表紙
市場調查報告書
商品編碼
1037305

智能城市材料、系統、市場 2022-2042

Smart City Materials, Systems, Markets 2022-2042

出版日期: | 出版商: IDTechEx Ltd. | 英文 338 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
2022-2042 年智能城市材料、系統、市場
食物、水、能源獨立、復原力、保護、零排放、電氣化、沙漠、海洋。智能材料、基礎設施、交通、多功能複合材料。UHPC、VTOL、穿梭機器人、能量收集、離網、ICT、IOT、6G。

"智慧城市現在的預算高達 6000 億美元。硬件和系統每年將達到數萬億美元。"

面向商業且由全球博士級 IDTechEx 分析師新編寫的 339 頁 IDTechEx 報告, "2022-2042 年智能城市材料、系統、市場" 確定了差距市場、潛在合作夥伴、成功和失敗的經驗教訓、新材料、設備和系統的商業案例。它有許多新技術解釋、案例研究、路線圖、想法和預測。重點是所需的材料、設備和系統,以確定市場中的差距。

瞭解荒漠化、海平面上升、飢餓、日益劇烈的天氣、國家政府功能失調以及加速向城市遷移等巨大的新挑戰可以在人類規模上加以解決。隨著數萬億美元將用於智慧城市,優先事項必須是娛樂性、包容性、安全性、保障性、適應性、零排放、效率和可負擔性。報告詳細說明了我們如何通過獨立的水、食物和能源供應、新的更快、更具包容性的多用途交通形式以及適當的城市位置和佈局來實現這一目標。

推動因素包括報告中解釋的 100% 電氣化和多功能智能材料的驚人進步。例如倫敦地下新隧道中的 3D 打印石墨烯混凝土和智能班車的太陽能車身。將可視門鈴重命名為物聯網不會改變人類的命運,而是可能會改變由新的 "永恆" 混凝土製成並產生充足電力的海堤。與大數據相比,超材料可能是 6G 通信成功的關鍵。

城市中的緊湊型糧食生產取代了傳統農業,但存在人力、排放、水污染、空間、成本、安全和運輸等問題。您可以瞭解鹽鹼地和垂直農業、日光溫室、乾果種植、培養的細胞肉和牛奶的相關性。Aquaponics 一起種植蔬菜和魚類,agrivoltaics 將電力和糧食生產結合起來,bioswales 防止洪水、清潔水、種植食物。生物混凝土建築滋養植物。食品生產愉快地融入生活空間。

該報告發現,具有諷刺意味的是,迪士尼 EPCOT Florida 比現在建造的大多數沒有人性化的城市更接近理想的智慧城市,這些城市現在擁有寬闊的街道、空蕩蕩的摩天大樓、沒有中心和靈魂。該報告比較了許多,發現另一個諷刺。大多數真正有影響力、富有想像力的方法不是發生在新城市,而是發生在倫敦、北京和紐約等現有城市。最吸引人的新移民大多很小——比如豐田編織城——但可以為需要的大城市提供課程。報告中確定了最佳實踐並提出了新想法。

執行摘要和結論對於那些趕時間的人來說已經足夠了。信息圖解釋了污染、荒漠化、海平面上升、包括食物、水、能源獨立、復原力、保護、零排放、電氣化在內的反應。這裡需要智能材料、基礎設施、交通、多功能複合材料、超高性能混凝土、新型空中出租車、機器人班車、能量收集、離網城市電力、室內食品生產。它總結了支持 ICT、IOT、6G、傳感器、案例研究和最佳實踐。它的 57 頁密集頁面中有 25 頁是新的路線圖和預測,主要是 2022-2042 年。第 2 章是智能城市評估 - 舊的、新的和計劃中的 - 用新的圖像和評論以及失敗的教訓進行說明。

第 3 章廣泛涵蓋了為智慧城市改造的混凝土和智能材料。大多數注意力都集中在水泥及其衍生物上,例如混凝土,這是城市中最常用的人造材料,因為它們是更多的問題(全球變暖的 10%)和更多的解決方案(脫碳的許多途徑,更高的強度非常長的壽命意味著更少的需求和最少的碳,3D 打印的建築物等等)。然而,其 42 頁非常詳細的頁面中有 10 頁涵蓋了新興的多模式道路、人行道、停車場和機場跑道、新型超材料、城市冷卻材料等,並評估了一家關鍵初創公司。

第 5 章46 頁 涉及城市的糧食獨立 - 為什麼、在哪裡、如何、何時、最佳實踐、在需要的地方提供所需的電力和新的具有許多實際佈局和成功的想法。它以四頁關於機器人技術的無人設施趨勢結束。水獨立需要12頁作為第6章

