表紙
市場調查報告書
商品編碼
1088880

鈣鈦礦光伏 2023-2033年

Perovskite Photovoltaics 2023-2033

出版日期: | 出版商: IDTechEx Ltd. | 英文 242 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
鈣鈦礦光伏 2023-2033年
涵蓋串聯、薄膜、柔性和建築集成的鈣鈦礦太陽能電池,以及鈣鈦礦 LED、傳感器和光電探測器。

隨著採用串聯和室內電池,到 2033 年鈣鈦礦光伏市場將增長到 12 億美元。

鈣鈦礦光伏已經展示了顯著的效率,其低成本、薄膜結構和可調節的吸收使新應用成為可能。這份 IDTechEx 報告探討了鈣鈦礦光伏的適用性和市場機會,以及創新機會和進入壁壘。它評估解決穩定性主要挑戰的方法,以及特殊材料的製造方法和要求。

矽光伏 (PV) 市場每年都在加速發展。有全球倡議轉向可再生能源,公眾對可持續性的意識正在增強。因此,新的光伏技術有很多機會進入組合併滿足需求差距。

鈣鈦礦是指具有特定材料結構的材料族。用於光伏的那些具有非常適合該應用的電子和光學特性的獨特組合。鈣鈦礦光伏預計不會很快取代矽光伏成為主導技術;然而,採用它有很大的動機。鈣鈦礦光伏可以提供與硅光伏類似的高功率密度,而且成本更低、重量只有一小部分,並且製造工藝更簡單。它還可以與硅結合以創建可以超越單結太陽能電池效率限制的串聯電池架構。幾家公司正致力於開發單結鈣鈦礦和串聯光伏,其中一些公司正在進行中試線和試驗,併計劃在未來一兩年內投入商業使用。

鈣鈦礦光伏可用於薄膜(左)或串聯 "矽上鈣鈦礦" 架構,分別針對室內能量收集或屋頂光伏等應用。

顯著提高效率

鈣鈦礦光伏研究於 2009 年開始。從那時起,對該領域的研究迅速發展。創紀錄的效率已經與硅光伏相提並論,這是一項經過數十年研究的技術。此外,鈣鈦礦光伏不使用有毒或稀有材料,並且製造非常適合可擴展的基於溶液的沉積方法。這使得鈣鈦礦光伏比現有的主要薄膜替代品如碲化鎘 (CdTe) 和銅銦鎵硒 (CIGS) 具有優勢,這些薄膜的合成成本高且材料稀缺。

儘管展示了高效鈣鈦礦太陽能電池,但由於對長期穩定性的擔憂,商業應用受到限制。眾所周知,鈣鈦礦在暴露於熱、空氣、濕度和紫外線等環境因素後會降解。封裝技術和材料工程對於防止鈣鈦礦薄膜降解至關重要 - 解決這些高價值問題是一個引人注目的商業機會。

啟用新興應用程序

鈣鈦礦 PV 用途廣泛。它可用於太陽能發電場和屋頂等主流應用。由於鈣鈦礦模塊的重量至少比矽模塊輕 90%,因此它特別適合新型應用,例如垂直建築集成和低重量公差結構。這些是主流矽基光伏不兼容的應用,因此為鈣鈦礦光伏提供了利基機會。柔性太陽能模塊是光伏領域另一個令人興奮的最新發展。薄膜鈣鈦礦光伏自然非常適合靈活的設計。整合到建築立面和電子設備中時,整合允許更大的實用性和美學控制。

隨著物聯網 (IoT) 的出現,它也可能成為自供電智能電子產品的一個非常合適的選擇。電池通常用於為小型電器供電。在使用數百或數千個單獨的電子設備的情況下,更換電池在勞動力成本和一次性電池數量方面可能是不可持續的。使用壽命為 10 年的低成本光伏供電設備可能更經濟。使用有機光伏的自供電電子產品已經處於非常早期的商業化階段。這個市場仍然很小,新進入者的空間很大。鈣鈦礦光伏有望比有機物具有更高的效率和更簡單的合成,並可能延長使用壽命。

展望

鈣鈦礦光伏的未來似乎很樂觀,因為該技術的發展速度比任何其他光伏技術都要快得多。與 CdTe 和 CIGS 活性層不同,鈣鈦礦不需要稀有或昂貴的原材料。合成很簡單,無需真空或高溫即可進行沉積。創造柔性設備的可能性也開闢了主流矽光伏由於其體積、重量和剛性而無法瞄準的新應用。儘管具有可喜的優勢,但圍繞鈣鈦礦太陽能電池壽命的問題仍然是討論的焦點。

本報告中回答的關鍵問題:

  • 什麼是鈣鈦礦光伏,它如何用於應對氣候變化?
  • 有哪些具有競爭力的現有光伏技術?
  • 有哪些不同的市場細分?
  • 鈣鈦礦光伏技術成熟度如何?
  • 市場增長的主要驅動力和障礙是什麼?
  • 主要的增長機會在哪裡?
  • 預計費用是多少?
  • 誰是主要參與者?
  • 鈣鈦礦的替代應用有哪些?

