 5.4.生物基單體和聚□胺供應商
  • 5.5。 C6:己二酸、六亞甲基二胺和己內□胺
  • 5.6。 C10:癸二酸和十亞甲基二胺
  • 5.7. C11:11-氨基十一烷酸
  • 5.8。 C12:十二烷二酸
  • 5.9。聚□胺特性、應用和機會

6。生物基合成聚合物:其他合成生物基聚合物

  • 6.1.聚酯多元醇、聚氨酯和多異氰酸酯
  • 6.2.嘉吉:植物油衍生多元醇
  • 6.3.科思創和 Reverdia:Impranil eco 琥珀酸基聚酯多元醇
  • 6.4.巴斯夫:Sovermol 830 蓖麻油衍生的聚醚酯多元醇
  • 6.5。科思創:PDI 和 Desmodur eco 聚異氰尿酸酯
  • 6.6.生物基石腦油
  • 6.7.生物基聚烯烴
  • 6.8。生物基聚烯烴:具有挑戰性但需求旺盛
  • 6.9。生物基聚烯烴景觀
  • 6.10。 Braskem:我是綠色聚乙烯
  • 6.11.北歐化工:可再生能源
  • 6.12.生物基異山梨醇作為共聚單體
  • 6.13. Roquette: POLYSORB 異山梨醇
  • 6.14.三菱化學株式會社:Durabio

7。天然存在的生物塑料和生物基聚合物:聚羥基鏈烷酸酯 (PHA)

  • 7.1.聚(羥基鏈烷酸酯)簡介
  • 7.2.關鍵的商業 PHA 和微結構
  • 7.3.商業 PHA 的特性
  • 7.4. PHA 供應商
  • 7.5。 PHB、PHBV 和 P(3HB-co-4HB)
  • 7.6.短鍊和中鏈 PHA
  • 7.7. PHA的生物合成途徑
  • 7.8。發酵、回收和純化
  • 7.9。 PHA:SWOT分析
  • 7.10。 PHA 的應用
  • 7.11。 PHA 的機會
  • 7.12。降低 PHA 生產成本
  • 7.13。 PHA 中的風險
  • 7.14。 PHA 僅少量生產
  • 7.15。 PHA生產設施
  • 7.16。新光科技
  • 7.17。丹尼默科學
  • 7.18。結論

8。天然存在的生物塑料和生物基聚合物:多醣

  • 8.1.纖維素
  • 8.2.納米纖維素
  • 8.3.納米纖維素近距離
  • 8.4.納米纖維素的形式
  • 8.5。納米纖維素的應用
  • 8.6.細胞力
  • 8.7.魏德曼纖維技術
  • 8.8. Exilva
  • 8.9。澱粉
  • 8.10。製造熱塑性澱粉 (TPS)
  • 8.11.複合和改性熱塑性澱粉
  • 8.12。植物的
  • 8.13.諾瓦蒙特
  • 8.14.海藻
  • 8.15。包裝用海藻聚合物
  • 8.16.蘿莉軟件
  • 8.17. Notpla:哦哦!
  • 8.18. Evoware
  • 8.19。多醣生物塑料的限制條件

9。市場和預測

  • 9.1.全球塑料總產量繼續同比增長2.6%
  • 9.2.按地區分列的全球生物塑料生產能力(2021 年)
  • 9.3.生物塑料:可加工性
  • 9.4.生物塑料:在包裝中的應用
  • 9.5。生物塑料:適用於軟包裝
  • 9.6。生物塑料:適用於硬質包裝
  • 9.7.生物塑料和汽車應用
  • 9.8。生物塑料農業和紡織應用
  • 9.9。方法
  • 9.10。 2023-2033年生物塑料全球總產能與塑料總產能預測
  • 9.11。 2023-2033年生物塑料全球總產能預測
  • 9.12。 2023-2033年生物塑料全球總產能預測
  • 9.13。 2023-2033年聚乳酸(PLA)全球產能預測
  • 9.14。 2023-2033年PET和PEF全球產能預測
  • 9.15。其他聚酯全球產能預測2023-2033
  • 9.16。聚□胺和其他合成聚合物全球產能預測 2023-2033
  • 9.17。 PHA 2023-2033 年全球產能預測
  • 9.18. 2023-2033年全球多醣產能預測
目錄
Product Code: ISBN 9781915514103

