表紙
市場調查報告書
商品編碼
1069074

用於即時診斷(POC)的生物傳感器 2022-2032年:技術、機遇、參與者和預測

Biosensors for Point-of-Care Diagnostics 2022-2032: Technology, Opportunities, Players and Forecasts

出版日期: | 出版商: IDTechEx Ltd. | 英文 253 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
用於即時診斷(POC)的生物傳感器 2022-2032年:
技術、機遇、參與者和預測

用於即時檢測 (POCT) 和快速診斷的側流免疫分析 (LFA)、試劑盒、連續血糖監測儀 (CGM) 和電化學試紙。分析市場格局、COVID-19 影響和關鍵機遇。

到 2032 年,用於即時檢測的生物傳感器市場將增長到 295 億美元。

醫療診斷市場正在從基於實驗室的傳統測試轉向直接在護理點進行測試。在 COVID-19 大流行期間,這種轉變從未像現在這樣重要。在本報告中,IDTechEx 討論了即時生物傳感器的發展、行業內的新興趨勢以及新技術將帶來的機遇。我們預測了這些將引領行業發展的軌跡。

即時檢測 (POCT) 是指在床邊或患者附近進行的診斷。這可以在醫院病房、醫生辦公室、零售診所和家裡。通過提供快速結果,POCT 可以更快地採取臨床行動。通過消除將樣品送到傳統實驗室進行測試的需要,POCT 解決了圍繞後續跟蹤和資源/時間承諾的臨床問題。此外,在家檢測允許患者直接檢測疾病/健康狀況,而無需去看醫生,這對於監測糖尿病等慢性疾病至關重要。

是什麼推動了即時檢測的增長?

我們不斷變化的人口結構正在增加醫療保健系統的壓力。今天,醫療保健支出約佔世界 GDP 的 14%。在發達經濟體,由於人口老齡化和久坐不動的生活方式,慢性病病例不斷增加。隨著人口規模的擴大,新興經濟體對醫療保健的需求也在增長。對資源有限的環境進行診斷的需求推動了這些地區的 POCT。總體而言,在城市密度增加和氣候變暖的推動下,傳染病病例和新發流行病的頻率也在增加。這些因素共同推動床旁生物傳感器行業到 2032 年增長到 295 億美元。

COVID-19 對即時診斷行業的影響

隨著 COVID-19 的出現,診斷行業提高了 COVID-19 測試產品的製造能力。測試對於追蹤對大多數人來說是無症狀的感染至關重要,使人們能夠控制病毒的傳播。雖然在實驗室內使用 PCR 進行的傳統測試仍然是測試準確性的黃金標準,但家庭 COVID-19 測試的出現增加了測試的可及性,並允許個人以更高的頻率使用它。 2021 年,美國政府投資 10 億美元增加家庭測試的供應,使產量提高到每月約 2 億次測試。這個機會一直是該行業多個方面的關鍵助推器。開發了一種分子 COVID-19 在家測試的 Cue Health 於 2021 年從美國國防部獲得了 4 億美元的合同;而前一年的總收入為 2300 萬美元。對於 POCT 墨盒產品,安裝基數大幅增長:BD 的 Veritor 設備在六個月內幾乎將其美國安裝基數增加了兩倍,達到 70,000 台,而 Quidel 的 Sofia 在 2021 年同樣安裝了超過 75,000 台。這個已建立的用戶群有助於未來的市場擴張。該病毒還允許初創企業通過將他們正在開發的平台轉向 COVID-19 測試應用程序來播種市場,例如 Visby Medical 已為此開發了一種一次性、小型化 PCR -護理。

生物傳感器技術的趨勢

在本報告中,IDTechEx 將 POC 生物傳感器分為生物受體和傳感器組件,以探索這些細分市場中的關鍵技術和新技術。我們分析了旨在使核酸擴增小型化並將其用於醫療點的技術,例如 PCR、LAMP 和 NEAR。該報告還探討了轉換生物信號的新興方法,包括在電化學轉換中使用石墨烯和碳納米管,以及在光學傳感器中使用螢光有機染料和量子點。

但是,許多床旁生物傳感器技術已經成熟,創新有限。橫向流動測試已經商業化了半個世紀,但它們仍然受到讀數準確性的限制。這個問題的一部分正在通過使用閱讀器和智能手機相機閱讀器來數字化和連接這些測試結果的趨勢得到解決,從而消除了諸如用眼睛誤解微弱線條等不準確性。然而,該技術從根本上受到其生物受體(通常是抗體)的敏感性和特異性的限制。

