表紙
市場調查報告書
商品編碼
1088879

3D列印材料市場 2022-2032年

3D Printing Materials Market 2022-2032

出版日期: | 出版商: IDTechEx Ltd. | 英文 321 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
3D列印材料市場 2022-2032年
七十五條 10 年預測線、基準研究、玩家資料。包括:光敏樹脂、熱塑性粉末、熱塑性長絲、金屬粉末、金屬線和陶瓷材料。

增材製造攝入量的增加將推動材料市場到 2032 年超過 $29.5B。

材料是增材製造中最強勁的收入機會,但瞭解 3D 打印中聚合物、金屬和陶瓷材料的多樣性對於利用這一機會至關重要。本報告檢查了已建立的 3D 打印材料的現狀,介紹了技術比較研究,分析了趨勢,並提供了增材製造材料的詳細市場預測。對於涉及 3D 打印材料的公司,本報告提供了關鍵見解和基本知識。

聚合物、金屬、蠟、沙子、混凝土 - 隨著 3D 打印技術領域的多樣性和複雜性不斷增長,與這些增材工藝兼容的材料種類也越來越多。 3D 打印曾經是簡單的低成本熱塑性塑料的代名詞,用於原型製作等要求不高的應用,現在每年都有更多獨特和高性能的材料進入市場,從金屬基複合材料到生物陶瓷,再到再生塑料。隨著最終用戶需要更高質量的產品、更大的選擇和靈活性,以及在原型製作中更能代表最終產品外觀和行為的材料,這種兼容材料的組合不斷擴大。重要的是,隨著重要的最終用戶開始充分瞭解 3D 打印為其供應鏈帶來的附加值,這種更廣泛的材料組合伴隨著增材製造的日益普及。

隨著用戶跨越醫藥、汽車和航空航天等有價值的垂直行業,3D 打印材料市場不斷擴大。隨著每一種新材料的推出,都會有一個額外的 3D 打印應用程序可供探索。 3D 打印材料的增長潛力與打印設備有很大不同,因為仍在運行的傳統打印機繼續消耗材料。因此,3D 打印價值鏈的這一部分代表著未來十年巨大的潛在增長機會:IDTechEx 預測,到 2032 年,全球 3D 打印材料市場價值將達到 295 億美元。

技術與應用

‘2022-2032 年 3D 打印材料市場報告專為通過 75 條預測線提供對該市場的詳細瞭解而編寫。這些預測線涵蓋聚合物、金屬、陶瓷和建築材料,並對未來十年不同材料類別的大規模需求和創收提供了洞察力。本報告從聚合物、纖維增強複合材料、金屬、陶瓷和建築的角度涵蓋了增材製造材料市場的現狀,並詳細介紹了該行業的材料吸收趨勢。

IDTechEx 3D 打印材料市場 2022-2032:預測細分

  • 按材料類型:聚合物、金屬、陶瓷和結構
  • 按技術分類: 11 種聚合物、10 種金屬和 3 種陶瓷增材製造技術
  • 按聚合物原料類型劃分: 6 種光敏聚合物樹脂、6 種熱塑性長絲和 5 種熱塑性粉末
  • 按金屬合金成分劃分: 金屬 3D 打印中使用的 9 種金屬合金類別

3D 打印市場包含越來越廣泛的材料調色板。本報告深入研究了聚合物、金屬和陶瓷材料的既定材料類別,包括光敏聚合物樹脂、熱塑性粉末、熱塑性長絲、金屬粉末和陶瓷材料。對這些原料類型的特性、應用和供應商進行了廣泛的討論,最終得出了未來十年跨越四種主要材料類型的 75 條預測線。針對主要已建立材料類型中的各個材料類別,討論了材料描述、打印機兼容性、優缺點、製造商和示例應用。

IDTechex 對多樣化增材製造材料市場的細分

此外,IDTechEx 還進行了基準研究,評估了數千種用於 3D 打印的商業聚合物材料,以比較各個聚合物材料類別的性能。這些基準研究貫穿任何營銷,並為行業提供了可訪問的公正分類。 IDTechEx 的基準研究可以識別市場中的成功和差距,為希望利用不斷發展的 3D 打印材料行業的公司提供有價值的商業情報。 IDTechEx 的詳細行業分析還將為該行業的顯著變化提供更多背景信息,包括收購、產能擴張、改進工藝和新材料,因為參與者引入了為增材製造定制的材料組合。最後,介紹和評估混凝土、玻璃和沙子等小眾材料,以提供 3D 打印材料市場的全貌。

市場分析和詳細的 10 年預測

本報告預測到 2032 年的整體 3D 打印材料市場,並深入討論了當前商業化和新興材料。分析了材料市場的現狀,並評估了 2022 年至 2032 年的長期預測,按質量和每年的收入按材料類別、兼容的打印機技術和原料類別中的材料類型細分。

IDTechEx 對位於整個 3D 打印價值鏈中的公司進行了詳盡的初步研究,以獲得對影響到 2032 年增長的趨勢的關鍵見解。IDTechEx 分析師通過進行大量初步訪談,提供了最新和最重要的信息給讀者。本報告包含超過 45 家公司簡介;這包括主要 OEM、顛覆性初創企業、現有粉末供應商和新興材料公司。

本報告探討的關鍵問題:

  • 2032 年當前和新興的 3D 打印材料有哪些?
  • 不同 3D 打印材料的優缺點是什麼?
  • 不同的打印機技術支持哪些材料?
  • 如何進一步細分聚合物 3D 打印材料原料?
  • 3D 打印材料製成的產品有哪些潛在應用?
  • 每種材料類別的市場份額是多少?
  • 市場增長的主要驅動力和製約因素是什麼?
    從 2022 年到 2032 年,預計材料需求量和年收入增長是多少?