IDTechEx 的

Raghu Das 指出, "城市可能永遠不會在食品生產甚至電力和飲用水方面實現獨立,但應對未來更嚴峻挑戰的能力要求它們走向獨立,因為一種能力。即使是很小的新加坡現在也以國內生產的三分之一食品為目標。"

許多智慧城市的目標是從家到工作場所或商店所需時間不超過 15 分鐘的佈局。然而,我們仍然希望到達歷史悠久的市中心、鄉村、下一個城市和景點,這就是為什麼第 7 章關註消除交通擁堵甚至讓窮人受益的新形式的零排放交通或殘疾人可以精確地到達他們想要的地方,例如在廣場路徑上和進入建築物的機器人穿梭機、以航空速度運行的超級高鐵、垂直起飛的空中出租車等等。什麼注定失敗?什麼是有前途的?什麼時候?鑑於它們的相對重要性,43 頁主要涵蓋新城市的陸地和空中旅行,但也涉及海洋。

該報告發現,對於大多數城市來說,獨立於電力生產、零排放比獨立於食物和水更容易,因為現在有很多技術可供購買,而且更多技術即將推出。

Das 解釋說, "一個有風的城市可能有非常大的風力渦輪機,一次旋轉可以為一座房子充電三天,但主要趨勢是在需要的地方發電,特別是太陽能 "從窗戶到小徑、牆壁、車輛和公園長椅,無處不在。冬季太陽能不足帶來了新的挑戰,因此我們涵蓋了將電力供應延遲到季節性的儲能係統。"

本章的 56 頁包含電池和非電池存儲的城市選項。主要瞭解許多新形式的水、風和日光發電,同時也瞭解氫的位置。

來自 IDTechEx 的分析師訪問

購買所有報告都包括與專家分析師進行長達 30 分鐘的電話通話,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要和結論

  • 1.1. 智慧城市必須優先考慮主要威脅
  • 1.2. 遷往城市和日益增長的獨立需求
  • 1.3. 加速城市發展和獨立的因素
  • 1.4. 殺死城市附近的大海
  • 1.5。城市淹沒
  • 1.6. 荒漠化
  • 1.7. 15個主要結論
  • 1.8. 符合 2022-2042 年多項標準的智慧城市示例
  • 1.9. 隨著項目的來來去去,智慧城市解決方案正在發生微妙的變化
  • 1.10. 2022-2042智慧城市的主要材料和系統機遇
  • 1.11. 2022-2042年主要智慧城市創造的初級材料和設備市場
  • 1.12. 一些改變未來零排放城市的材料和系統
  • 1.13. 認知智慧城市
  • 1.14. 6G通訊
  • 1.15。食品和電力系統合併並減少破壞
  • 1.16。智慧城市新材料
    • 1.16.1. 3D 打印混凝土——更快、更好
    • 1.16.2. 用於海水淡化、水回收、電子、電池、燃料電池、建築的膜
    • 1.16.3. 適用於智慧城市的智能油漆、結構和可編輯電子設備
    • 1.16.4。多模式道路、人行道、停車場、機場跑道
  • 1.17. 城市新型電動飛機獲獎類型
  • 1.18. 提升電動車續航里程/續航陸、水、空的範圍
  • 1.19. 路線圖和趨勢
    • 1.19.1. 水泥和混凝土行業路線圖 2022-2042
    • 1.19.2. ZE 離網海水淡化路線圖 2022-2042
    • 1.19.3. 6G 通信路線圖 2022-2042
    • 1.19.4. 有人電動飛機路線圖 2021-2041
    • 1.19.5。機器人穿梭機技術及發射路線圖 2022-2042
  • 1.20。傳感器趨勢
  • 1.21. 智能材料預測
    • 1.21.1。2022-2042 年五個地區的全球水泥市場十億噸
    • 1.21.2. 智能玻璃(變暗、冷卻超材料或光伏發電) 百萬美元 2021-2041
    • 1.21.3. 太陽能地表覆層 2021-2041 年 10 億美元
    • 1.21.4。2019-2030 年不使用動物培育的人造肉 百萬美元
    • 1.21.5。2019-2030 年全球垂直農業市場價值百萬美元
    • 1.21.6。新興光伏2042
    • 1.21.7。6G 可重編程智能表面積、價格、市場價值 2022-2042
    • 1.21.8。RIS總經營面積年終2029-20410億平方米
    • 1.21.9。6G RIS 價值 $/sq. 米到 2041
  • 1.22。設備、車輛、飛機和系統預測
    • 1.22.1. 2030-2042年6G智能手機銷量預測
    • 1.22.2. 5G 和 6G 通信影響 2022-2042
    • 1.22.3. 低功耗 WAN 連接 2018-2029
    • 1.22.4。傳感器市場規模:交叉細分市場 2032
    • 1.22.5。自處理自動廁所 2021-2041 年 10 億美元
    • 1.22.6。機器人穿梭車編號2019-2041
    • 1.22.7。2019-2041年機器人穿梭車市值百萬美元
    • 1.22.8。固定翼常規起降電池飛機<20名乘客2021-2041年銷售數量
    • 1.22.9。2018-2041年eVTOL空中出租車銷量預測單位
    • 1.22.10。2018-2041 年 eVTOL 空中出租車市場收入預測 10 億美元