儘管許多新興的生物傳感技術令人興奮,但仍有幾個問題需要解決。雖然 CRIPSR/Cas 的特性使其非常適合診斷,並具有出色的準確性潛力,但現實情況是該技術仍然不成熟。該技術在即時診斷應用中的參與者並不多,更多的是專注於其他應用,例如治療。同樣,我們詢問,儘管碳基納米材料適用,但哪些限制因素限制了碳基納米材料在當今傳感器中的商業化。

按格式和應用細分的 10 年市場預測

報告按應用細分和討論市場,著眼於每個細分市場的驅動因素和製約因素,以及行業參與者所針對的關鍵疾病和疾病生物標誌物。我們還按生物傳感器的格式進行細分,並評估格式的重要性,以將不同的生物傳感器帶到醫療點。這些細分是在我們的 10 年預測中推斷出來的,以探索應用程序和格式的構成以及它們可能會如何及時變化。

來自 IDTechEx 的分析師訪問權限

所有報告購買都包括最多 30 分鐘的電話時間,專家分析師將幫助您將報告中的主要發現與您正在解決的業務問題聯繫起來。這需要在購買報告後三個月內使用。

目錄

1。執行摘要

  • 1.1.報告範圍
  • 1.2.體外診斷市場不斷增長
  • 1.3.即時檢測與傳統檢測的價值
  • 1.4.最近的法規更新
  • 1.5。生物傳感器
  • 1.6.生物標誌物:疾病和健康指標
  • 1.7.生物受體
  • 1.8.生物受體:每種類型的優缺點
  • 1.9.生物受體總結
  • 1.10。傳感器
  • 1.11。光學傳感器:每種類型的優缺點
  • 1.12。電化學換能器:每種類型的優缺點
  • 1.13。換能器結論
  • 1.14.格式類型
  • 1.15。使用集成墨盒最大限度地減少樣品處理
  • 1.16。墨盒注意事項
  • 1.17. LFA 和墨盒:關鍵點
  • 1.18.電化學試紙和 CGM:關鍵點
  • 1.19。生物傳感器在護理點的應用
  • 1.20。新冠肺炎
  • 1.21。糖尿病
  • 1.22。傳染性疾病
  • 1.23。 2022 年 Covid-19 診斷市場狀況
  • 1.24。 POCT 生物傳感器預測:按應用劃分的總收入(2019-2032)
  • 1.25。 POCT 生物傳感器:按應用劃分的歷史市場份額
  • 1.26。 POCT 生物傳感器預測:按格式類型劃分的總收入(2019-2032 年)
  • 1.27。 POCT 生物傳感器:糖尿病收入(2019-2032)
  • 1.28。結論與展望

2。簡介

  • 2.1.體外診斷
  • 2.2.體外診斷市場不斷增長
  • 2.3.即時檢測的價值
  • 2.4.體外診斷趨向於床旁檢測 (POCT)
  • 2.5.醫療保健中即時檢測的驅動因素
  • 2.6.即時檢測的成本
  • 2.7. POCT 與集中式測試:成本比較
  • 2.8.生物傳感器
  • 2.9.設計用於即時檢測的生物傳感器
  • 2.10。放心:護理點生物傳感器的更新標準
  • 2.11.即時生物傳感器平台的其他理想特性
  • 2.12. POCT的定義將不斷演變

3。法規

  • 3.1.區域市場的監管途徑
  • 3.2.歐盟的新規定
  • 3.3.歐盟IVD分類
  • 3.4. IVDR 性能評估報告
  • 3.5. IVDR 上市後業績跟蹤
  • 3.6.不斷變化的法規:對製造商的影響
  • 3.7.美國FDA監管
  • 3.8.美國診斷法規:CLIA 分類
  • 3.9. FDA醫療器械分類
  • 3.10. FDA 醫療器械審查的要素
  • 3.11. EUA 用於 COVID-19 大流行的體外診斷
  • 3.12.中國 NMPA 對 IVD 的新規定
  • 3.13.世界其他地區