來自 IDTechEx 的分析師訪問權限

所有報告購買都包括最多 30 分鐘的電話時間,專家分析師將幫助您將報告中的主要發現與您正在解決的業務問題聯繫起來。這需要在購買報告後三個月內使用。

目錄

1。執行摘要

  • 1.1.跨 3D 打印技術的材料兼容性
  • 1.2. 3D打印材料報告範圍
  • 1.3.分解用於 3D 打印的聚合物材料
  • 1.4.用於增材製造的聚合物原料比較
  • 1.5。用於 3D 打印的複合材料原料介紹
  • 1.6.市場上的陶瓷3D打印材料
  • 1.7.金屬增材製造的原料選擇有哪些?
  • 1.8. 2021年按材料類型劃分的3D打印材料投資
  • 1.9. IDTechEx 對金屬增材製造技術的細分
  • 1.10。 IDTechEx 對聚合物增材製造技術的細分
  • 1.11。目前 3D 打印材料需求的市場份額——收入和質量
  • 1.12。按材料類型預測的 3D 打印材料 - 收入和質量
  • 1.13。按材料類型預測 3D 打印材料 - 討論
  • 1.14.按原料預測的聚合物增材製造材料 - 收入和質量
  • 1.15。按原料預測的聚合物增材製造材料 - 討論
  • 1.16。按技術預測的金屬增材製造材料 - 收入和質量
  • 1.17.金屬增材製造材料技術預測——討論
  • 1.18. 3D打印材料的主要趨勢
  • 1.19。結論
  • 1.20。 IDTechEx 公司簡介

2。簡介

  • 2.1.詞彙表:常用縮寫詞供參考
  • 2.2.報告範圍
  • 2.3.不同類型的 3D 打印工藝
  • 2.4.材料工藝關係
  • 2.5.為什麼要採用3D打印?
  • 2.6. 3D打印的歷史:愛好者的崛起
  • 2.7. 3D打印金屬的時間表
  • 2.8.陶瓷3D打印公司的歷史
  • 2.9.商業模式:銷售打印機VS零件
  • 2.10。消費者VS專業消費者VS專業人士
  • 2.11.使用模式和市場細分
  • 2.12. 3D 打印增長的驅動因素和製約因素

3。光聚合物樹脂

  • 3.1.光敏樹脂簡介
  • 3.2.感光樹脂的化學
  • 3.3.光聚合物樹脂的化學
  • 3.4.感光樹脂的化學
  • 3.5.樹脂 - 優點和缺點
  • 3.6.通用樹脂 - 概述
  • 3.7.通用樹脂 - 應用
  • 3.8.工程樹脂 - 概述
  • 3.9.工程樹脂 - 應用
  • 3.10.柔性樹脂 - 概述
  • 3.11.柔性樹脂 - 應用
  • 3.12.柔性樹脂 - 鞋類
  • 3.13.澆注樹脂 - 概述
  • 3.14.澆注樹脂 - 應用
  • 3.15.保健樹脂 - 概述
  • 3.16.保健樹脂 - 應用
  • 3.17.擠出樹脂 - 概述
  • 3.18.擠出樹脂 - 應用
  • 3.19.粘性感光樹脂
  • 3.20。感光樹脂供應商

4。熱塑性粉末

  • 4.1.熱塑性粉末簡介
  • 4.2.工程(尼龍)粉 - 概述
  • 4.3.工程(尼龍)粉末 - 應用
  • 4.4.柔性粉末 - 概述
  • 4.5。柔性粉末 - 應用
  • 4.6.複合粉末 - 概述
  • 4.7.複合粉末 - 應用
  • 4.8.高溫粉末 - 概述
  • 4.9.高溫粉末 - 應用
  • 4.10。工程(其他)粉末 - 概述
  • 4.11.工程(其他)粉末 - 應用
  • 4.12.熱塑性粉末:後處理
  • 4.13.熱塑性粉末供應商

5。熱塑性長絲

  • 5.1.熱塑性長絲簡介
  • 5.2.通用燈絲 - 概述
  • 5.3.通用燈絲 - 應用
  • 5.4.工程細絲 - 概述
  • 5.5。工程長絲 - 應用
  • 5.6。柔性長絲 - 概述
  • 5.7.柔性長絲 - 應用
  • 5.8。增強長絲 - 概述
  • 5.9。增強絲 - 應用
  • 5.10。高溫燈絲 - 概述
  • 5.11。高溫燈絲 - 應用
  • 5.12。支撐絲 - 概述
  • 5.13。分離與可溶性支持:SWOT 分析
  • 5.14。高溫熱塑性支撐材料
  • 5.15。熱塑性長絲填料
  • 5.16。熱塑性長絲供應商
  • 5.17.採購熱塑性長絲

6。熱塑性顆粒

  • 6.1.什麼是顆粒 3D 打印?
  • 6.2.長絲擠出與顆粒擠出
  • 6.3.顆粒 3D 打印 - 優點和缺點
  • 6.4.與其他 3D 打印技術和注塑成型的比較
  • 6.5。市場上的顆粒 3D 打印技術
  • 6.6.顆粒 3D 打印的趨勢
  • 6.7.顆粒 3D 打印的趨勢
  • 6.8。目標行業和應用
  • 6.9。顆粒擠出的示例用例
  • 6.10。顆粒 3D 打印的合作
  • 6.11.顆粒 3D 打印材料供應商
  • 6.12.顆粒 3D 打印的增長
  • 6.13.顆粒 3D 打印:SWOT 分析
  • 6.14.顆粒 3D 打印的前景
  • 6.15。顆粒3D打印公司
  • 6.16。顆粒3D打印公司