2. 智慧城市評估:舊的、新的和規劃的

  • 2.1. 未來城市設計
  • 2.2. 中國的特例
    • 2.2.1. 概述
    • 2.2.2. 北京
    • 2.2.3. 網城深圳
    • 2.2.4. 寧波智慧城
    • 2.2.5. 雄安新區
    • 2.2.6. 中國 BRI 項目 St Sofia 保加利亞
  • 2.3. 美國佛羅里達州巴布科克牧場智慧城市
  • 2.4. 美國貝爾蒙特
  • 2.5. 籐澤可持續智慧城市
  • 2.6. 迪拜附近的迪拜可持續城市
  • 2.7. 倫敦作為智慧城市
  • 2.8. 紐約作為智慧城市
  • 2.9. NEOM The Line 沙特阿拉伯
  • 2.10. 韓國松島
  • 2.11. 美國 Telosa 智慧城市
  • 2.12. 新加坡登雅
  • 2.13. 日本豐田編織城

3. 改造混凝土和智能材料是關鍵

  • 3.1. 用於智慧城市的高級混凝土
    • 3.1.1. 介紹
    • 3.1.2. 正在解決二氧化碳排放問題
    • 3.1.3. 具體好處
    • 3.1.4. 高性能水泥和混凝土高性能計算
    • 3.1.5. 未來的水泥和混凝土原料和加工
    • 3.1.6. 3D 打印混凝土——更快、更好
    • 3.1.7. 用沙漠沙子 3D 打印混凝土
    • 3.1.8. 石墨烯混凝土
    • 3.1.9。其他新的混凝土能力創造新市場 2022-2042
    • 3.1.10。更換混凝土
    • 3.1.11。智慧城市內或附近的混凝土和水泥生產
    • 3.1.12。採石場和加工場利用資產出售剩餘電力儲存和電力
    • 3.1.13。網站問題及解決方案
    • 3.1.14。關於智慧城市水泥和混凝土的結論
    • 3.1.15。關於超高性能混凝土 2022-2042 的結論
    • 3.1.16。關於全新水泥產品和工藝的結論
    • 3.1.17。關於工藝脫碳的結論
    • 3.1.18。世界上最大的水泥生產商和著名的創新者
  • 3.2. 智慧城市的智能材料和多功能結構
    • 3.2.1. 介紹
    • 3.2.2. 多模式道路、人行道、停車場、機場跑道
    • 3.2.3. 超材料
    • 3.2.4. 城市冷卻的下一個材料
    • 3.2.5. Radi-Cool 美國超材料冷卻膜

4. 認知城市、6G 硬件、物聯網、傳感器以及隱私和安全問題

  • 4.1. 介紹
  • 4.2. EAS、RFID、攝像頭
  • 4.3. EnOcean 智能節點方法
  • 4.4. 建築和可再生能源控制方面的其他進展
  • 4.5。認知智慧城市
  • 4.6. 以 ICT 為中心的方法可能會錯過大事
  • 4.7. 6G通訊
    • 4.7.1. 解剖學
    • 4.7.2. 目的
    • 4.7.3. 設想的應用和影響
    • 4.7.4. 頻率、數據速率、延遲、無處不在
    • 4.7.5。現實檢查
    • 4.7.6。反對6G的案例
    • 4.7.7。可重新編程的智能表面必不可少
    • 4.7.8。6G RIS 超表面功能的選擇
    • 4.7.9。標準進步
  • 4.8. 智慧城市中的物聯網
  • 4.9. 智慧城市中的傳感器和傳感器融合
    • 4.9.1. 介紹
    • 4.9.2. 城市和領先企業的全球傳感器市場驅動因素