Title:
Bioplastics 2023-2033: Technology, Market, Players, and Forecasts
Biobased PLA, PET, PEF, polyesters, polyolefins, polyamides, polyurethanes, PHA and polysaccharides, for packaging, automotive, textiles, agriculture, consumer goods, and other applications in the circular economy.

The bioplastic industry will expand production capacity by 10.1% CAGR to 7,078 kilotons in 2033.

Bioplastics manufacturers are scaling production rapidly and the industry is expected to grow by 10.1% CAGR in the next ten years. Manufacturers are driven by brand-owner pull to meet decarbonization commitments, consumer demand for sustainability, and single-use fossil-based plastic ban laws. In this report, IDTechEx explores the drivers of the bioplastic market's growth, analyses key and emerging technologies, examines end-of-life options, discusses applications, and forecasts the opportunities and growth of the market.

Plastic demand grows

Plastic demand continues to grow even as we become increasingly aware of the threat that plastics pose to our environment. Global consumption of plastics will double by 2050. To combat the impact of plastic on environment and climate change, the industry is transitioning towards a circular economy. Yet, even if all the plastic produced every year was 100% recycled, there would still be a need for virgin feedstock to meet growing consumption. Bioplastics - plastics which are synthesised from biobased feedstocks - can replace incumbent fossil-based plastics here. Given their biobased origin, these plastics are a lower carbon footprint and sustainable option to incumbent fossil-based plastics.

Climbing out of the valley of death

The bioplastics industry began decades ago, but during the 2010s the industry fell deep into the valley of death, indicated by a string of bankruptcies and business repositioning away from the space. This slump was driven by recoil from bullish initial investment in the space, and a significant bottleneck when it came to scaling production to commercial level. Furthermore, the high relative cost of bioplastics compared with a substantial drop in the price of Brent crude made bioplastics poor competition against conventional plastics, reinforcing the decline.

Yet, recent changes have turned the tide in the bioplastics industry, revitalizing its growth mode. Foremost, there has been a shift towards sustainability demand from brand-owners themselves. This is driven from both sides: by consumer pull that continues to strengthen, and by legislation changes (plus anticipation for future changes) towards sustainability- such as single use fossil-based plastics bans. The cornerstone COP26 conference, supported by the IPCC report, fuelled brand-owner commitments to decarbonization, too. This surplus demand is pushing manufacturers to expand their capacities faster, with many brand-owners forming partnerships to accelerate the scaling-up process.

Technology readiness level of bioplastics by types

            Source: IDTechEx

Many companies are beginning to overcome the commercial scale bottleneck and as technology develops bioplastics are being produced for lower costs. Additionally, consumers are more willing now to pay the premium for sustainable bioplastics. Overall, these factors are driving bioplastics towards being more affordable and competitive against conventional plastics. This is supported by a spike in Brent crude prices recently, which make bioplastics a more attractive alternative.

Drop-in disruptors

A major factor for bioplastic adoption to disrupt the plastics industry is the drop-in materials. These are biobased feedstocks or building blocks that can be a direct substitute for incumbent feedstocks. By substituting with drop-ins, manufacturers can easily facilitate the transition from fossil to biobased. The same processes can be used, rather than establishing entirely new plants, and end-product properties are unchanged. This also means that the well-established end-of-life options of incumbent plastic products can be used, particularly recycling streams which massively improve the sustainability of a plastic product. Using drop-ins, the biobased material can be traced with chain-of-custody models like mass balance, which create transparency and trust throughout the value chain regarding sustainable material origins and processes. Overall, the plastics market will more readily adopt drop-in bioplastics which have a strong advantage over other bioplastics.