7。纖維增強聚合物複合材料

  • 7.1.複合3D打印簡介
  • 7.2.原料:介紹
  • 7.3.材料評估:矩陣考慮
  • 7.4.材料評估:機械性能
  • 7.5。材料評估:價格和性能基準
  • 7.6.材料評估:價格和性能基準
  • 7.7.完整材料清單:短碳纖維
  • 7.8。完整材料清單:短碳纖維
  • 7.9。完整的材料清單:短玻璃纖維
  • 7.10。完整的材料清單:粉末
  • 7.11。完整的材料清單:連續纖維
  • 7.12。獨立研究機構的標桿研究
  • 7.13。重要的重大新聞和發展
  • 7.14。再生碳纖維作為原料
  • 7.15。納米碳添加劑:性能優勢
  • 7.16。納米碳添加劑:商業活動

8。聚合物材料基準測試

  • 8.1.高分子材料對標:簡介
  • 8.2.樹脂:印刷工藝對比
  • 8.3.樹脂:印刷工藝對比
  • 8.4.長絲:複合材料與聚合物的比較
  • 8.5。燈絲:按燈絲類型比較
  • 8.6.燈絲:按燈絲類型比較
  • 8.7.長絲:未增強聚合物長絲的比較
  • 8.8.燈絲:按燈絲類型列出的特性表
  • 8.9。長絲:未增強聚合物長絲的特性表
  • 8.10。長絲:未增強聚合物長絲的特性表
  • 8.11.粉末:按粉末類型比較
  • 8.12。粉末:按粉末類型比較
  • 8.13.粉末:按粉末類型列出的特性表
  • 8.14.粉末:按成分列出的性能表
  • 8.15。聚合物原料比較
  • 8.16.結論

9。金屬粉末

  • 9.1.材料原料選項
  • 9.2.粉末形態規格
  • 9.3.水或氣體霧化
  • 9.4.等離子霧化
  • 9.5。電化學霧化
  • 9.6。粉末形態取決於霧化過程
  • 9.7.粉末形態取決於霧化過程
  • 9.8。支持的材料
  • 9.9。增材製造金屬粉末供應商
  • 9.10。增材製造金屬粉末供應商
  • 9.11。鈦粉 - 概述
  • 9.12。鈦粉——主要參與者
  • 9.13。鈦粉——主要參與者
  • 9.14。金屬增材製造的關鍵材料初創企業
  • 9.15。回收鈦原料
  • 9.16。金屬粉末床熔合後處理
  • 9.17。使用金屬粉末的障礙和限制

10.其他金屬原料

  • 10.1.金屬絲原料
  • 10.2.金屬絲原料
  • 10.3.金屬+聚合物長絲
  • 10.4.金屬+聚合物長絲
  • 10.5。金屬+聚合物長絲:巴斯夫 Ultrafuse
  • 10.6.金屬+光敏樹脂

11.兼容金屬合金

  • 11.1.合金和材料特性
  • 11.2.鋁及合金
  • 11.3.擴大鋁 AM 材料組合
  • 11.4.銅 3D 打印:潛力巨大,挑戰重重
  • 11.5。擴大銅 AM 材料組合
  • 11.6.銅 3D 打印的當前應用
  • 11.7.鈷及合金
  • 11.8.鎳合金:Inconel 625
  • 11.9.鎳合金:Inconel 718
  • 11.10。貴金屬及合金
  • 11.11。馬氏體時效鋼 1.2709
  • 11.12。 15-5PH不袗
  • 11.13。 17-4 PH不袗
  • 11.14。 316L不袗
  • 11.15。鈦及合金
  • 11.16。高熵合金的增材製造
  • 11.17。非晶合金的增材製造
  • 11.18。新興鋁合金和 MMC
  • 11.19。多金屬材料解決方案
  • 11.20。增材製造材料的材料信息學
  • 11.21。增材製造材料的材料信息學
  • 11.22。用於 3D 打印的新型合金
  • 11.23。鎢粉和納米粒子

12.陶瓷

  • 12.1.陶瓷3D打印材料介紹
  • 12.2.分類:按原料類型
  • 12.3.分類:按應用
  • 12.4.分類:按化學
  • 12.5.市場上的陶瓷3D打印材料
  • 12.6.生物陶瓷
  • 12.7. 3DP陶瓷材料的力學性能
  • 12.8. 3DP陶瓷材料的熱性能
  • 12.9. 3DP陶瓷材料的平均密度
  • 12.10。抗彎強度與密度 - 3DP 陶瓷材料
  • 12.11。氧化鋁比較 - AM 與非 AM
  • 12.12。氧化鋯比較 - AM 與非 AM
  • 12.13。碳化矽和氮化矽比較
  • 12.14。陶瓷基複合材料 (CMC)
  • 12.15。陶瓷作為 3D 打印中的增強材料
  • 12.16。 3D打印陶瓷製造商

13.兼容陶瓷材料

  • 13.1.氧化鋁 (Al2O3)
  • 13.2.氧化鋯 (ZrO2)
  • 13.3.二氧化矽 (SiO2)
  • 13.4.氮化矽 (Si3N4 & &β-SiAlON)
  • 13.5.碳化矽 (SiC)
  • 13.6.氮化鋁 (AlN)
  • 13.7.碳
  • 13.8.羥基磷灰石 (Ca10(PO4)6(OH)2)
  • 13.9.磷酸三鈣 (β-Ca3(PO4)2)
  • 13.10。堇青石 (Mg2Al4Si5O18)