5. 城市的食物獨立

  • 5.1. 食物問題
    • 5.1.1. 不斷增長的人口和不斷增長的食品需求
    • 5.1.2. 使用傳統方法,主要作物產量趨於穩定
    • 5.1.3. 環境問題
    • 5.1.4. 食物浪費
  • 5.2. 解決問題並創造食物獨立
  • 5.3. 解決肉類問題
    • 5.3.1. 植物性替代品
  • 5.4. 解決牛奶問題:Turtle Tree Laboratories
  • 5.5。傳統農場變得更有效率
  • 5.6. 超精準農業
    • 5.6.1. 可變速率技術路線
    • 5.6.2. 動盪
  • 5.7. 垂直農場
    • 5.7.1. 更健康、更新鮮、更高效
    • 5.7.2. 當今垂直農場的局限性:品種、成本
  • 5.8. 城市溫室技術突飛猛進
    • 5.8.1。蒙特利爾世界上最大的屋頂溫室
    • 5.8.2. 用於優化植物生長的多功能光伏玻璃
  • 5.9. 中國:農業融入城市生活 上海
  • 5.10. 智慧城市農業機器人
    • 5.10.1。RaaS或機器人設備銷售
    • 5.10.2. 農業活動的市場和技術準備情況
    • 5.10.3. 行動中的例子

6. 水獨立

  • 6.1. 空氣中的概述和水
  • 6.2. 全球缺水地區和零排放能源地圖
  • 6.3. 海水淡化需求、技術、材料、經濟
    • 6.3.1. 需求與技術
    • 6.3.2. 太陽能反滲透海水淡化在 ZE 工廠數量中獲勝
    • 6.3.3. 經濟學
  • 6.4. 大型海水淡化器:大是美但易受傷害
    • 6.4.1. 全球形勢
    • 6.4.2. 大型城市海水淡化廠的繁重要求迫使重新思考?
  • 6.5。離網框

7. VTOL 空中出租車、無人機、智能班車、機器人出租車、Boring Co 隧道、Hyperloop、其他新交通工具

  • 7.1. 城市航空旅行
    • 7.1.1. 介紹
    • 7.1.2. 為城市帶來自主陸地水和空氣的公司
  • 7.2. 城市中的無人機
    • 7.2.1. 嚴重的無人機危險和收緊法律
    • 7.2.2. 亞馬遜
  • 7.3. 城市電動客機VTOL、CTOL
  • 7.4. eVTOL 作為城市大眾交通?
  • 7.5。機器人穿梭車潛力巨大
    • 7.5.1. 概述
    • 7.5.2. 城市的電力效率妥協
    • 7.5.3. 機器人穿梭車:越野、室內和攜帶送貨機器人
    • 7.5.4。夢想和實現目標的基礎
    • 7.5.5。機器人穿梭車規格
    • 7.5.6。Robotaxis 與機器人穿梭車的比較
    • 7.5.7。優勢和商業案例
    • 7.5.8。迄今為止的領導
    • 7.5.9。前期成本和其他障礙
    • 7.5.10。巨大的改進即將到來
    • 7.5.11。建立在過去的多用途基礎上
    • 7.5.12。機器人穿梭機:壞事
  • 7.6. 智慧城市的水運
  • 7.7. Tesla Boring Company 城市下的快速車輛隧道
  • 7.8。城市間的超級高鐵

8. 智慧城市電力獨立:零排放發電和儲能

  • 8.1. 介紹
  • 8.2. 城市用電需求及解決方案
    • 8.2.1. 正能量之家
  • 8.3. 平準化發電成本 LCOE 比較
  • 8.4. 零排放儲能——延遲電力
    • 8.4.1. 儲能比較的平準化成本 $/MWh
    • 8.4.2. 城市的最新儲能方案
    • 8.4.3. 氫可能適合的地方
  • 8.5。模塊化零排放柴油發電機組和電網更換
  • 8.6. 在需要的地方發電:光伏發電
    • 8.6.1. 移動微電網現在非常重要
    • 8.6.2. 無處不在的光伏——位置、技術、經濟
    • 8.6.3. EV ARC太陽能追蹤車載充電器
    • 8.6.4。地表太陽能失敗的教訓
    • 8.6.5。輕型地面太陽能成功:Solaroad、Platio、Solar Roadways
    • 8.6.6。龍門太陽能非常成功的替代方案
    • 8.6.7。Scara Brae 醫院蘇格蘭與 Dharan 沙特阿拉伯的比較
  • 8.7. 智慧城市風電
    • 8.7.1。概述
    • 8.7.2. 地面渦輪風力發電不能很好地縮小尺寸:物理,較差的風力
    • 8.7.3. 風力渦輪機選擇
  • 8.8. 風能與太陽能
  • 8.9. 建築和環境作為 2020-2040 年零排放微電網
  • 8.10. 無線、自供電樓宇控制:EnOcean 和 8Power
  • 8.11. 樓宇中的主動式智能玻璃
  • 8.12. 智慧城市的水電
    • 8.12.1。介紹
    • 8.12.2. 英國斯旺西:漂浮太陽能的潮汐
    • 8.12.3. 更廣泛意義上的水電
    • 8.12.4。開潮 "潮汐" 動力模仿風能
    • 8.12.5。軌道海洋動力
    • 8.12.6。巴厘島波浪農場的 Wello 600 kW 機組
    • 8.12.7。運行中的海基波浪功率 80kW 每個 = 100MW order Ghana
    • 8.12.8。全球潮汐能和波浪能海洋發電的最佳地點
    • 8.12.9。潮汐發電的最佳站點,幾乎不需要間歇性/能量存儲
    • 8.12.10。來自城市水管的電力:Lucid Power
目錄
Product Code: ISBN 9781913899783