Challenges for bioplastics

Yet, there are still many challenges for several bioplastic types to overcome. To be truly sustainable and become part of the circular economy, bioplastics must be designed for end-of-life processing. For example, PLA, the most widely produced 100% biobased plastic material can be industrially composted, however this provides no value to the compost so there are few off-takers in the industry. Meanwhile, recycling PLA, unlike drop-in biobased PET, requires dedicated infrastructure that is uncommon and very expensive to adopt. Instead, most PLA is mismanaged or goes to landfill.

The largest groups of plastics worldwide, PP and PE, remain without a major bioplastic solution. Bio-naphtha is used to make biobased PP and PPE, but synthesis of bio-naphtha from bio-alcohols and oxygenates is inefficient (because of waste oxygen in the process). Furthermore, this puts chemical manufacturers into competition for feedstock with biofuel and bioenergy. On the other hand, bio-naphtha can be made from plant oils, however these raw materials suffer from price fluctuations resulting from geopolitical instability.

Younger bioplastic types that are still in demonstration or pilot scale show promising properties. However, they have yet to develop a significant range of applications, critical to developing demand for the materials. Companies in these niches need to form partnerships with brand-owners and formulators to expand their application portfolios.

IDTechEx 10-year market forecast segmented by bioplastic types

The report segments and discusses the market by bioplastic types, looking at the drivers and constraints of each segment. These segments are extrapolated in the 10-year forecast, to explore the segments' technology readiness, potential for market disruption, and the landscape for planned capacity expansions.

This report provides the following information

  • Bioplastics in the circular economy
  • Corporate activity, trends, and themes in bioplastics

Technology trends

  • Analysis of technologies for polymerization of synthetic biobased monomers
  • Analysis of technologies for extraction of naturally occurring polymers
  • Technology readiness level of biobased polymers
  • Corporate activity, partnerships, bankruptcies, and industry growth
  • Drivers for bioplastics and integration in the circular economy
  • Key challenges for the industry
  • Emerging technologies in synthetic and naturally occurring bioplastics
  • Bioplastic properties, processability, and applications

Market Forecasts & Analysis

  • 10-year granular market forecasts by 13 biobased polymer types
  • Analysis of materials for processability, and for packaging applications
  • Key market applications

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. What are bioplastics?
  • 1.2. Global supply of plastics will continue to grow exponentially
  • 1.3. Bioplastics in the circular economy
  • 1.4. Environmental costs: the rising tide of plastic pollution
  • 1.5. Navigating biobased polymers from monosaccharides
  • 1.6. Navigating biobased polymers from vegetable oils
  • 1.7. Synthetic biobased polymers and monomers: key companies
  • 1.8. Naturally occurring biobased polymers: key companies
  • 1.9. Polylactic acid (PLA)
  • 1.10. PET and PEF
  • 1.11. Other synthetic biobased polymers
  • 1.12. Polyamide properties, applications and opportunities
  • 1.13. Polyhydroxyalkanoates (PHA)
  • 1.14. Polysaccharides
  • 1.15. Effects of Brent crude prices on the bioplastic industry
  • 1.16. Out of the valley of death: bioplastics becoming productive
  • 1.17. Bioplastics: technology readiness level
  • 1.18. Rising feedstock prices
  • 1.19. Bioplastics global total capacity forecast 2023-2033