IDTechEx 在印刷和柔性電子產品(包括薄膜光伏)領域擁有 10 年的專業知識。我們的分析師密切關注技術和相關市場的最新發展,採訪了整個供應鏈的關鍵參與者,參加了會議,並提供了該領域的諮詢項目。本報告探討了技術性能、供應鏈、製造專有技術和應用程序開發進展的現狀和最新趨勢。它還確定了鈣鈦礦光伏面臨的主要挑戰、競爭和創新機會。

來自 IDTechEx 的分析師訪問權限

所有報告購買都包括最多 30 分鐘的電話時間,專家分析師將幫助您將報告中的主要發現與您正在解決的業務問題聯繫起來。這需要在購買報告後三個月內使用。

目錄

1。執行摘要

  • 1.1.什麼是鈣鈦礦光伏?
  • 1.2.鈣鈦礦光伏發電的動機
  • 1.3.鈣鈦礦光伏 - 高成就者
  • 1.4.太陽能光伏技術現狀
  • 1.5。鈣鈦礦光伏瞄準新興物聯網應用
  • 1.6.用於垂直建築一體化的鈣鈦礦光伏
  • 1.7.鈣鈦礦光伏挑戰
  • 1.8.薄膜鈣鈦礦光伏路線圖
  • 1.9.波特五力:薄膜鈣鈦礦光伏市場
  • 1 .10。薄膜鈣鈦礦光伏的 SWOT 分析
  • 1.11。矽串聯結構上的鈣鈦礦
  • 1.12。串聯光伏即將進入屋頂
  • 1.13。串聯電池挑戰
  • 1.14.矽鈣鈦礦串聯光伏路線圖
  • 1.15。波特五力:矽鈣鈦礦串聯光伏市場
  • 1.16。串聯光伏的 SWOT 分析
  • 1.17.鈣鈦礦應用的市場準備情況
  • 1.18.供應鏈中的機會
  • 1.19。鈣鈦礦光伏的商業化正在進行中
  • 1.20。鈣鈦礦的替代應用:概述
  • 1.21。要點 (1)
  • 1.22。要點 (2)

2。市場預測

  • 2.1.預測方法
  • 2.2.預測模塊成本
  • 2.3.光伏總裝機容量預測
  • 2.4.模塊成本預測
  • 2.5.累計安裝太陽能發電場容量
  • 2.6.年表面積生產 - 太陽能農場
  • 2.7.太陽能農場光伏年收入
  • 2.8.累計安裝屋頂容量
  • 2.9.年表面積生產 - 屋頂
  • 2.10。屋頂光伏年收入
  • 2.11.無線電子的光伏組件成本
  • 2.12.光伏供電無線電子產品的產量預測
  • 2.13.無線電子的年收入 PV
  • 2.14.鈣鈦礦光伏年總收入
  • 2.15。年度鈣鈦礦電池材料要求
  • 2.16.基板產量預測
  • 2.17.基板年收入預測
  • 2.18.鈣鈦礦光伏沉積方法預測

3。簡介

  • 3.1.太陽能光伏是增長最快的能源
  • 3.2.太陽能光伏的現狀
  • 3.3.太陽能光伏技術現狀
  • 3.4. CdTe 飽受原材料擔憂之苦
  • 3.5. CIGS - 主要參與者正在退出市場
  • 3.6.什麼是鈣鈦礦光伏?
  • 3.7.鈣鈦礦光伏 - 高成就者
  • 3.8.鈣鈦礦光伏發電的動機
  • 3.9.鈣鈦礦研究開始進入高原
  • 3.10.鈣鈦礦光伏的新興研究課題
  • 3.11.鈣鈦礦光伏激勵
  • 3.12.鈣鈦礦是否達到了早期的預期?
  • 3.13.比較新興的薄膜技術
  • 3.14.鈣鈦礦光伏挑戰
  • 3.15.鈣鈦礦光伏可能是 GaAs 的低成本替代品
  • 3.16.細分鈣鈦礦光伏技術
  • 3.17.鈣鈦礦光伏的商業化正在進行中
  • 3.18.鈣鈦礦光伏價值鏈
  • 3.19.供應商鏈
  • 3.20。供應鏈中的機會