14.其他材料

  • 14.1.粘合劑噴射用砂
  • 14.2.紙張:全彩型號
  • 14.3.用於 3D 打印的玻璃
  • 14.4. 4D打印材料

15。用於 3D 打印的建築材料

  • 15.1.混凝土 3D 打印簡史
  • 15.2. 3D 打印混凝土背後的驅動力
  • 15.3. 3D 打印混凝土背後的驅動力
  • 15.4.混凝土增材製造技術的主要類別
  • 15.5。笛卡爾( "龍門" )擠壓
  • 15.6.笛卡爾( "龍門" )擠壓
  • 15.7.機器人擠壓
  • 15.8.機器人擠壓
  • 15.9.粘合劑噴射
  • 15.10。混凝土 3D 打印材料
  • 15.11。著名的混凝土 3D 打印項目
  • 15.12。採用混凝土 3D 打印的障礙
  • 15.13。混凝土 3D 打印的前景
  • 15.14。混凝土3D打印公司
  • 15.15。用於建築的粘土 3D 打印
  • 15.16。用於建築的熱固性 3D 打印

16.市場分析

  • 16.1.概述 - 2022 年產品和發展
  • 16.2.概述 - 2022 年產品和發展 - 金屬材料
  • 16.3.概述 - 2022 年產品和發展 - 金屬材料
  • 16.4.概述 - 2022 年產品和發展 - 聚合物材料
  • 16.5.概述 - 2022 年產品和發展 - 聚合物材料
  • 16.6. 2022 產品與發展——高分子材料
  • 16.7. 2022 產品與發展——高分子材料
  • 16.8.概述 - 2022 年宣佈的涉及增材製造材料的合作夥伴關係
  • 16.9. 2022 年宣佈的涉及 AM 材料的合作夥伴關係
  • 16.10。概述 - 2022 年為增材製造材料公司提供的資金
  • 16.11。 2021 年增材製造材料投資概覽
  • 16.12。 2021 年金屬增材製造相關收購
  • 16.13。採集焦點:桌面金屬
  • 16.14。 2021年上市公司:總結
  • 16.15。 2021年上市公司類型
  • 16.16。 2021 年上市的公司:SPAC 與 IPO
  • 16.17。 SPAC合併時的估值與收入
  • 16.18。股票表現:Markforged 和 Desktop Metal
  • 16.19。按公司類型劃分的 2021 年增材製造材料資金
  • 16.20。各國 2021 年增材製造材料資助情況
  • 16.21。按材料類型劃分的 2021 年增材製造材料資金
  • 16.22。 2021 年與 AM 材料相關的前 11 輪融資
  • 16.23。金屬增材製造技術細分
  • 16.24。聚合物增材製造技術細分
  • 16.25。當前材料需求的市場份額 - 收入和質量

17.市場預測

  • 17.1.預測方法和結果介紹
  • 17.2.按材料類型預測的 3D 打印材料 - 收入和質量
  • 17.3.按材料類型預測的 3D 打印材料 - 收入和質量
  • 17.4.按原料預測的聚合物增材製造材料 - 收入和質量
  • 17.5.按原料預測的聚合物材料 - 討論
  • 17.6.按技術預測的聚合物增材製造材料 - 收入和質量
  • 17.7.高分子材料技術預測——討論
  • 17.8.按類型預測的光敏樹脂 - 收入和質量
  • 17.9.按類型預測的光敏樹脂 - 討論
  • 17.10。按類型預測的熱塑性長絲 - 收入和質量
  • 17.11。按類型預測的熱塑性長絲 - 討論
  • 17.12。按類型預測的熱塑性粉末 - 收入和質量
  • 17.13。按類型預測的熱塑性粉末 - 討論
  • 17.14。金屬增材製造材料技術預測——收入和質量
  • 17.15。金屬AM材料技術預測-討論
  • 17.16。按合金分類的金屬增材製造材料預測 - 收入和質量
  • 17.17。合金金屬AM材料預測 - 討論
  • 17.18。陶瓷3D打印材料使用預測
  • 17.19。 3D打印陶瓷的成分使用預測
  • 17.20。陶瓷3D打印材料收入預測

18.結論

  • 18.1. 3D打印材料的主要趨勢
  • 18.2.結論
  • 18.3. IDTechEx 的 3D 打印研究

19.公司簡介

  • 19.1.公司簡介

20。附錄

  • 20.1.按材料類型預測的 3D 打印材料 - 收入
  • 20.2.按材料類型預測的 3D 打印材料 - 質量
  • 20.3.按原料質量預測的聚合物增材製造材料
  • 20.4.按原料預測的聚合物增材製造材料 - 收入
  • 20.5。聚合物增材製造材料預測技術-質量
  • 20.6。聚合物增材製造材料按技術預測 - 收入
  • 20.7.光敏樹脂按類型預測 - 收入
  • 20.8。按類型 - 質量預測的光敏樹脂
  • 20.9。按類型預測的熱塑性長絲 - 收入
  • 20.10。按類型-質量預測的熱塑性長絲
  • 20.11。按類型預測的熱塑性粉末 - 收入
  • 20.12。按類型 - 質量預測的熱塑性粉末
  • 20.13。按技術分類的金屬材料預測 - 收入
  • 20.14。通過技術預測金屬材料 - 質量
  • 20.15。合金金屬材料預測 - 收入
  • 20.16。合金金屬材料預測 - 質量
  • 20.17。陶瓷3D打印材料使用預測
  • 20.18。 3D打印陶瓷的成分使用預測
  • 20.19。陶瓷3D打印材料收入預測
目錄
Product Code: ISBN 9781915514042

Title:
3D Printing Materials Market 2022-2032
Seventy-five 10-year forecast lines, benchmarking studies, player profiles. Includes: Photosensitive Resins, Thermoplastic Powders, Thermoplastic Filaments, Metal Powders, Metal Wire, and Ceramic Materials.