Title:
Smart City Materials, Systems, Markets 2022-2042
Food, water, energy independence, resilience, conservation, zero emission, electrification, desert, sea. Smart materials, infrastructure, transport, multifunctional composites. UHPC, VTOL, robot shuttle, energy harvesting, off grid, ICT, IOT, 6G.

"Smart cities now have budgets up to $600 billion. Hardware & systems will become $trillions yearly."

Commercially-oriented and newly prepared by PhD level IDTechEx analysts worldwide, the 339 page IDTechEx report, "Smart City Materials, Systems, Markets 2022-2042" identifies gaps in the market, potential partners, lessons from success and failure, business cases for new materials, devices and systems. It has many new technology explanations, case studies, roadmaps, ideas and forecasts. Emphasis is required materials, devices and systems, identifying gaps in the market.

Understand the massive new challenges of desertification, rising sea levels, starvation, increasingly violent weather, dysfunctional national governments and the accelerating move to cities can be tackled on a human scale. With trillions of dollars about to be spent on smart cities, priorities need to be entertainment, inclusiveness, safety, security, adaptability, zero-emission, efficiency and affordability. The report details how we can achieve this with independence of water, food and energy supply, new faster, inclusive forms of multipurpose transport and appropriate city location and layout.

Enablers include 100% electrification and the startling advances in multifunctional smart materials explained in the report. Examples are 3D printed graphene concrete in new tunnels under London and solar bodywork of smart shuttles. Renaming a video doorbell as Internet of Things will not change the fate of mankind but a seawall that is made of the new "everlasting" concrete and makes ample electricity just might. Metamaterials may be more key to success with 6G Communications than big data.

Compact food production in cities replaces traditional farming with its problems of manpower, emissions, water pollution, space, cost, security and transport. You can understand relevance of saline and vertical farming, solar greenhouses, xeriscaping, cultivated cellular meat and milk. Aquaponics grows vegetables and fish together, agrivoltaics marries electricity and food production and bioswales prevent flooding, clean water, grow food. Biocrete architecture nourishes plants. Food production delightfully integrates into living space.

The report finds that, ironically, Disney EPCOT Florida is nearer to an ideal smart city than most of the dehumanised ones now being erected with massively wide streets, empty skyscrapers, no center and no soul. The report compares many, finding another irony. Most of the really-impactful, imaginative approaches are not taking place in new cities but in existing cities like London, Beijing and New York. The most appealing newcomers are mostly tiny - like Toyota Woven City - but could have lessons for large cities needed. Best practice is identified and new ideas are proposed in the report.

The Executive Summary and Conclusions is sufficient for those in a hurry. Infograms interpret pollution, desertification, sea level rise, responses including food, water, energy independence, resilience, conservation, zero-emission, electrification. Here are required smart materials, infrastructure, transport, multifunctional composites, ultra-high-performance concretes, new air taxis, robot shuttles, energy harvesting, off-grid city electricity, indoor food production. It summarises supporting ICT, IOT, 6G, sensors, case studies and best practice. 25 of its 57 dense pages are new roadmaps and forecasts, mostly 2022-2042. Chapter 2 is a smart cities appraisal - old, new and planned - illustrated with new images and commentary, lessons of failure.

Chapter 3 extensively covers reinvented concrete and smart materials for smart cities. Most attention is given to cement and its derivatives such as concrete, the most-used man-made material in cities, because they are more of the problem (10% of global warming) and more of the solution (many routes to decarbonisation, higher strength very long life means less needed and least carbon of all, 3D printed buildings and more). However, 10 of its 42 very detailed pages cover the emerging multi-mode roads, sidewalks, parking areas and airport runways, new metamaterials, city cooling materials and more with a key startup appraised.