4。生物感受器

  • 4.1.生物傳感器的佈局
  • 4.2.生物標誌物:疾病和健康狀況的指標
  • 4.3.生物受體
  • 4.4.蛋白質生物受體
  • 4.5。□
  • 4.6.商業□生物受體
  • 4.7.葡萄糖監測中的□生物受體
  • 4.8.葡萄糖監測中的□生物受體
  • 4.9. Abbott FreeStyle Libre 2 葡萄糖檢測機制
  • 4.10。膽固醇監測中的□生物受體
  • 4.11.納米孔測序
  • 4.12.免疫測定:抗體和抗原
  • 4.13.免疫分析測試的不同方法
  • 4.14.用於中心實驗室的免疫分析儀
  • 4.15。用於即時檢測的側向流動分析
  • 4.16.比色:珍珠
  • 4.17.製造抗體
  • 4.18.製造抗原
  • 4.19.核酸生物受體
  • 4.20。核酸和中心法則
  • 4.21。聚合□鍊式反應
  • 4.22。引物設計
  • 4.23。分子診斷概述
  • 4.24。關鍵推動趨勢:DNA測序的進步
  • 4.25。燈
  • 4.26。 Loopamp™:Eiken Chemical Co.
  • 4.27。靠近
  • 4.28。雅培:ID NOW™ COVID-19 快速檢測
  • 4.29。絕緣等溫 PCR
  • 4.30。 GeneReach:POCKIT COVID-19 測試
  • 4.31。適體
  • 4.32。知子:AptameX
  • 4.33。 CRISPR-Cas系統
  • 4.34。夏洛克生物科學:夏洛克
  • 4.35。比較生物受體
  • 4.36。生物受體:每種類型的優缺點
  • 4.37。生物受體總結

5。傳感器

  • 5.1.生物傳感器的佈局
  • 5.2.光學傳感器
    • 5.2.1.用於比色法的無機納米粒子
    • 5.2.2.納米粒子的生物共軛
    • 5.2.3. LFA 夾心法
    • 5.2.4.比色法和定量 LFA
    • 5.2.5。無標記表面等離子體共振尚未準備好進行 POCT
    • 5.2.6.螢光標記
    • 5.2.7.大多數螢光生物傳感器使用有機染料
    • 5.2.8.量子點
    • 5.2.9。埃勒姆
    • 5.2.10。基於螢光的葡萄糖檢測
    • 5.2.11。感官學
    • 5.2.12。 Senseonics:財務和合作夥伴關係
    • 5.2.13。 GluSense
    • 5.2.14。螢光標記的生物共軛
    • 5.2.15。 qPCR 標記
  • 5.3.電化學傳感器
    • 5.3.1.電極沉積:絲網印刷與濺射
    • 5.3.2.生物傳感器場效應晶體管 (Bio-FET)
    • 5.3.3. CMOS芯片
    • 5.3.4.羅斯威爾生物技術
    • 5.3.5。基於石墨烯的 bioFET
    • 5.3.6.卡地亞
    • 5.3.7.圖形
    • 5.3.8。碳納米管-FETs和測試條
    • 5.3.9。血紅素
    • 5.3.10。碳納米材料的生物共軛
    • 5.3.11。光學傳感器:每種類型的優缺點
    • 5.3.12。電化學換能器:每種類型的優缺點
    • 5.3.13。結論

6。格式和製作

  • 6.1.片上實驗室是 POCT 的概念
  • 6.2.橫向流動分析
    • 6.2.1.橫向流動測定的機制
    • 6.2.2.側向流動分析的材料和製造
    • 6.2.3.樣品和吸水墊選擇
    • 6.2.4.共軛墊選擇
    • 6.2.5。硝酸纖維素膜選擇
    • 6.2.6.硝酸纖維素膜剝離
    • 6.2.7.側向流動測定組件
  • 6.3.墨盒和分析儀
    • 6.3.1.使用集成墨盒最大限度地減少樣品處理
    • 6.3.2.墨盒製造
    • 6.3.3.熱塑性塑料分析
    • 6.3.4.微流體
    • 6.3.5。墨盒製造鏈
    • 6.3.6.格式形狀取決於功能
    • 6.3.7.表面功能化
    • 6.3.8.用於核酸生物傳感器的墨盒
    • 6.3.9。科巴斯®利亞特系統,羅氏
    • 6.3.10。維斯比醫療
    • 6.3.11。斯賓迪亞格
    • 6.3.12。其他生物受體的墨盒
    • 6.3.13。 EpocR血液分析,西門子
    • 6.3.14。 i-STAT®,雅培:商業成功故事
    • 6.3.15。 i-STATR作用機制
    • 6.3.16。納米技術
    • 6.3.17。 SampinuteTM, Celltrion
    • 6.3.18。 BluSense 診斷
    • 6.3.19。 BluSense:技術
    • 6.3.20。墨盒注意事項
    • 6.3.21。結論
  • 6.4.電化學試紙
    • 6.4.1.通過試紙和相關閱讀器進行血糖監測
    • 6.4.2.試紙:商業模式
    • 6.4.3.電極沉積:絲網印刷與濺射
    • 6.4.4. Lifescan 使用多種製造方法
    • 6.4.5。羅氏:Accu-Chek 指南
    • 6.4.6。雅培:用於試紙的庫侖法
    • 6.4.7.創新從試紙開發轉向數字化
  • 6.5。連續監視器
    • 6.5.1.典型 CGM 設備的剖析
    • 6.5.2. CGM 傳感器製造和解剖學
    • 6.5.3.傳感器膜至關重要
    • 6.5.4. CGM:技術
    • 6.5.5。傳感器燈絲結構
    • 6.5.6.對 CGM 設備的異物反應
    • 6.5.7. Dexcom:傳感器結構
    • 6.5.8.美敦力:傳感器結構
    • 6.5.9。亞洲 CGM 市場
    • 6.5.10。小型試紙公司的前景
    • 6.5.11。類型 2 的 CGM 報銷目前是有限的
    • 6.5.12。 CGM 在醫院的使用