Increased additive manufacturing intake will drive the materials market to pass $29.5B by 2032.

Materials present the strongest revenue opportunity within additive manufacturing, but understanding the variety of polymer, metal, and ceramic materials within 3D printing is critical to capitalizing on this opportunity. This report examines the status of established 3D printing materials, presents technical comparison studies, analyzes trends, and provides detailed market forecasts for additive manufacturing materials. For companies involved in 3D printing materials, this report presents key insights and essential knowledge.

Polymer, metal, wax, sand, concrete - as the 3D printing technology landscape has grown in diversity and complexity, so has the variety of materials compatible with these many additive processes. Whereas 3D printing used to be synonymous with straightforward low-cost thermoplastics for less demanding applications like prototyping, it now sees more unique and high-performance materials enter the market annually, from metal-matrix composites to bioceramics, to recycled plastics. This portfolio of compatible materials continues to expand as end users demand higher quality products, greater choice and flexibility, and in the case of prototyping, materials that are more representative of the final product's appearance and behavior. Importantly, this wider materials portfolio comes alongside increased adoption of additive manufacturing, as important end-users begin to fully understand the value-add that 3D printing brings to their supply chain.

With users spanning valuable industry verticals like medicine, automotive, and aerospace, there is a continuing drive to expand the materials market for 3D printing. With every new material launch comes an additional application for 3D printing to explore. The growth potential for 3D printing materials differs significantly from printing equipment, as legacy printers which are still operational continue to consume materials. Therefore, this segment of the 3D printing value chain represents tremendous potential growth opportunity over the next decade: IDTechEx forecasts that the global market for 3D printing materials will be worth $29.5 billion in 2032.

Technology and Applications

The ‘3D Printing Materials Market 2022-2032’ report is specially authored to provide detailed understanding into this market through 75 forecast lines. These forecast lines span polymer, metal, ceramic, and construction materials, with insight offered on mass demand and revenue generation over the coming decade for different material categories. This report covers the current status of the additive manufacturing materials market from the perspective of polymers, fiber reinforced composites, metals, ceramics, and construction, with detail about material uptake trends occurring in the industry.

IDTechEx 3D Printing Materials Market 2022-2032: Forecast Segmentation

  • By material type: polymer, metal, ceramic, and construction
  • By technology: 11 polymer, 10 metal, and 3 ceramic additive manufacturing technologies
  • By polymer feedstock type: 6 photopolymer resin, 6 thermoplastic filament, and 5 thermoplastic powder categories
  • By metal alloy composition: 9 metal alloy categories used in metal 3D printing

The 3D printing market encompasses an increasingly broad materials palette. This report takes an in-depth look into the established material classes of polymer, metal, and ceramic materials, including photopolymer resins, thermoplastic powders, thermoplastic filaments, metal powders, and ceramic materials. Extensive discussion on the properties, applications, and suppliers of these feedstock types is provided, culminating in seventy-five forecast lines across four main material types for the next decade. Material descriptions, printer compatibilities, strengths and weaknesses, manufacturers, and example applications are discussed for individual material categories in the main established material types.

IDTechex's segmentation of the diverse Additive Manufacturing materials market

In addition, IDTechEx have conducted benchmarking studies assessing thousands of commercial polymer materials for 3D printing to compare the performance of individual polymer material categories. These benchmarking studies cut through any marketing and provide accessible impartial categorization for the industry. IDTechEx's benchmarking studies allow for identification of the successes and gaps in the market, providing valuable business intelligence for companies looking to capitalize on the growing 3D printing materials industry. IDTechEx's detailed industry analysis will also provide further context to the notable amount of movement in this industry with acquisitions, capacity expansions, improved processes, and new materials as players introduce material portfolios bespoke for additive manufacturing. Lastly, niche materials like concrete, glass, and sand are introduced and evaluated to provide a full picture of the 3D printing materials market.

Market analysis and granular 10-year forecasts

This report forecasts the overall 3D printing materials market to 2032, with in depth discussion of currently commercialized and emerging materials. The current state of the materials market is analyzed, and long-range forecasts from 2022-2032 for forecast demand by mass and revenue per annum segmented by material class, compatible printer technology, and material type within its feedstock category are evaluated.

IDTechEx conducted exhaustive primary research with companies positioned throughout the entire 3D printing value chain for key insights into the trends impacting growth to 2032. IDTechEx analysts go far beyond what is publicly available by conducting an extensive number of primary interviews, providing the latest and most important information to the reader. Over 45 company profiles are included as part of this report; this includes key OEMs, disruptive start-ups, incumbent powder providers, and emerging material companies.

Key questions explored in this report:

  • What are the current and emerging 3D printing materials in 2032?
  • What are the strengths and weaknesses of different 3D printing materials?
  • Which materials are supported by different printer technologies?
  • How are polymer 3D printing material feedstocks further segmented?
  • What are the potential applications of products made from 3D printing materials?
  • What are the market shares of each material class?
  • What are the key drivers and restraints of market growth?
  • What is the projected demand by mass and annual revenue growth for materials from 2022 to 2032?