The 46 pages of Chapter 5 concern food independence for cities - why, where, how, when, best practice, making the required electricity where it is needed and new ideas with many actual layouts and successes. It ends with four pages on the robotics for the trend to unmanned facilities. Water independence takes 12 pages as Chapter 6.

Raghu Das of IDTechEx points out, "Cities may never practice independence in food production or even electricity and drinking water but resilience against the much tougher challenges ahead requires them to move towards independence as a capability. Even tiny Singapore now targets one third of food made internally."

Many smart cities target layouts that require no more than 15 minutes to get from home to work or shops. However, we shall still want to get to the historic city center, the countryside, the next cities and attractions and that is why Chapter 7 concerns new forms of zero-emission transport eliminating congestion and getting even the poor or disabled to get to precisely where they want as with robot shuttles on plazas paths and into buildings, Hyperloop at airline speed, vertical takeoff air taxis and more. What is doomed to fail? What is promising and when? Given their relative importance, the 43 pages cover mainly new city land and air travel but touching on marine.

The report finds independence of electricity production, zero-emission, to be easier for most cities than independence of food and water because so many technologies are now available for purchase with many more coming soon.

Das explains, "A windy city may have very large wind turbines where one revolution charges a house for three days but the primary trend is making electricity where it is needed, notably with solar everywhere from windows to paths, walls, vehicles and park benches. A new challenge arises from solar weak in winter so we cover energy storage delaying electricity supply up to seasonal."

The 56 pages of this chapter embrace options for cities from both batteries and non-battery storage. Learn mostly about generation from water, wind and daylight in many new forms but also see the place of hydrogen.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Smart cities must prioritise major threats
  • 1.2. The move to cities and the growing need for independence
  • 1.3. Factors accelerating city growth and independence
  • 1.4. Killing the sea near cities
  • 1.5. Cities drowning
  • 1.6. Desertification
  • 1.7. 15 primary conclusions
  • 1.8. Examples of smart cities meeting many of the criteria 2022-2042
  • 1.9. Smart city solutions are subtly changing as projects come and go
  • 1.10. Major materials and system opportunities in smart cities 2022-2042
  • 1.11. Primary materials and equipment markets created by major smart cities 2022-2042
  • 1.12. Some materials and systems transforming future zero-emission cities
  • 1.13. Cognitive smart city
  • 1.14. 6G Communications
  • 1.15. Food and power systems merging and doing less damage
  • 1.16. New smart city materials
    • 1.16.1. 3D printed concrete - faster, better
    • 1.16.2. Membranes for desalination, water recycling, electronics, batteries, fuel cells, architecture
    • 1.16.3. Smart paint, structural and edit-able electronics for smart cities
    • 1.16.4. Multi-mode roads, sidewalks, parking areas, airport runways
  • 1.17. Winning types of new electric aircraft for cities
  • 1.18. Scope for improving battery vehicle range / endurance land, water, air
  • 1.19. Roadmaps and trends
    • 1.19.1. Cement and concrete industry roadmap 2022-2042
    • 1.19.2. Roadmap for ZE off grid desalination 2022-2042
    • 1.19.3. 6G Communications roadmap 2022-2042
    • 1.19.4. Manned electric aircraft roadmap 2021-2041
    • 1.19.5. Robot shuttle technology and launch roadmap 2022-2042
  • 1.20. Sensor trends
  • 1.21. Smart materials forecasts
    • 1.21.1. Global cement market billion tonnes by five regions 2022-2042
    • 1.21.2. Smart glass (darkening, cooling metamaterial or photovoltaic electricity) $ million 2021-2041
    • 1.21.3. Solar ground surface cladding $ billion 2021-2041
    • 1.21.4. Cultured meat grown without animals $ million 2019-2030
    • 1.21.5. Vertically farmed produce global market $million 2019-2030
    • 1.21.6. Emerging photovoltaics 2042
    • 1.21.7. 6G reprogrammable intelligent surfaces area, price, market value 2022-2042
    • 1.21.8. RIS total operating area year end 2029-2041 billion square meters
    • 1.21.9. 6G RIS value $/sq. meter to 2041
  • 1.22. Devices, vehicles, aircraft and systems forecasts
    • 1.22.1. 6G smartphone sales forecast 2030-2042
    • 1.22.2. 5G and 6G communications impact 2022-2042
    • 1.22.3. Low power WAN connections 2018-2029
    • 1.22.4. Sensor market size: intersecting market segments 2032
    • 1.22.5. Self-treating autonomous toilets $ billion 2021-2041
    • 1.22.6. Robot shuttles number 2019-2041
    • 1.22.7. Robot shuttles market value $ million 2019-2041
    • 1.22.8. Fixed-wing conventional takeoff/ landing battery aircraft <20 passengers 2021-2041 number sold
    • 1.22.9. eVTOL air taxi sales forecast units 2018-2041
    • 1.22.10. eVTOL air taxi market revenue forecast $ billion 2018-2041