7。應用

  • 7.1.生物傳感器在護理點的應用
  • 7.2.診斷和監控
  • 7.3.診斷
    • 7.3.1.傳染性疾病
    • 7.3.2.呼吸疾病
    • 7.3.3.熱帶和病媒疾病
    • 7.3.4.性傳播感染
    • 7.3.5。傳染病:考慮感染負荷
    • 7.3.6.癌症診斷,如何適合 POCT?
    • 7.3.7. POCT治療心血管疾病
    • 7.3.8.急診室 POCT 的心血管標誌物
  • 7.4.在家監控
    • 7.4.1.不斷上升的糖尿病和不斷上升的成本迫切需要 POCT 和監測
    • 7.4.2.將試紙成本與 CGM 進行比較
    • 7.4.3.膽固醇作為心血管疾病的早期指標
    • 7.4.4.運動員乳酸監測
    • 7.4.5。即使生育率下降,生育市場仍在增長

8。針對 COVID-19 的 POCT

  • 8.1. COVID-19 是由 SARS-CoV-2 病毒引起的
  • 8.2. COVID-19 大流行危機
  • 8.3. 2022 年 Covid-19 診斷市場狀況
  • 8.4. Covid-19大流行的發展
  • 8.5。不穩定的需求
  • 8.6.歐盟和美國的產能
  • 8.7. EUA 用於 COVID-19 大流行的體外診斷
  • 8.8.檢測目標
  • 8.9。隨時間變化的檢測目標
  • 8.10。 COVID-19 診斷技術的性能比較概述
  • 8.11. COVID-19 POCT 的結論

9。預測

  • 9.1.預測方法
  • 9.2. POCT 生物傳感器預測:按應用劃分的總收入(2019-2032)
  • 9.3. POCT 生物傳感器預測:按應用劃分的總收入(2019-2032)
  • 9.4. POCT 生物傳感器預測:按應用分類的總量(2019-2032,不包括糖尿病)
  • 9.5。 POCT 生物傳感器:按應用劃分的歷史市場份額
  • 9.6。 POCT 生物傳感器:關鍵參與者 (2021)
  • 9.7. POCT 生物傳感器預測:COVID-19 對市場份額的影響
  • 9.8。 POCT 生物傳感器預測:按格式類型劃分的總收入(2019-2032 年)
  • 9.9。 POCT 生物傳感器預測:按格式類型劃分的總收入(2019-2032 年)
  • 9.10。 POCT 生物傳感器預測:按格式類型分類的總量(2019-2032 年)
  • 9.11。 POCT 生物傳感器預測:按格式類型的總量,不包括電化學試紙(2019-2032)
  • 9.12。 POCT 生物傳感器預測:按應用分列的側向流動分析 (LFA) 收入(2019-2032 年)
  • 9.13。 POCT 生物傳感器預測:按應用劃分的墨盒收入(2019-2032)
  • 9.14。 POCT 生物傳感器:傳染病和 COVID-19 收入(2019-2032)
  • 9.15。 POCT Biosensors:心血管疾病收入(2019-2032)
  • 9.16。 POCT 生物傳感器:健身收入(2019-2032)
  • 9.17。 POCT 生物傳感器:癌症 LFA 收入(2019-2032)
  • 9.18.糖尿病試紙和 CGM 的預測假設
  • 9.19。 POCT Biosensors:糖尿病收入(2019-2032)
  • 9.20。 2022-2032年試紙市場預測
  • 9.21。歷史數據:CGM繼續獲得動力
目錄
Product Code: ISBN 9781913899950