2. INTRODUCTION

  • 2.1. Scope of the report
  • 2.2. Key terms and definitions
  • 2.3. What are bioplastics?
  • 2.4. Global supply of plastics will continue to grow exponentially
  • 2.5. Decarbonizing economies
  • 2.6. Bioplastics in the circular economy
  • 2.7. Environmental costs: the rising tide of plastic pollution
  • 2.8. The plastic waste management pyramid
  • 2.9. Recycling polymers
  • 2.10. What does "biodegradable" mean?
  • 2.11. The three main families of bioplastics
  • 2.12. Polymer types: thermoplastics, thermosets and elastomers
  • 2.13. The range of available biobased monomers
  • 2.14. Navigating biobased polymers from monosaccharides
  • 2.15. Navigating biobased polymers from vegetable oils
  • 2.16. The four drivers for substitution
  • 2.17. The Green Premium
  • 2.18. Effect of the price of Brent crude on the bioplastics industry
  • 2.19. Out of the valley of death: bioplastics becoming productive
  • 2.20. Bioplastics: technology readiness level
  • 2.21. Rising feedstock prices
  • 2.22. Plastic regulation around the world
  • 2.23. Food, land, and water competition
  • 2.24. Green transition: the chain of custody
  • 2.25. Chain of custody: mass balance (1)
  • 2.26. Chain of custody: mass balance (2)

3. BIOBASED SYNTHETIC POLYMERS: POLYLACTIC ACID (PLA)

  • 3.1. What is polylactic acid?
  • 3.2. Production of PLA
  • 3.3. PLA production process
  • 3.4. Lactic acid: bacterial fermentation or chemical synthesis?
  • 3.5. Optimal lactic acid bacteria strains for fermentation
  • 3.6. Engineering yeast strains for lactic acid fermentation
  • 3.7. Fermentation, recovery and purification
  • 3.8. Polymerization of lactide and microstructures of PLA
  • 3.9. PLA end-of-life options
  • 3.10. Hydrolysis of PLA
  • 3.11. Suppliers of lactide and polylactic acid
  • 3.12. Current and future applications of polylactic acid
  • 3.13. Polylactic acid: a SWOT analysis
  • 3.14. Opportunities in the lifecycle of PLA
  • 3.15. TotalEnergies Corbion
  • 3.16. Natureworks
  • 3.17. BASF: ecovio®
  • 3.18. Conclusions

4. BIOBASED SYNTHETIC POLYMERS: OTHER SYNTHETIC BIOBASED POLYESTERS

  • 4.1. Introduction to polyesters from diacids and diols
  • 4.2. The range of available biobased polyesters
  • 4.3. Biobased polyester suppliers
  • 4.4. Polyethylene terephthalate (PET)
  • 4.5. Biobased MEG and PET: monomer production
  • 4.6. Biobased MEG and PET: industry & applications
  • 4.7. Biobased MEG and PET: SWOT
  • 4.8. Biobased PDO and PTT: monomer production
  • 4.9. Biobased PDO and PTT: polymer applications
  • 4.10. Biobased BDO: monomer production
  • 4.11. Biobased BDO technology is licenced from Genomatica
  • 4.12. Biobased BDO and PBT: polymer applications
  • 4.13. Biobased terephthalic acid (TPA)
  • 4.14. Biobased succinic acid: monomer production
  • 4.15. Biobased succinic acid and PBS: polymer applications
  • 4.16. Polyethylene furanoate (PEF)
  • 4.17. Biobased furfural compounds: 5-HMF
  • 4.18. Biobased FDCA: monomer production
  • 4.19. Biobased FDCA and PEF: polymer applications

5. BIOBASED SYNTHETIC POLYMERS: POLYAMIDES

  • 5.1. Introduction to biobased polyamides
  • 5.2. Biobased synthesis routes to polyamides
  • 5.3. Range of available biobased monomers and polyamides
  • 5.4. Biobased monomer and polyamide suppliers
  • 5.5. C6: adipic acid, hexamethylenediamine and caprolactam
  • 5.6. C10: sebacic acid and decamethylenediamine
  • 5.7. C11: 11-aminoundecanoic acid
  • 5.8. C12: Dodecanedioic acid
  • 5.9. Polyamide properties, applications and opportunities