4。薄膜鈣鈦礦太陽能電池

  • 4.1.簡介:薄膜太陽能電池的動機
  • 4.2.薄膜鈣鈦礦技術
    • 4.2.1.薄膜太陽能電池如何工作?
    • 4.2.2.關鍵太陽能電池性能指標
    • 4.2.3.鈣鈦礦太陽能電池的演變
    • 4.2.4. nip 與 pin 配置
    • 4.2.5。可擴展鈣鈦礦光伏的簡單結構
    • 4.2.6.矽處理成本高且耗時
    • 4.2.7.與硅光伏相比,鈣鈦礦可以節省時間、金錢和能源
    • 4.2.8.薄膜鈣鈦礦光伏成本明細
    • 4.2.9.薄膜鈣鈦礦光伏路線圖
    • 4.2.10。波特五力:薄膜鈣鈦礦光伏市場
    • 4.2.11。薄膜鈣鈦礦光伏的 SWOT 分析
    • 4.2.12。摘要:薄膜鈣鈦礦技術
  • 4.3.薄膜鈣鈦礦光伏應用
    • 4.3.1.簡介:薄膜太陽能的應用
    • 4.3.2.滿足應用要求 - 現有矽與薄膜鈣鈦礦
    • 4.3.3.用於室內能量收集的薄膜光伏
    • 4.3.4.鈣鈦礦光伏可能是無線能量收集的具有成本效益的替代方案
    • 4.3.5。鈣鈦礦光伏瞄準新興物聯網應用
    • 4.3.6.太陽能智能包裝
    • 4.3.7.薄膜光伏在汽車中的設想在哪裡?
    • 4.3.8.用於垂直建築一體化的鈣鈦礦光伏
    • 4.3.9.鈣鈦礦能否解決光伏汽車應用中的挑戰?
    • 4.3.10。光年:遠程太陽能電動汽車
    • 4.3.11。現代在汽車上推出矽太陽能電池板
    • 4.3.12。 Armor/ASCA 開發便攜式光伏面板
    • 4.3.13。概括
  • 4.4.薄膜鈣鈦礦行業參與者
    • 4.4.1. Saule Technologies:概述
    • 4.4.2. Saule Technologies的關鍵產品
    • 4.4.3. Saule Technologies 的價值主張
    • 4.4.4. Saule Technologies 的製造方法
    • 4.4.5。 Saule Technologies 的商業模式
    • 4.4.6. Saule 技術:SWOT
    • 4.4.7. Microquanta Semiconductor:針對薄膜和矽/鈣鈦礦串聯。
    • 4.4.8.微量子強調穩定性
    • 4.4.9。微量子半導體:SWOT
    • 4.4.10。協鑫新能源:老牌玩家計劃進軍鈣鈦礦市場(一)
    • 4.4.11。協鑫新能源:老牌玩家計劃進軍鈣鈦礦市場(二)
    • 4.4.12。協鑫新能源:SWOT
    • 4.4.13。 Swift Solar:開發薄膜串聯電池
    • 4.4.14。 Swift Solar 的全鈣鈦礦方法
    • 4.4.15。用於電動汽車的 Swift 太陽能鈣鈦礦光伏
    • 4.4.16。非溶液沉積技術可以使全鈣鈦礦串聯受益
    • 4.4.17。斯威夫特太陽能:SWOT
    • 4.4.18。玩家總結(鈣鈦礦薄膜)

5。矽串聯太陽能電池上的鈣鈦礦

  • 5.1.串聯技術
    • 5.1.1.薄膜與串聯鈣鈦礦光伏
    • 5.1.2.超越單結理論效率極限的串聯太陽能電池
    • 5.1.3.矽鈣鈦礦串聯優勢
    • 5.1.4.矽串聯結構上的鈣鈦礦
    • 5.1.5。串聯電池配置
    • 5.1.6.串聯電池挑戰
    • 5.1.7.串聯工藝流程
    • 5.1.8。矽鈣鈦礦串聯成本明細
    • 5.1.9。矽鈣鈦礦串聯光伏路線圖
    • 5.1.10。波特五力:矽鈣鈦礦串聯光伏市場
    • 5.1.11。串聯光伏的 SWOT 分析
    • 5.1.12。概括
  • 5.2.串聯矽鈣鈦礦光伏的應用
    • 5.2.1.簡介:鈣鈦礦在矽串聯上的應用
    • 5.2.2.串聯光伏即將進入屋頂
    • 5.2.3.串聯光伏可以促進太陽能農場
    • 5.2.4.矽鈣鈦礦串聯可以在 Windows 中工作嗎?
  • 5.3.行業參與者
    • 5.3.1.牛津光伏:矽鈣鈦礦串聯光伏的主要參與者
    • 5.3.2.牛津光伏的商業模式
    • 5.3.3.牛津光伏正在進入一個尚未成熟的市場
    • 5.3.4.牛津光伏:SWOT
    • 5.3.5。 CubicPV:早期矽鈣鈦礦開發商
    • 5.3.6. CubicPV的直接晶圓®方法
    • 5.3.7.立方PV:SWOT
    • 5.3.8。關鍵參與者總結(矽鈣鈦礦串聯)

6。解決穩定性挑戰

  • 6.1.穩定性對商業化提出挑戰
  • 6.2.外在退化
  • 6.3.內在退化機制
  • 6.4.材料工程可以提高穩定性,但會損害光學性能
  • 6.5。玻璃-玻璃封裝以防止外在降解
  • 6.6.常見高分子封裝材料比較
  • 6.7.薄膜封裝
  • 6.8。 Al2O3 是一種即將推出的薄膜封裝材料
  • 6.9。商業柔性封裝
  • 6.10。 Tera Barrier 的太陽能屏障膜
  • 6.11.總結:鈣鈦礦穩定性