Title:
Biosensors for Point-of-Care Diagnostics 2022-2032:
Technology, Opportunities, Players and Forecasts

Lateral flow immunoassays (LFAs), cartridges, continuous glucose monitors (CGMs), and electrochemical test strips for point-of-care testing (POCT) and rapid diagnostics. Analysis of market landscape, COVID-19 impact and key opportunities.

The biosensors market for point-of-care testing will grow to $29.5 billion in 2032.

The market for medical diagnostics is shifting from conventional, laboratory-based testing towards testing directly at the point of care. No time has this shift been so vital as now, during the COVID-19 pandemic. In this report, IDTechEx discusses the growth of point-of-care biosensors, the emerging trends within the industry and what opportunities new technologies will present. We forecast the trajectory that these will take the industry.

Point-of-care testing (POCT) refers to diagnostics at the bedside or near the patient. This can be in hospital wards, physician's offices, retail clinics, and at home. By providing rapid results, POCT allows faster clinical action to be taken. By eliminating the need to send samples to conventional laboratories for testing, POCT solves the clinical issues around follow-ups and resources/time commitment. Furthermore, at-home testing allows patients to directly test for disease/health conditions without the need to visit a physician, which is critical for monitoring chronic diseases such as diabetes.

What is driving the growth of point-of-care testing?

Our changing population demographics are increasing the pressure on healthcare systems. Today, healthcare spending makes up about 14% of the world GDP. In developed economies, there are rising cases of chronic diseases, driven by the aging population, and by more sedentary lifestyles. The demand for healthcare in emerging economies grows too, accelerated by an expanding population size. The need to bring diagnostics to resource limited settings drives POCT in these regions. Overall, cases of infectious disease and the frequency of emerging epidemics are growing too, driven by increasing urban density and a warming climate. Together, these factors are driving the point-of-care biosensor industry to grow towards $29.5 billion by 2032.

Impact of COVID-19 on the point-of-care diagnostics industry

With the onset of COVID-19, the diagnostics industry ramped up manufacturing capacity for COVID-19 test products. Testing has been critical to tracking an infection which is asymptomatic for most of the population, allowing people to manage the spread of the virus. While conventional testing using PCR within the laboratory remains the gold-standard of testing accuracy, the emergence of at-home COVID-19 tests has increased testing accessibility and allowed individuals to use it at a higher frequency. In 2021, the US government invested $1 billion in increasing the supply of at-home tests, enabling the rise of production volume to approximately 200 million tests per month. This opportunity has been a key booster on several fronts for the industry. Cue Health, who developed a molecular COVID-19 at-home test, received a $400m contract from the US Department of Defense in 2021; versus a total revenue of $23m the year before. For POCT cartridge products, install-base has grown massively: BD's Veritor device almost tripled its USA install base, to 70,000, in six months, while Quidel's Sofia similarly installed over 75,000 units in 2021. This established user base facilitates future market expansion. The virus has also allowed start-ups to seed the market by pivoting the platforms they were developing into COVID-19 testing applications, such as Visby Medical who have developed a single-use, miniaturized PCR for the point-of-care.

Trends in biosensor technologies

In this report, IDTechEx divides the POC biosensor into its components of bioreceptors and transducers to explore the key and novel technologies within these segments. We analyse the techniques designed to miniaturize nucleic acid amplification and bring it towards point-of-care, such as PCR, LAMP, and NEAR. The report also explores emerging approaches to transducing biological signals, including the use of graphene and carbon nanotubes in electrochemical transduction, and the use of fluorescent organic dyes and quantum dots in optical transducers.

However, many of the biosensor technologies at point-of-care are mature with limited innovation. Lateral flow tests have been commercialised for half a century, yet they remain limited by the accuracy of their readings. Part of this problem is being resolved by a growing trend of using readers and smartphone-camera readers to digitalize and connect the results of these tests, eliminating inaccuracy such as misinterpreting faint lines by eye. Yet, the technology is fundamentally limited by the sensitivity and the specificity of their bioreceptors, which are usually antibodies.