2. Smart cities appraisal: old, new and planned

  • 2.1. City design of the future
  • 2.2. The special case of China
    • 2.2.1. Overview
    • 2.2.2. Beijing
    • 2.2.3. Net City Shenzhen
    • 2.2.4. Ningpo Smart City
    • 2.2.5. Xiong'an New Area
    • 2.2.6. China BRI Project St Sofia Bulgaria
  • 2.3. Babcock Ranch smart city in Florida USA
  • 2.4. Belmont USA
  • 2.5. Fujisawa Sustainable Smart Town
  • 2.6. Dubai Sustainable City near Dubai
  • 2.7. London as a smart city
  • 2.8. New York as a smart city
  • 2.9. NEOM The Line Saudi Arabia
  • 2.10. Songdo South Korea
  • 2.11. Telosa smart city USA
  • 2.12. Tengah Singapore
  • 2.13. Toyota Woven City Japan

3. Reinvented concrete and smart materials are key

  • 3.1. Advanced concrete for smart cities
    • 3.1.1. Introduction
    • 3.1.2. Carbon dioxide emissions are being tackled
    • 3.1.3. Concrete benefits
    • 3.1.4. High performance cement and concrete HPC
    • 3.1.5. Future cement and concrete feedstock and processing
    • 3.1.6. 3D printed concrete - faster, better
    • 3.1.7. 3D printing concrete from desert sand
    • 3.1.8. Graphene concrete
    • 3.1.9. Other new concrete capabilities creating new markets 2022-2042
    • 3.1.10. Replacing concrete
    • 3.1.11. Concrete and cement production in or near smart cities
    • 3.1.12. Quarries and processing sites leverage assets to sell surplus power storage and electricity
    • 3.1.13. Site issues and solutions
    • 3.1.14. Conclusions on cement and concrete for smart cities
    • 3.1.15. Conclusions concerning Ultra High Performance Concrete 2022-2042
    • 3.1.16. Conclusions concerning radically new cement products and processes
    • 3.1.17. Conclusions concerning process decarbonisation
    • 3.1.18. World's largest cement producers and notable innovators
  • 3.2. Smart materials and multifunctional structures for smart cities
    • 3.2.1. Introduction
    • 3.2.2. Multi-mode roads, sidewalks, parking areas, airport runways
    • 3.2.3. Metamaterials
    • 3.2.4. Next materials for city cooling
    • 3.2.5. Radi-Cool USA metamaterial cooling film

4. Cognitive cities, hardware for 6G, IoT, sensors and privacy and security issues

  • 4.1. Introduction
  • 4.2. EAS, RFID, cameras
  • 4.3. EnOcean smart node approach
  • 4.4. Other advances in building and renewable energy controls
  • 4.5. Cognitive smart city
  • 4.6. ICT centric approaches can miss the big things
  • 4.7. 6G Communications
    • 4.7.1. Anatomy
    • 4.7.2. Purpose
    • 4.7.3. Envisaged applications and implications
    • 4.7.4. Frequency, data rate, latency, ubiquity
    • 4.7.5. Reality check
    • 4.7.6. The case against 6G
    • 4.7.7. Reprogrammable Intelligent Surfaces essential
    • 4.7.8. Choices for 6G RIS metasurface functionality
    • 4.7.9. Progress with standards
  • 4.8. Internet of Things in smart cities
  • 4.9. Sensors and sensor fusion in smart cities
    • 4.9.1. Introduction
    • 4.9.2. Global sensor market drivers for cities and leading players

5. Food independence for cities

  • 5.1. Food problems
    • 5.1.1. Growing population and growing demand for food
    • 5.1.2. Major crop yields are plateauing using conventional approaches
    • 5.1.3. Environmental concerns
    • 5.1.4. Food wastage
  • 5.2. Solving the problems and creating food independence
  • 5.3. Solving the meat problem
    • 5.3.1. Plant-based substitutes
  • 5.4. Solving the milk problem: Turtle Tree Laboratories
  • 5.5. Conventional farms get more efficient
  • 5.6. Ultra precision agriculture
    • 5.6.1. Variable-rate technology route
    • 5.6.2. Upheaval
  • 5.7. Vertical farms
    • 5.7.1. Healthier, fresher and more productive
    • 5.7.2. Limitations of today's vertical farms: variety, cost
  • 5.8. City greenhouse technology advancing rapidly
    • 5.8.1. World's biggest rooftop greenhouse in Montreal
    • 5.8.2. Multifunctional photovoltaic glass for optimal plant growing
  • 5.9. China: agricultural integrated into city life Shanghai
  • 5.10. Robotics for smart city agriculture
    • 5.10.1. RaaS or robotic equipment sales
    • 5.10.2. Market and technology readiness by agricultural activity
    • 5.10.3. Examples in action