7。鈣鈦礦 PV 的可擴展沉積方法

  • 7.1.簡介:鈣鈦礦的沉積
  • 7.2.可擴展處理的沉積技術
  • 7.3.用於高純度沉積的濺射
  • 7.4. AACVD 是一種新興的基於溶液的真空方法
  • 7.5。用於高空間分辨率的噴墨打印
  • 7.6.刀片塗層便宜但不一致
  • 7.7.槽模塗層在工業領域前景廣闊
  • 7.8。噴塗 - 快速但浪費
  • 7.9。空間分辨率差會浪費材料
  • 7.10。沉積方法的比較
  • 7.11。如何決定鈣鈦礦沉積方法?
  • 7.12。邁向卷對卷印刷
  • 7.13。 Creaphys/MBraun 的新型沉積技術
  • 7.14。沉積方法總結

8。鈣鈦礦太陽能電池材料

  • 8.1.鈣鈦礦光伏材料介紹
    • 8.1.1.材料機會
  • 8.2.基材
    • 8.2.1.基材選擇:傳統和新興
    • 8.2.2.剛性玻璃基板的局限性
    • 8.2.3.硬質玻璃的替代品
    • 8.2.4.柔性玻璃基板
    • 8.2.5。什麼是超薄柔性玻璃?
    • 8.2.6.超薄玻璃提高柔韌性
    • 8.2.7.超薄柔性玻璃的封裝優勢
    • 8.2.8.康寧柳樹柔性玻璃
    • 8.2.9。肖特太陽能柔性玻璃
    • 8.2.10。塑料基板 - 便宜且靈活
    • 8.2.11。阻擋層要求增加了塑料基板的成本
    • 8.2.12。為什麼要使用金屬箔基材?
    • 8.2.13。基板表面粗糙度影響電池性能
    • 8.2.14。基板材料供應機會
    • 8.2.15。基板成本比較
    • 8.2.16。基準基板材料
    • 8.2.17。如何選擇基材?
  • 8.3.透明導電膜
    • 8.3.1.開發替代 TCF 材料的巨大機遇
    • 8.3.2.透明導電膜的廣泛選擇
    • 8.3.3.關鍵 TCF 特性:霧度、透射率和薄層電阻 < li>8.3.4.透明導體選擇影響技術方法
    • 8.3.5。可拉伸的碳納米管導電薄膜
    • 8.3.6.石墨烯面臨艱難的妥協
    • 8.3.7.銀納米線 TCF 的好處
    • 8.3.8.白銀價格波動影響原料成本
  • 8.4.鈣鈦礦活性層
    • 8.4.1.鈣鈦礦材料成分
    • 8.4.2.鉛問題是否合理?
    • 8.4.3.公眾認知與鉛的現實
    • 8.4.4.材料成分影響光學
    • 8.4.5。鈣鈦礦原料 - 商品化市場
  • 8.5。電荷傳輸層
    • 8.5.1.對低成本傳輸層的高需求
    • 8.5.2.有機電荷傳輸層具有高度複雜性
    • 8.5.3. SFX - Spiro 的替代品?
    • 8.5.4.電荷傳輸層會限制電池效率
    • 8.5.5。無機電荷傳輸層
    • 8.5.6。材料摘要

9。鈣鈦礦的替代應用

  • 9.1.鈣鈦礦的替代應用:概述
    • 9.1.1.鈣鈦礦常規和替代應用技術現狀
  • 9.2.發光二極管
    • 9.2.1.鈣鈦礦 LED 的工作原理
    • 9.2.2.高能紫外線發射鈣鈦礦 LED 的機會
    • 9.2.3.鈣鈦礦 LED 的各種潛在市場
    • 9.2.4.鈣鈦礦 LED:SWOT
  • 9.3.光電探測器
    • 9.3.1.薄膜光電探測器簡介
    • 9.3.2.光電探測器工作原理
    • 9.3.3.分割電磁頻譜
    • 9.3.4.鈣鈦礦吸收限於可見範圍
    • 9.3.5。基於霍爾斯特中心鈣鈦礦的圖像傳感器
    • 9.3.6.自動駕駛汽車的光電探測器
    • 9.3.7.鈣鈦礦光電探測器:SWOT
  • 9.4. X 射線探測器
    • 9.4.1. Siemens Healthineers:使用鈣鈦礦進行直接 X 射線傳感
    • 9.4.2. X 射線探測器:SWOT
  • 9.5。鈣鈦礦量子點
    • 9.5.1.用於顏色增強/轉換的鈣鈦礦量子點 (I)
    • 9.5.2.用於顏色增強/轉換的鈣鈦礦量子點 (II)
    • 9.5.3.鈣鈦礦量子點激光器
    • 9.5.4。鈣鈦礦量子點:SWOT
目錄
Product Code: ISBN 9781915514035

Title:
Perovskite Photovoltaics 2023-2033
Covering tandem, thin-film, flexible, and building-integrated perovskite solar cells, along with perovskite LEDs, sensors and photodetectors.