Despite the excitement around many emerging technologies for biosensing, there are still several problems to solve. While the properties of CRIPSR/Cas make it good for diagnostics, with potential for excellent accuracy, the reality is that the technology is still immature. The technology does not see many players for a point-of-care diagnostics application, with many more focused on other applications such as therapeutics. Similarly, we ask what constraints are limiting carbon-based nanomaterials from their commercialization in transducers today, despite their suitability.

10-year market forecast segmented by format and application

The report segments and discusses the market by applications, looking at the drivers and constraints of each segment, as well as the key diseases and disease biomarkers that industry players target. We also segment by the format of the biosensor and evaluate the importance of formats to bring different biosensors to the point-of-care. These segments are extrapolated in our 10-year forecast, to explore the make-up of applications and formats and how they might change in time.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report Scope
  • 1.2. Growing market for in vitro diagnostics
  • 1.3. The value of point-of-care testing versus conventional testing
  • 1.4. Recent regulations updates
  • 1.5. Biosensors
  • 1.6. Biomarkers: indicators of disease and health
  • 1.7. Bioreceptors
  • 1.8. Bioreceptors: benefits and drawbacks of each type
  • 1.9. Bioreceptors summary
  • 1.10. Transducers
  • 1.11. Optical transducers: benefits and drawbacks of each type
  • 1.12. Electrochemical transducers: benefits and drawbacks of each type
  • 1.13. Transducer conclusions
  • 1.14. Format types
  • 1.15. Minimalizing sample handling with integrated cartridges
  • 1.16. Cartridge caveats
  • 1.17. LFAs and cartridges: key points
  • 1.18. Electrochemical test strips and CGMs: key points
  • 1.19. Applications for biosensors at the point-of-care
  • 1.20. COVID-19
  • 1.21. Diabetes
  • 1.22. Infectious diseases
  • 1.23. State of the Covid-19 diagnostics market in 2022
  • 1.24. POCT biosensors forecast: total revenue by application (2019-2032)
  • 1.25. POCT biosensors: historic market share by application
  • 1.26. POCT biosensors forecast: total revenue by format type (2019-2032)
  • 1.27. POCT biosensors: diabetes revenue (2019-2032)
  • 1.28. Conclusions and outlook

2. INTRODUCTION

  • 2.1. In vitro diagnostics
  • 2.2. Growing market for in vitro diagnostics
  • 2.3. The value of point-of-care testing
  • 2.4. In vitro diagnostics trending toward point-of-care testing (POCT)
  • 2.5. Drivers of point-of-care testing in healthcare
  • 2.6. The cost of point-of-care testing
  • 2.7. POCT vs. centralised testing: a cost comparison
  • 2.8. Biosensors
  • 2.9. Designing biosensors for point-of-care testing
  • 2.10. REASSURED: updated criterion for point-of-care biosensors
  • 2.11. Other desirable characteristics in a point-of-care biosensor platform
  • 2.12. The definition of POCT will evolve

3. REGULATION

  • 3.1. Regulatory routes to regional markets
  • 3.2. New regulations in the EU
  • 3.3. EU IVD classification
  • 3.4. IVDR performance evaluation report
  • 3.5. IVDR post-market performance follow-up
  • 3.6. Changing regulations: impact on manufacturers
  • 3.7. FDA regulation in the US
  • 3.8. US regulations for diagnostics: CLIA categorizations
  • 3.9. FDA medical device classification
  • 3.10. Elements of FDA review of medical devices
  • 3.11. EUA for in vitro diagnostics for the COVID-19 Pandemic
  • 3.12. New NMPA regulations in China for IVDs
  • 3.13. Rest of World