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Material compatibility across 3D printing technologies
  • 1.2. Scope of the 3D printing materials report
  • 1.3. Breaking down polymer materials for 3D printing
  • 1.4. Comparison of polymer feedstock for additive manufacturing
  • 1.5. Introduction to composite material feedstock for 3D printing
  • 1.6. Ceramic 3D printing materials on the market
  • 1.7. What are the feedstock options for metal additive manufacturing?
  • 1.8. 3D printing materials investments in 2021 by material type
  • 1.9. IDTechEx segmentation of metal additive manufacturing technologies
  • 1.10. IDTechEx segmentation of polymer additive manufacturing technologies
  • 1.11. Current market share of 3D printing materials demand - revenue and mass
  • 1.12. 3D printing materials forecast by material type - revenue and mass
  • 1.13. 3D printing materials forecast by material type - discussion
  • 1.14. Polymer AM materials forecast by feedstock - revenue and mass
  • 1.15. Polymer additive manufacturing materials forecast by feedstock - discussion
  • 1.16. Metal AM materials forecast by technology - revenue and mass
  • 1.17. Metal additive manufacturing materials forecast by technology - discussion
  • 1.18. Key trends for 3D printing materials
  • 1.19. Conclusions
  • 1.20. IDTechEx company profiles

2. INTRODUCTION

  • 2.1. Glossary: common acronyms for reference
  • 2.2. Scope of report
  • 2.3. The different types of 3D printing processes
  • 2.4. Material-process relationships
  • 2.5. Why adopt 3D printing?
  • 2.6. History of 3D printing: the rise of the hobbyist
  • 2.7. Timeline of 3D printing metals
  • 2.8. History of ceramic 3D printing companies
  • 2.9. Business models: selling printers vs parts
  • 2.10. Consumer vs prosumer vs professional
  • 2.11. Use patterns and market segmentation
  • 2.12. Drivers and restraints of growth for 3D printing

3. PHOTOPOLYMER RESINS

  • 3.1. Introduction to photopolymer resins
  • 3.2. Chemistry of photosensitive resins
  • 3.3. Chemistry of photopolymer resins
  • 3.4. Chemistry of photosensitive resins
  • 3.5. Resins - advantages and disadvantages
  • 3.6. General purpose resins - overview
  • 3.7. General purpose resins - applications
  • 3.8. Engineering resins - overview
  • 3.9. Engineering resins - applications
  • 3.10. Flexible resins - overview
  • 3.11. Flexible resins - applications
  • 3.12. Flexible resins - footwear
  • 3.13. Castable resins - overview
  • 3.14. Castable resins - applications
  • 3.15. Healthcare resins - overview
  • 3.16. Healthcare resins - applications
  • 3.17. Extrusion resins - overview
  • 3.18. Extrusion resins - applications
  • 3.19. Viscous photosensitive resins
  • 3.20. Photosensitive resin suppliers

4. THERMOPLASTIC POWDERS

  • 4.1. Introduction to thermoplastic powders
  • 4.2. Engineering (nylon) powder - overview
  • 4.3. Engineering (nylon) powder - applications
  • 4.4. Flexible powder - overview
  • 4.5. Flexible powder - applications
  • 4.6. Composite powder - overview
  • 4.7. Composite powder - applications
  • 4.8. High temperature powder - overview
  • 4.9. High temperature powder - applications
  • 4.10. Engineering (other) powder - overview
  • 4.11. Engineering (other) powder - applications
  • 4.12. Thermoplastic powders: post-processing
  • 4.13. Thermoplastic powder suppliers

5. THERMOPLASTIC FILAMENTS

  • 5.1. Introduction to thermoplastic filaments
  • 5.2. General purpose filaments - overview
  • 5.3. General purpose filaments - applications
  • 5.4. Engineering filaments - overview
  • 5.5. Engineering filaments - applications
  • 5.6. Flexible filaments - overview
  • 5.7. Flexible Filaments - Applications
  • 5.8. Reinforced Filaments - Overview
  • 5.9. Reinforced Filaments - Applications
  • 5.10. High Temperature Filaments - Overview
  • 5.11. High Temperature Filaments - Applications
  • 5.12. Support Filaments - Overview
  • 5.13. Breakaway vs soluble supports: SWOT analysis
  • 5.14. High temp thermoplastic support materials
  • 5.15. Fillers for thermoplastic filaments
  • 5.16. Thermoplastic filament suppliers
  • 5.17. Procurement of thermoplastic filaments

6. THERMOPLASTIC PELLETS

  • 6.1. What is pellet 3D printing?
  • 6.2. Filament extrusion vs pellet extrusion
  • 6.3. Pellet 3D printing - advantages & disadvantages
  • 6.4. Comparison with Other 3D Printing Technologies and Injection Molding
  • 6.5. Pellet 3D printing technologies on the market
  • 6.6. Trends within pellet 3D printing
  • 6.7. Trends within pellet 3D printing
  • 6.8. Target industries and applications
  • 6.9. Example Use Cases of Pellet Extrusion
  • 6.10. Collaborations for pellet 3D printing
  • 6.11. Materials suppliers for pellet 3D printing
  • 6.12. Growth in Pellet 3D Printing
  • 6.13. Pellet 3D printing: SWOT analysis
  • 6.14. Outlook for pellet 3D printing
  • 6.15. Pellet 3D printing companies
  • 6.16. Pellet 3D printing companies