Perovskite PV market to grow to US$1.2 billion by 2033 with adoption of tandem and indoor cells.

Perovskite photovoltaics have already demonstrated remarkable efficiencies, with new applications enabled by their low cost, thin film architecture and tuneable absorption. This IDTechEx report explores the suitability and market opportunities of perovskite PV as well as the innovation opportunities and barriers to entry. It evaluates methods to resolve the main challenge of stability, as well as manufacturing methods and requirements for speciality materials.

The silicon photovoltaic (PV) market is accelerating every year. There are global initiatives to move towards renewable energy sources and public consciousness of sustainability is increasing. As such there is plenty of opportunity for new PV technologies to enter the mix and meet gaps in demand.

Perovskites refer to a family of materials with a specific material structure. Those used in photovoltaics have unique combination of electronic and optical properties that are extremely well-suited to this application. Perovskite PV is not expected to imminently replace silicon PV as the dominant technology; however, there is substantial motivation for its adoption. Perovskite PV can provide similarly high power density as silicon PV at lower cost, a fraction of the weight, and with a simpler manufacturing process. It can also be combined with silicon to create tandem cell architectures that can surpass the efficiency limits of single junction solar cells. Several companies are working on developing single junction perovskite and tandem PV, some of which have pilot lines and trials in progress with plans to launch commercially within the next year or two.

Perovskite photovoltaics can be utilized in either a thin film (left) or tandem 'perovskite-on-silicon' architecture, targeting applications such as indoor energy harvesting or rooftop PV respectively.

Remarkably rapid efficiency gains

Perovskite PV research took off in 2009. Since then, research into the field has catapulted. Record efficiencies are already on par with those of silicon PV, a technology with decades of research behind it. Additionally, perovskite PV does not use toxic or rare materials, and the manufacturing is well-suited to scalable solution-based deposition methods. This gives perovskite PV an edge over the existing dominant thin film alternatives such as cadmium telluride (CdTe) and copper indium gallium selenide (CIGS), which suffer from expensive synthesis and material scarcity.

Despite the demonstration of high efficiency perovskite solar cells, commercial adoption is limited by concerns over long-term stability. Perovskites are well-known to degrade following exposure to environmental factors such as heat, air, humidity, and UV light. Encapsulation techniques and material engineering are crucial to prevent degradation of the perovskite film - solving these high value problems is a compelling commercial opportunity.

Enabling emerging applications

Perovskite PV is very versatile. It can be used in mainstream applications such as in solar farms and rooftops. Since the weight of a perovskite module can be at least 90 % lighter than a silicon module, it is particularly well-suited to novel applications as well such as vertical building integration and structures with low weight tolerance. These are applications that mainstream silicon-based PV is not compatible with and therefore provide a niche opportunity for perovskite PV. Flexible solar modules are another exciting recent development in photovoltaics. Thin film perovskite PV is naturally well-suited to flexible designs. Conformality allows for greater practicality and aesthetic control when integrating into building facades as well as electronic devices.

With the emergence of Internet of Things (IoT), it could also be a very suitable choice for self-powered smart electronics. Batteries are typically used to power small appliances. Where hundreds or thousands of individual electronics are in use, replacing batteries can be unsustainable both in terms of labour costs and number of disposable batteries. Employing low-cost PV powered devices with lifespans of 10 years could be far more economical. There is already very early-stage commercialisation of self-powered electronics using organic PV. This market is still very small and there is plenty of room for new entrants. Perovskite PV promises higher efficiencies and simpler synthesis than organics, and potentially longer lifespans.

Outlook

The future appears optimistic for perovskite PV, since the technology has advanced much more rapidly than any other photovoltaic technology. Unlike CdTe and CIGS active layers, perovskites do not require rare or expensive raw materials. The synthesis is straightforward, and deposition can be carried out without the need for a vacuum or high temperatures. The possibility of creating flexible devices also opens up new applications that mainstream silicon PV cannot target due to their bulk, weight, and rigidity. Despite the promising advantages, concerns surrounding the lifespan of perovskite solar cells remain at the forefront of the discussion.

Key questions answered in this report:

  • What is perovskite PV and how can it be used to address climate change?
  • What are the competitive existing PV technologies?
  • What are the various market segmentations?
  • What is the technology readiness level of perovskite PV?
  • What are the key drivers and hurdles for market growth?
  • Where are the key growth opportunities?
  • What is the predicted cost?
  • Who are the key players?
  • What are alternative applications of perovskites?