6. BIOBASED SYNTHETIC POLYMERS: OTHER SYNTHETIC BIOBASED POLYMERS

  • 6.1. Polyester polyols, polyurethanes and polyisocyanates
  • 6.2. Cargill: vegetable oil derived polyols
  • 6.3. Covestro and Reverdia: Impranil eco Succinic acid based polyester polyols
  • 6.4. BASF: Sovermol 830 Castor oil derived polyether-ester polyol
  • 6.5. Covestro: PDI and Desmodur eco polyisocyanurate
  • 6.6. Biobased naphtha
  • 6.7. Biobased polyolefins
  • 6.8. Biobased polyolefins: challenging but in demand
  • 6.9. Biobased polyolefins Landscape
  • 6.10. Braskem: I'm green polyethylene
  • 6.11. Borealis: Bornewables
  • 6.12. Biobased isosorbide as a comonomer
  • 6.13. Roquette: POLYSORB isosorbide
  • 6.14. Mitsubishi Chemical Corporation: Durabio

7. NATURALLY OCCURRING BIOPLASTICS AND BIOBASED POLYMERS: POLYHYDROXYALKANOATES (PHA)

  • 7.1. Introduction to poly(hydroxyalkanoates)
  • 7.2. Key commercial PHAs and microstructures
  • 7.3. Properties of commercial PHAs
  • 7.4. Suppliers of PHAs
  • 7.5. PHB, PHBV, and P(3HB-co-4HB)
  • 7.6. Short and medium chain length PHAs
  • 7.7. Biosynthetic pathways to PHAs
  • 7.8. Fermentation, recovery and purification
  • 7.9. PHAs: a SWOT analysis
  • 7.10. Applications of PHAs
  • 7.11. Opportunities in PHAs
  • 7.12. Reducing the cost of PHA production
  • 7.13. Risks in PHAs
  • 7.14. PHAs are only made in small quantities
  • 7.15. PHA production facilities
  • 7.16. Newlight Technologies
  • 7.17. Danimer Scientific
  • 7.18. Conclusions

8. NATURALLY OCCURRING BIOPLASTICS AND BIOBASED POLYMERS: POLYSACCHARIDES

  • 8.1. Cellulose
  • 8.2. Nanocellulose
  • 8.3. Nanocellulose up close
  • 8.4. Forms of nanocellulose
  • 8.5. Applications of nanocellulose
  • 8.6. Celluforce
  • 8.7. Weidmann Fiber Technology
  • 8.8. Exilva
  • 8.9. Starch
  • 8.10. Manufacturing thermoplastic starch (TPS)
  • 8.11. Composite and modified thermoplastic starches
  • 8.12. Plantic
  • 8.13. Novamont
  • 8.14. Seaweeds
  • 8.15. Seaweed polymers for packaging
  • 8.16. Loliware
  • 8.17. Notpla: Ooho!
  • 8.18. Evoware
  • 8.19. Constraints for polysaccharide bioplastics

9. MARKETS AND FORECASTS

  • 9.1. Global total plastic production continues to grow 2.6% year on year
  • 9.2. Global production capacities of bioplastics by region (2021)
  • 9.3. Bioplastics: processability
  • 9.4. Bioplastics: application in packaging
  • 9.5. Bioplastics: applicability for flexible packaging
  • 9.6. Bioplastics: applicability for rigid packaging
  • 9.7. Bioplastics and automotive applications
  • 9.8. Bioplastics agriculture and textile applications
  • 9.9. Methodology
  • 9.10. Bioplastics global total capacity vs overall plastics capacity forecast 2023-2033
  • 9.11. Bioplastics global total capacity forecast 2023-2033
  • 9.12. Bioplastics global total capacity forecast 2023-2033
  • 9.13. Polylactic acid (PLA) global capacity forecast 2023-2033
  • 9.14. PET and PEF global capacity forecast 2023-2033
  • 9.15. Other polyesters global capacity forecast2023-2033
  • 9.16. Polyamides and other synthetic polymers global capacity forecast 2023-2033
  • 9.17. PHAs global capacity forecast 2023-2033
  • 9.18. Polysaccharides global capacity forecast 2023-2033