7. FIBER-REINFORCED POLYMER COMPOSITES

  • 7.1. Introduction to composite 3D printing
  • 7.2. Material feedstock: introduction
  • 7.3. Material assessment: matrix considerations
  • 7.4. Material assessment: mechanical properties
  • 7.5. Material assessment: price and performance benchmarking
  • 7.6. Material assessment: price and performance benchmarking
  • 7.7. Complete material list: short carbon fiber
  • 7.8. Complete material list: short carbon fiber
  • 7.9. Complete material list: short glass fiber
  • 7.10. Complete material list: powder
  • 7.11. Complete material list: continuous fiber
  • 7.12. Benchmarking study by independent research institute
  • 7.13. Key material news and developments
  • 7.14. Recycled carbon fiber as feedstock material
  • 7.15. Nanocarbon additive: property advantages
  • 7.16. Nanocarbon additive: commercial activity

8. POLYMER MATERIALS BENCHMARKING

  • 8.1. Polymer materials benchmarking: introduction
  • 8.2. Resins: printing process comparison
  • 8.3. Resins: printing process comparison
  • 8.4. Filaments: composite vs polymer comparison
  • 8.5. Filaments: comparison by filament type
  • 8.6. Filaments: comparison by filament type
  • 8.7. Filaments: comparison of unreinforced polymer filaments
  • 8.8. Filaments: table of properties by filament type
  • 8.9. Filaments: table of properties for unreinforced polymer filaments
  • 8.10. Filaments: table of properties for unreinforced polymer filaments
  • 8.11. Powders: comparison by powder type
  • 8.12. Powders: comparison by powder type
  • 8.13. Powders: table of properties by powder type
  • 8.14. Powders: table of properties by composition
  • 8.15. Polymer feedstock comparison
  • 8.16. Conclusion

9. METAL POWDERS

  • 9.1. Material feedstock options
  • 9.2. Powder morphology specifications
  • 9.3. Water or gas atomization
  • 9.4. Plasma atomization
  • 9.5. Electrochemical atomization
  • 9.6. Powder morphology depends on atomization process
  • 9.7. Powder morphology depends on atomization process
  • 9.8. Supported materials
  • 9.9. Suppliers of metal powders for AM
  • 9.10. Suppliers of metal powders for AM
  • 9.11. Titanium powder - overview
  • 9.12. Titanium powder - main players
  • 9.13. Titanium powder - main players
  • 9.14. Key material start-ups for metal additive manufacturing
  • 9.15. Recycled titanium feedstocks
  • 9.16. Metal powder bed fusion post processing
  • 9.17. Barriers and limitations to using metal powders

10. OTHER METAL FEEDSTOCKS

  • 10.1. Metal wire feedstocks
  • 10.2. Metal wire feedstocks
  • 10.3. Metal + polymer filaments
  • 10.4. Metal + polymer filaments
  • 10.5. Metal + polymer filaments: BASF Ultrafuse
  • 10.6. Metal + photopolymer resin

11. COMPATIBLE METAL ALLOYS

  • 11.1. Alloys and material properties
  • 11.2. Aluminum and alloys
  • 11.3. Expanding the aluminum AM material portfolio
  • 11.4. 3D printing with copper: huge potential with many challenges
  • 11.5. Expanding the copper AM material portfolio
  • 11.6. Current applications for copper 3D printing
  • 11.7. Cobalt and alloys
  • 11.8. Nickel alloy: Inconel 625
  • 11.9. Nickel alloy: Inconel 718
  • 11.10. Precious metals and alloys
  • 11.11. Maraging steel 1.2709
  • 11.12. 15-5PH stainless steel
  • 11.13. 17-4 PH stainless steel
  • 11.14. 316L stainless steel
  • 11.15. Titanium and alloys
  • 11.16. AM of high entropy alloys
  • 11.17. AM of amorphous alloys
  • 11.18. Emerging aluminum alloys and MMCs
  • 11.19. Multi-metal material solutions
  • 11.20. Materials informatics for additive manufacturing materials
  • 11.21. Materials informatics for additive manufacturing materials
  • 11.22. New alloys for 3D printing
  • 11.23. Tungsten powder and nanoparticles

12. CERAMICS

  • 12.1. Introduction to ceramic 3D printing materials
  • 12.2. Classification: by feedstock type
  • 12.3. Classification: by application
  • 12.4. Classification: by chemistry
  • 12.5. Ceramic 3D printing materials on the market
  • 12.6. Bioceramics
  • 12.7. Mechanical properties of 3DP ceramic materials
  • 12.8. Thermal properties of 3DP ceramic materials
  • 12.9. Average densities of 3DP ceramic materials
  • 12.10. Flexural strength vs density - 3DP ceramic materials
  • 12.11. Alumina comparison - AM vs non AM
  • 12.12. Zirconia comparison - AM vs non AM
  • 12.13. Silicon carbide and nitride comparison
  • 12.14. Ceramic-matrix composites (CMCs)
  • 12.15. Ceramics as reinforcement in 3D printing
  • 12.16. Manufacturers of ceramics for 3D printing

13. COMPATIBLE CERAMIC MATERIALS

  • 13.1. Alumina (Al2O3)
  • 13.2. Zirconia (ZrO2)
  • 13.3. Silica (SiO2)
  • 13.4. Silicon Nitride (Si3N4 & β-SiAlON)
  • 13.5. Silicon Carbide (SiC)
  • 13.6. Aluminum Nitride (AlN)
  • 13.7. Carbon
  • 13.8. Hydroxyapatite (Ca10(PO4)6(OH)2)
  • 13.9. Tricalcium Phosphate (β-Ca3(PO4)2)
  • 13.10. Cordierite (Mg2Al4Si5O18)