IDTechEx has 10 years of expertise covering printed and flexible electronics, including thin film photovoltaics. Our analysts have closely followed the latest developments in the technology and associated markets, interviewed key players across the supply chain, attended conferences, and delivered consulting projects on the field. This report examines the current status and latest trends in technology performance, supply chain, manufacturing know-how, and application development progress. It also identifies the key challenges, competition and innovation opportunities facing perovskite PV.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. What is Perovskite PV?
  • 1.2. Motivation for Perovskite Photovoltaics
  • 1.3. Perovskite PV - A High Achiever
  • 1.4. Solar PV Technology Status
  • 1.5. Perovskite PV Targets Emerging IoT Applications
  • 1.6. Perovskite PV for Vertical Building Integration
  • 1.7. Perovskite PV Challenges
  • 1.8. Thin Film Perovskite PV Roadmap
  • 1.9. Porter's Five Forces: Thin Film Perovskite PV Market
  • 1.10. SWOT Analysis of Thin Film Perovskite PV
  • 1.11. Perovskite on Silicon Tandem Structures
  • 1.12. Tandem PV Coming to Rooftops Soon
  • 1.13. Tandem Cell Challenges
  • 1.14. Silicon-Perovskite Tandem PV Roadmap
  • 1.15. Porter's Five Forces: Silicon-Perovskite Tandem PV Market
  • 1.16. SWOT Analysis of Tandem PV
  • 1.17. Market Readiness of Perovskite Applications
  • 1.18. Opportunities in the Supply Chain
  • 1.19. Commercialisation of Perovskite PV Underway
  • 1.20. Alternative Applications of Perovskites: Overview
  • 1.21. Key Takeaways (1)
  • 1.22. Key Takeaways (2)

2. MARKET FORECASTS

  • 2.1. Forecasting Methodology
  • 2.2. Forecasting Module Costs
  • 2.3. Total Installed PV Capacity Forecast
  • 2.4. Module Cost Forecast
  • 2.5. Cumulative Installed Solar Farm Capacity
  • 2.6. Annual Surface Area Production - Solar Farm
  • 2.7. Solar Farm PV Annual Revenue
  • 2.8. Cumulative Installed Rooftop Capacity
  • 2.9. Annual Surface Area Production - Rooftop
  • 2.10. Rooftop PV Annual Revenue
  • 2.11. PV Module Costs for Wireless Electronics
  • 2.12. Production Forecast for PV-Powered Wireless Electronics
  • 2.13. Annual Revenue PV for Wireless Electronics
  • 2.14. Total Annual Revenue of Perovskite PV
  • 2.15. Annual Perovskite Cell Material Requirements
  • 2.16. Substrates Production Forecast
  • 2.17. Substrate Annual Revenue Forecast
  • 2.18. Perovskite PV Deposition Methods Forecast

3. INTRODUCTION

  • 3.1. Solar PV is the Fastest Growing Energy Source
  • 3.2. Current Landscape of Solar PV
  • 3.3. Solar PV Technology Status
  • 3.4. CdTe suffers from raw material concerns
  • 3.5. CIGS - Key player is exiting the market
  • 3.6. What is Perovskite PV?
  • 3.7. Perovskite PV - A High Achiever
  • 3.8. Motivation for Perovskite Photovoltaics
  • 3.9. Perovskite Research Begins to Plateau
  • 3.10. Emerging Research Topics in Perovskite PV
  • 3.11. Perovskite PV Incentivisation
  • 3.12. Have Perovskites Lived Up to Early Expectations?
  • 3.13. Comparing Emerging Thin Film Technologies
  • 3.14. Perovskite PV Challenges
  • 3.15. Perovskite PV could be low-cost alternative to GaAs
  • 3.16. Segmenting Perovskite PV Technologies
  • 3.17. Commercialisation of Perovskite PV Underway
  • 3.18. Perovskite PV Value Chain
  • 3.19. Suppliers to the Chain
  • 3.20. Opportunities in the Supply Chain