4. BIORECEPTORS

  • 4.1. Layout of a biosensor
  • 4.2. Biomarkers: indicators of disease and health conditions
  • 4.3. Bioreceptors
  • 4.4. Protein bioreceptors
  • 4.5. Enzymes
  • 4.6. Commercial enzyme bioreceptors
  • 4.7. Enzyme bioreceptors in glucose monitoring
  • 4.8. Enzyme bioreceptors in glucose monitoring
  • 4.9. Abbott FreeStyle Libre 2 glucose detection mechanism
  • 4.10. Enzyme bioreceptors in cholesterol monitoring
  • 4.11. Nanopore Sequencing
  • 4.12. Immunoassays: antibodies and antigens
  • 4.13. Different methods of immunoassay testing
  • 4.14. Immunoassay analyzers for central laboratories
  • 4.15. Lateral flow assays for point-of-care-testing
  • 4.16. Colorimetrix: Pearl
  • 4.17. Manufacturing Antibodies
  • 4.18. Manufacturing Antigens
  • 4.19. Nucleic acid bioreceptors
  • 4.20. Nucleic Acids and the Central Dogma
  • 4.21. Polymerase Chain Reaction
  • 4.22. Primer design
  • 4.23. Molecular diagnostics overview
  • 4.24. Key enabling trend: the advance of DNA sequencing
  • 4.25. LAMP
  • 4.26. Loopamp™: Eiken Chemical Co.
  • 4.27. NEAR
  • 4.28. Abbott: ID NOW™ COVID-19 rapid test
  • 4.29. Insulated Isothermal PCR
  • 4.30. GeneReach: POCKIT COVID-19 test
  • 4.31. Aptamers
  • 4.32. Achiko: AptameX
  • 4.33. CRISPR-Cas systems
  • 4.34. Sherlock Biosciences: SHERLOCK
  • 4.35. Comparing bioreceptors
  • 4.36. Bioreceptors: benefits and drawbacks of each type
  • 4.37. Bioreceptors summary

5. TRANSDUCERS

  • 5.1. Layout of a biosensor
  • 5.2. Optical transducers
    • 5.2.1. Inorganic nanoparticles for colorimetry
    • 5.2.2. Bioconjugation of nanoparticles
    • 5.2.3. The LFA sandwich assay
    • 5.2.4. Colorimetry and quantitative LFA
    • 5.2.5. Label-free surface plasmon resonance is not ready for POCT
    • 5.2.6. Fluorescence labelling
    • 5.2.7. Most fluorescent biosensors use organic dyes
    • 5.2.8. Quantum dots
    • 5.2.9. Ellume
    • 5.2.10. Fluorescence-based glucose detection
    • 5.2.11. Senseonics
    • 5.2.12. Senseonics: Financials and Partnerships
    • 5.2.13. GluSense
    • 5.2.14. Bioconjugation of fluorescent labels
    • 5.2.15. Labelling for qPCR
  • 5.3. Electrochemical transducers
    • 5.3.1. Electrode deposition: screen printing vs sputtering
    • 5.3.2. Biosensor field effect transistors (Bio-FET)
    • 5.3.3. CMOS chip
    • 5.3.4. Roswell Biotechnologies
    • 5.3.5. Graphene-based bioFET
    • 5.3.6. Cardea
    • 5.3.7. Grapheal
    • 5.3.8. Carbon nanotube-FETs and test strips
    • 5.3.9. Hememics
    • 5.3.10. Bioconjugation of carbon nanomaterials
    • 5.3.11. Optical transducers: benefits and drawbacks of each type
    • 5.3.12. Electrochemical transducers: benefits and drawbacks of each type
    • 5.3.13. Conclusion

6. FORMAT AND FABRICATION

  • 6.1. Lab-on-a-chip a concept for POCT
  • 6.2. Lateral Flow Assays
    • 6.2.1. Mechanism of the lateral flow assay
    • 6.2.2. Materials and manufacturing of lateral flow assays
    • 6.2.3. Sample and absorbent pad selection
    • 6.2.4. Conjugate pad selection
    • 6.2.5. Nitrocellulose membrane selection
    • 6.2.6. Nitrocellulose membrane striping
    • 6.2.7. Lateral flow assay assembly
  • 6.3. Cartridges and Analyzers
    • 6.3.1. Minimalizing sample handling with integrated cartridges
    • 6.3.2. Cartridge fabrication
    • 6.3.3. Thermoplastics analysis
    • 6.3.4. Microfluidics
    • 6.3.5. Cartridge fabrication chain
    • 6.3.6. Format shape depends on function
    • 6.3.7. Surface functionalisation
    • 6.3.8. Cartridges for nucleic acid biosensors
    • 6.3.9. cobas® Liat® system, Roche
    • 6.3.10. Visby Medical
    • 6.3.11. Spindiag
    • 6.3.12. Cartridges for other bioreceptors
    • 6.3.13. Epoc® blood analysis, Siemens
    • 6.3.14. i-STAT®, Abbott: a commercial success story
    • 6.3.15. i-STAT® mechanism of action
    • 6.3.16. Nanoentek
    • 6.3.17. SampinuteTM, Celltrion
    • 6.3.18. BluSense Diagnostics
    • 6.3.19. BluSense: Technology
    • 6.3.20. Cartridge caveats
    • 6.3.21. Conclusion
  • 6.4. Electrochemical Strips
    • 6.4.1. Glucose monitoring through test strips and associated readers
    • 6.4.2. Test strips: business model
    • 6.4.3. Electrode deposition: screen printing vs sputtering
    • 6.4.4. Lifescan uses multiple manufacturing methods
    • 6.4.5. Roche: Accu-Chek Guide
    • 6.4.6. Abbott: coulometric methods for test strips
    • 6.4.7. Innovation shifts from test strip development to increasing digitization
  • 6.5. Continuous Monitors
    • 6.5.1. Anatomy of a typical CGM device
    • 6.5.2. CGM sensor manufacturing and anatomy
    • 6.5.3. Sensor membranes are critical
    • 6.5.4. CGM: Technology
    • 6.5.5. Sensor filament structure
    • 6.5.6. Foreign body responses to CGM devices
    • 6.5.7. Dexcom: Sensor structure
    • 6.5.8. Medtronic: Sensor structure
    • 6.5.9. CGM markets in Asia
    • 6.5.10. Outlook for smaller test strip companies
    • 6.5.11. CGM reimbursement for type 2 is currently limited
    • 6.5.12. CGM usage in hospitals