14. OTHER MATERIALS

  • 14.1. Sand for binder jetting
  • 14.2. Paper sheets: full colour models
  • 14.3. Glass for 3D printing
  • 14.4. 4D printing materials

15. CONSTRUCTION MATERIALS FOR 3D PRINTING

  • 15.1. A Brief History of Concrete 3D Printing
  • 15.2. The drivers behind 3D printed concrete
  • 15.3. The drivers behind 3D printed concrete
  • 15.4. Main categories of concrete AM technology
  • 15.5. Cartesian ("gantry") extrusion
  • 15.6. Cartesian ("gantry") extrusion
  • 15.7. Robotic extrusion
  • 15.8. Robotic extrusion
  • 15.9. Binder jetting
  • 15.10. Materials for concrete 3D printing
  • 15.11. Notable concrete 3D printing projects
  • 15.12. Barriers to adoption of concrete 3D printing
  • 15.13. Outlook for concrete 3D printing
  • 15.14. Concrete 3D printing companies
  • 15.15. Clay 3D printing for construction
  • 15.16. Thermoset 3D printing for construction

16. MARKET ANALYSIS

  • 16.1. Overview - 2022 products and developments
  • 16.2. Overview - 2022 products and developments - metal materials
  • 16.3. Overview - 2022 products and developments - metal materials
  • 16.4. Overview - 2022 products and developments - polymer materials
  • 16.5. Overview - 2022 products and developments - polymer materials
  • 16.6. 2022 products and developments - polymer materials
  • 16.7. 2022 products and developments - polymer materials
  • 16.8. Overview - partnerships announced in 2022 involving AM materials
  • 16.9. Partnerships announced in 2022 involving AM Materials
  • 16.10. Overview - funding for AM materials companies in 2022
  • 16.11. AM materials investment overview for 2021
  • 16.12. Metal AM Related Acquisitions in 2021
  • 16.13. Acquisition spotlight: desktop metal
  • 16.14. Companies going public in 2021: summary
  • 16.15. Companies going public in 2021 by type
  • 16.16. Companies going public in 2021: SPAC vs IPO
  • 16.17. Valuations vs revenue at time of SPAC merger
  • 16.18. Stock performance: Markforged and Desktop Metal
  • 16.19. AM materials funding in 2021 by company type
  • 16.20. AM materials funding in 2021 by country
  • 16.21. AM materials funding in 2021 by material type
  • 16.22. Top 11 AM materials-related fundraising rounds in 2021
  • 16.23. Metal AM technology segmentation
  • 16.24. Polymer AM technology segmentation
  • 16.25. Current market share of materials demand - revenue and mass

17. MARKET FORECAST

  • 17.1. Forecast methodology and presentation of findings
  • 17.2. 3D printing materials forecast by material type - revenue and mass
  • 17.3. 3D printing materials forecast by material type - revenue and mass
  • 17.4. Polymer AM materials forecast by feedstock - revenue and mass
  • 17.5. Polymer materials forecast by feedstock - discussion
  • 17.6. Polymer AM materials forecast by technology - revenue and mass
  • 17.7. Polymer materials forecast by technology - discussion
  • 17.8. Photopolymer resins forecast by type - revenue and mass
  • 17.9. Photopolymer resins forecast by type - discussion
  • 17.10. Thermoplastic filaments forecast by type - revenue and mass
  • 17.11. Thermoplastic filaments forecast by type - discussion
  • 17.12. Thermoplastic powders forecast by type - revenue and mass
  • 17.13. Thermoplastic powders forecast by type - discussion
  • 17.14. Metal AM material forecast by technology - revenue and mass
  • 17.15. Metal AM material forecast by technology - discussion
  • 17.16. Metal AM material forecast by alloy - revenue and mass
  • 17.17. Metal AM Material Forecast by Alloy - Discussion
  • 17.18. Ceramic 3D printing materials usage forecast
  • 17.19. 3D printing ceramics usage forecast by composition
  • 17.20. Ceramic 3D printing materials revenue forecast

18. CONCLUSION

  • 18.1. Key trends for 3D printing materials
  • 18.2. Conclusions
  • 18.3. 3D printing research at IDTechEx

19. COMPANY PROFILES

  • 19.1. Company profiles

20. APPENDIX

  • 20.1. 3D printing materials forecast by material type - revenue
  • 20.2. 3D printing materials forecast by material type - mass
  • 20.3. Polymer AM materials forecast by feedstock -mass
  • 20.4. Polymer AM materials forecast by feedstock - revenue
  • 20.5. Polymer AM materials forecast by technology -mass
  • 20.6. Polymer AM materials forecast by technology - revenue
  • 20.7. Photopolymer resins forecast by type - revenue
  • 20.8. Photopolymer resins forecast by type - mass
  • 20.9. Thermoplastic filaments forecast by type - revenue
  • 20.10. Thermoplastic filaments forecast by type -mass
  • 20.11. Thermoplastic powders forecast by type - revenue
  • 20.12. Thermoplastic powders forecast by type - mass
  • 20.13. Metal material forecast by technology - revenue
  • 20.14. Metal material forecast by technology - mass
  • 20.15. Metal material forecast by alloy - revenue
  • 20.16. Metal material forecast by alloy - mass
  • 20.17. Ceramic 3D printing materials usage forecast
  • 20.18. 3D printing ceramics usage forecast by composition
  • 20.19. Ceramic 3D printing materials revenue forecast