4. THIN FILM PEROVSKITE SOLAR CELLS

  • 4.1. Introduction: Motivation for Thin Film Solar Cells
  • 4.2. Thin-Film Perovskite Technology
    • 4.2.1. How Does a Thin Film Solar Cell Work?
    • 4.2.2. Key Solar Cell Performance Metrics
    • 4.2.3. Perovskite Solar Cell Evolution
    • 4.2.4. n-i-p vs p-i-n configurations
    • 4.2.5. Simple structures for scalable perovskite PV
    • 4.2.6. Silicon processing is costly and time intensive
    • 4.2.7. Perovskites can save time, money, and energy relative to silicon PV
    • 4.2.8. Thin Film Perovskite PV Cost Breakdown
    • 4.2.9. Thin Film Perovskite PV Roadmap
    • 4.2.10. Porter's Five Forces: Thin Film Perovskite PV Market
    • 4.2.11. SWOT Analysis of Thin Film Perovskite PV
    • 4.2.12. Summary: Thin Film Perovskite Technology
  • 4.3. Applications of Thin Film Perovskite PV
    • 4.3.1. Introduction: Applications for Thin-Film Solar
    • 4.3.2. Meeting Application Requirements - Existing Silicon vs Thin Film Perovskite
    • 4.3.3. Thin Film PV for Indoor Energy Harvesting
    • 4.3.4. Perovskite PV Could be Cost-Effective Alternative for Wireless Energy Harvesting
    • 4.3.5. Perovskite PV Targets Emerging IoT Applications
    • 4.3.6. Solar Powered Smart Packaging
    • 4.3.7. Where is Thin Film PV Envisaged in Cars?
    • 4.3.8. Perovskite PV for Vertical Building Integration
    • 4.3.9. Could Perovskites Solve Challenges in PV Automotive Application?
    • 4.3.10. Lightyear: Long Range Solar Electric Vehicle
    • 4.3.11. Hyundai Introduces Silicon Solar Panels on Cars
    • 4.3.12. Armor/ASCA Developing Portable PV Panels
    • 4.3.13. Summary
  • 4.4. Thin Film Perovskite Industry Players
    • 4.4.1. Saule Technologies: Overview
    • 4.4.2. Saule Technologies' Key Product
    • 4.4.3. Saule Technologies' Value Propositions
    • 4.4.4. Saule Technologies' Manufacturing Approach
    • 4.4.5. Saule Technologies' Business Model
    • 4.4.6. Saule Technologies: SWOT
    • 4.4.7. Microquanta Semiconductor: Targeting both thin film and silicon/perovskite tandem.
    • 4.4.8. Microquanta Emphasises Stability
    • 4.4.9. Microquanta Semiconductor: SWOT
    • 4.4.10. GCL New Energy: Established player planning to enter the perovskite market (I)
    • 4.4.11. GCL New Energy: Established player planning to enter the perovskite market (II)
    • 4.4.12. GCL New Energy: SWOT
    • 4.4.13. Swift Solar: Developing thin-film tandem cells
    • 4.4.14. Swift Solar's All-Perovskite Approach
    • 4.4.15. Swift Solar Perovskite PV for Electric Cars
    • 4.4.16. Non-Solution Deposition Techniques Could Benefit All-Perovskite Tandem
    • 4.4.17. Swift Solar: SWOT
    • 4.4.18. Summary of Players (perovskite thin film)

5. PEROVSKITE ON SILICON TANDEM SOLAR CELLS

  • 5.1. Tandem Technology
    • 5.1.1. Thin film vs tandem perovskite PV
    • 5.1.2. Tandem Solar Cells to Surpass Theoretical Efficiency Limits of Single Junction
    • 5.1.3. Silicon-Perovskite Tandem Advantages
    • 5.1.4. Perovskite on Silicon Tandem Structures
    • 5.1.5. Tandem Cell Configurations
    • 5.1.6. Tandem Cell Challenges
    • 5.1.7. Tandem Process Flow
    • 5.1.8. Silicon-Perovskite Tandem Cost Breakdown
    • 5.1.9. Silicon-Perovskite Tandem PV Roadmap
    • 5.1.10. Porter's Five Forces: Silicon-Perovskite Tandem PV Market
    • 5.1.11. SWOT Analysis of Tandem PV
    • 5.1.12. Summary
  • 5.2. Applications of Tandem Silicon-Perovskite PV
    • 5.2.1. Introduction: Applications of Perovskite on Silicon Tandem
    • 5.2.2. Tandem PV Coming to Rooftops Soon
    • 5.2.3. Tandem PV Could Boost Solar Farms
    • 5.2.4. Could Silicon-Perovskite Tandem Work in Windows?
  • 5.3. Industry Players
    • 5.3.1. Oxford PV: Major player in silicon-perovskite tandem PV
    • 5.3.2. Business Model of Oxford PV
    • 5.3.3. Oxford PV is entering an unestablished market
    • 5.3.4. Oxford PV: SWOT
    • 5.3.5. CubicPV: Early stage silicon-perovskite developer
    • 5.3.6. CubicPV's Direct Wafer® Method
    • 5.3.7. CubicPV: SWOT
    • 5.3.8. Summary of Key Players (silicon-perovskite tandem)

6. RESOLVING THE STABILITY CHALLENGE

  • 6.1. Stability poses a challenge to commercialisation
  • 6.2. Extrinsic degradation
  • 6.3. Intrinsic degradation mechanisms
  • 6.4. Material engineering can improve stability but compromise optical properties
  • 6.5. Glass-glass encapsulation to prevent extrinsic degradation
  • 6.6. Comparison of common polymer encapsulant materials
  • 6.7. Thin Film Encapsulation
  • 6.8. Al2O3 is an upcoming thin film encapsulant
  • 6.9. Commercial Flexible Encapsulation
  • 6.10. Tera Barrier's Solar Barrier Film
  • 6.11. Summary: Perovskite stability