7. APPLICATIONS

  • 7.1. Applications for biosensors at the point-of-care
  • 7.2. Diagnostics and Monitoring
  • 7.3. Diagnostics
    • 7.3.1. Infectious diseases
    • 7.3.2. Respiratory diseases
    • 7.3.3. Tropical and vector diseases
    • 7.3.4. Sexually transmitted infections
    • 7.3.5. Infectious diseases: consider the infection load
    • 7.3.6. Cancer diagnostics, how suitable for POCT?
    • 7.3.7. POCT for cardiovascular disease
    • 7.3.8. Cardiovascular markers for POCT in the emergency room
  • 7.4. At-home Monitoring
    • 7.4.1. Rising diabetes and rising costs press need for POCT and monitoring
    • 7.4.2. Comparing test strip costs with CGM
    • 7.4.3. Cholesterol as an early indicator of cardiovascular disease
    • 7.4.4. Lactic acid monitoring for athletes
    • 7.4.5. Fertility market grows, even as fertility rates fall

8. POCT FOR COVID-19

  • 8.1. COVID-19 is caused by the SARS-CoV-2 virus
  • 8.2. COVID-19 Pandemic Crisis
  • 8.3. State of the Covid-19 diagnostics market in 2022
  • 8.4. Covid-19 pandemic developments
  • 8.5. Unstable Demand
  • 8.6. Capacity in EU and US
  • 8.7. EUA for in vitro diagnostics for the COVID-19 Pandemic
  • 8.8. Assay target
  • 8.9. Assay target over time
  • 8.10. Performance comparison overview of COVID-19 diagnostics technologies
  • 8.11. Conclusions for POCT for COVID-19

9. FORECASTS

  • 9.1. Forecasting methodology
  • 9.2. POCT biosensors forecast: total revenue by application (2019-2032)
  • 9.3. POCT biosensors forecast: total revenue by application (2019-2032)
  • 9.4. POCT biosensors forecast: total volume by application (2019-2032, excluding diabetes)
  • 9.5. POCT biosensors: historic market share by application
  • 9.6. POCT biosensors: key players (2021)
  • 9.7. POCT biosensors forecast: effect of COVID-19 on market share
  • 9.8. POCT biosensors forecast: total revenue by format type (2019-2032)
  • 9.9. POCT biosensors forecast: total revenue by format type (2019-2032)
  • 9.10. POCT biosensors forecast: total volume by format type (2019-2032)
  • 9.11. POCT biosensors forecast: total volume by format type, excluding electrochemical test strips (2019-2032)
  • 9.12. POCT biosensors forecast: lateral flow assay (LFA) revenue by application (2019-2032)
  • 9.13. POCT biosensors forecast: cartridges revenue by application (2019-2032)
  • 9.14. POCT biosensors: infectious diseases and COVID-19 revenue (2019-2032)
  • 9.15. POCT Biosensors: cardiovascular diseases revenue (2019-2032)
  • 9.16. POCT biosensors: fitness revenue (2019-2032)
  • 9.17. POCT biosensors: cancer LFAs revenue (2019-2032)
  • 9.18. Forecast assumptions for diabetes test strips and CGMs
  • 9.19. POCT Biosensors: diabetes revenue (2019-2032)
  • 9.20. Test strip market forecast 2022-2032
  • 9.21. Historic data: CGM continues to gain momentum