6. Water independence

  • 6.1. Overview and water from the air
  • 6.2. Global map of regions of water stress and zero-emission energy sources
  • 6.3. Desalination need, technology, materials, economics
    • 6.3.1. Need and technology
    • 6.3.2. Solar RO desalination winning in number of ZE plants
    • 6.3.3. Economics
  • 6.4. Large desalinators: big is beautiful but vulnerable
    • 6.4.1. Global situation
    • 6.4.2. Onerous requirements for large city desalination plants force rethink?
  • 6.5. OffGridBox

7. VTOL air taxis, drones, smart shuttles, robotaxis, Boring Co tunnels, Hyperloop, other new transport

  • 7.1. Air travel in cities
    • 7.1.1. Introduction
    • 7.1.2. Companies bringing autonomy land water and air to cities
  • 7.2. Drones in cities
    • 7.2.1. Serious drone dangers and tightening laws
    • 7.2.2. Amazon
  • 7.3. Passenger electric aircraft for cities VTOL, CTOL
  • 7.4. eVTOL as urban mass mobility?
  • 7.5. Robot shuttles have considerable potential
    • 7.5.1. Overview
    • 7.5.2. Electric efficiency compromises in cities
    • 7.5.3. Robot shuttles: off-road , indoors and carrying delivery robots
    • 7.5.4. The dream and the basics for getting there
    • 7.5.5. Specification of a robot shuttle
    • 7.5.6. Robotaxis compared to robot shuttles
    • 7.5.7. Benefits and business cases
    • 7.5.8. The leaders so far
    • 7.5.9. Upfront cost and other impediments
    • 7.5.10. Dramatic improvements are coming
    • 7.5.11. Building on the multi-purposing of the past
    • 7.5.12. Robot shuttles: the bad things
  • 7.6. Water transport for smart cities
  • 7.7. Tesla Boring Company fast vehicle tunnels under cities
  • 7.8. Hyperloop between cities

8. Smart city electricity independence: zero-emission generation and storage

  • 8.1. Introduction
  • 8.2. City power needs and solutions
    • 8.2.1. The energy positive house
  • 8.3. Levelised Cost of Electricity generation LCOE comparisons
  • 8.4. Zero-emission energy storage - delayed electricity
    • 8.4.1. Levelised cost of energy storage comparison $/MWh
    • 8.4.2. Latest energy storage options for cities
    • 8.4.3. Where hydrogen might fit in
  • 8.5. Modular, zero-emission diesel genset and grid replacement
  • 8.6. Making electricity where you need it: photovoltaics
    • 8.6.1. Mobile microgrids very important now
    • 8.6.2. Photovoltaics everywhere - locations, technologies, economics
    • 8.6.3. EV ARC solar-tracking car charger
    • 8.6.4. Ground surface solar lessons of failure
    • 8.6.5. Light duty ground solar succeeds: Solaroad, Platio, Solar Roadways
    • 8.6.6. Gantry solar very successful alternative
    • 8.6.7. Scara Brae hospital Scotland compared to Dharan Saudi Arabia
  • 8.7. Wind power for smart cities
    • 8.7.1. Overview
    • 8.7.2. Ground turbine wind power does not downsize well: physics, poorer wind
    • 8.7.3. Wind turbine choices
  • 8.8. Wind with solar
  • 8.9. Buildings and environs as zero-emission microgrids 2020-2040
  • 8.10. Wireless, self-powered building controls: EnOcean and 8Power
  • 8.11. Active smart glass in buildings
  • 8.12. Water power for smart cities
    • 8.12.1. Introduction
    • 8.12.2. Swansea UK: tidal with floating solar
    • 8.12.3. Hydro power in a wider sense
    • 8.12.4. Open tide "tide stream" power mimics wind power
    • 8.12.5. Orbital Marine Power
    • 8.12.6. Wello 600 kW units for Bali wave farm
    • 8.12.7. Seabased wave power in operation 80kW each = 100MW order Ghana
    • 8.12.8. Best locations globally for tidal and wave ocean power
    • 8.12.9. Best sites for tidal power with little intermittency / energy storage need
    • 8.12.10. Electricity from city water pipes: Lucid Power