7. SCALABLE DEPOSITION METHODS FOR PEROVSKITE PV

  • 7.1. Introduction: Deposition of Perovskites
  • 7.2. Deposition Techniques for Scalable Processing
  • 7.3. Sputtering for High Purity Deposition
  • 7.4. AACVD is an emerging solution-based vacuum approach
  • 7.5. Inkjet Printing for High Spatial Resolution
  • 7.6. Blade coating is cheap but inconsistent
  • 7.7. Slot-die coating is promising for industry
  • 7.8. Spray coating - rapid but wasteful
  • 7.9. Poor spatial resolution wastes material
  • 7.10. Comparison of Deposition Methods
  • 7.11. How to Decide on Perovskite Deposition Methods?
  • 7.12. Towards Roll-to-Roll Printing
  • 7.13. Novel Deposition Technique by Creaphys/MBraun
  • 7.14. Summary of Deposition Methods

8. MATERIALS FOR PEROVSKITE SOLAR CELLS

  • 8.1. Introduction to Materials for Perovskite PV
    • 8.1.1. Materials Opportunities
  • 8.2. Substrate Materials
    • 8.2.1. Substrate Choices: Conventional and Emerging
    • 8.2.2. Limitations of Rigid Glass Substrates
    • 8.2.3. Alternatives to Rigid Glass
    • 8.2.4. Flexible Glass Substrates
    • 8.2.5. What is Ultra-Thin Flexible Glass?
    • 8.2.6. Ultra-Thin Glass Improves Flexibility
    • 8.2.7. Encapsulation Advantages of Ultra-Thin Flexible Glass
    • 8.2.8. Corning Willow Flexible Glass
    • 8.2.9. Schott Solar Flexible Glass
    • 8.2.10. Plastic Substrates - Cheap and Flexible
    • 8.2.11. Barrier Layer Requirement Increases Cost of Plastic Substrates
    • 8.2.12. Why Use Metal Foil Substrates?
    • 8.2.13. Substrate Surface Roughness Impacts Cell Performance
    • 8.2.14. Substrate Material Supply Opportunities
    • 8.2.15. Substrate Cost Comparison
    • 8.2.16. Benchmarking Substrate Materials
    • 8.2.17. How to Choose a Substrate?
  • 8.3. Transparent Conducting Films
    • 8.3.1. Strong opportunity for development of alternative TCF materials
    • 8.3.2. Wide Choice of Transparent Conducting Films
    • 8.3.3. Key TCF properties: haze, transmission and sheet resistance
    • 8.3.4. Transparent Conductor Choice Influences Technical Approach
    • 8.3.5. Stretchable CNT conducting films
    • 8.3.6. Graphene faces a difficult compromise
    • 8.3.7. Benefits of silver nanowire TCFs
    • 8.3.8. Silver price volatility affects feedstock cost
  • 8.4. Perovskite Active Layer
    • 8.4.1. Perovskite Material Components
    • 8.4.2. Are Lead Concerns Justified?
    • 8.4.3. Public Perception vs Reality of Lead
    • 8.4.4. Material composition influences optics
    • 8.4.5. Perovskite Raw Materials - Commoditised Market
  • 8.5. Charge Transport Layers
    • 8.5.1. High Demand for Low Cost Transport Layers
    • 8.5.2. Organic charge transport layers have high complexity
    • 8.5.3. SFX - An Alternative to Spiro?
    • 8.5.4. Charge Transport Layer Can Limit Cell Efficiency
    • 8.5.5. Inorganic Charge Transport Layers
    • 8.5.6. Summary of Materials

9. ALTERNATIVE APPLICATIONS OF PEROVSKITES

  • 9.1. Alternative Applications of Perovskites: Overview
    • 9.1.1. Technology Status of Conventional and Alternative Applications of Perovskites
  • 9.2. Light Emitting Diodes
    • 9.2.1. Working Principle of Perovskite LEDs
    • 9.2.2. Opportunity for High Energy UV emitting Perovskite LEDS
    • 9.2.3. Wide Variety of Potential Markets for Perovskite LEDs
    • 9.2.4. Perovskite LEDs: SWOT
  • 9.3. Photodetectors
    • 9.3.1. Introduction to Thin Film Photodetectors
    • 9.3.2. Photodetector Working Principles
    • 9.3.3. Segmenting the Electromagnetic Spectrum
    • 9.3.4. Perovskite Absorption Limited to Visible Range
    • 9.3.5. Holst Centre Perovskite Based Image Sensors
    • 9.3.6. Photodetectors for Autonomous Vehicles
    • 9.3.7. Perovskite Photodetectors: SWOT
  • 9.4. X-Ray Detectors
    • 9.4.1. Siemens Healthineers: Direct X-Ray Sensing with Perovskites
    • 9.4.2. X-Ray Detectors: SWOT
  • 9.5. Perovskite quantum dots
    • 9.5.1. Perovskite quantum dots for color enhancement/conversion (I)
    • 9.5.2. Perovskite quantum dots for color enhancement/conversion (II)
    • 9.5.3. Perovskite Quantum Dot Lasers
    • 9.5.4. Perovskite Quantum Dots: SWOT