表紙
市場調查報告書
商品編碼
1037303

2022-2042年鋰離子電池回收市場

Li-ion Battery Recycling Market 2022-2042

出版日期: | 出版商: IDTechEx Ltd. | 英文 335 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
2022-2042 年鋰離子電池回收市場
全球鋰離子電池回收市場分析,包括來自電動汽車、消費電子產品、製造廢料和固定儲能的鋰離子電池的技術、政策、經濟和 20 年回收預測。

"2042 年將有 1200 萬噸鋰離子電池被回收,市場複合年增長率為 22%。"

鋰離子電池在電動汽車 (EV) 市場佔據主導地位,是消費電子產品日常生活的一部分,並將在固定能源存儲中盛行。然而,鋰離子電池的可持續性取決於其整個生命週期,包括生命週期結束管理。此外,人們越來越擔心鈷等原材料供應。回收可以恢復電池金屬的內含價值,以創造額外收入和循環供應鏈,從而免受電池材料商品價格波動的影響。整個鋰離子電池供應鏈的利益相關者都認識到回收的潛力,預計未來二十年鋰離子電池回收市場將蓬勃發展。2042 年,將回收 1200 萬噸鋰離子電池,獲得 510 億美元的有價金屬。

在過去的一年裡,隨著公司準備大量供應廢舊鋰離子電池,人們對鋰離子電池回收市場的興趣和投資加速。目前,大部分來自消費電子產品(例如筆記本電腦和手機)從未被回收。電動汽車電池的收集網絡更容易建立,因為當它們不能再用於車輛時,它們需要由專業人員處理。在許多國家/地區,生產者責任延伸 (EPR) 要求原始設備製造商 (OEM) 照顧報廢電池。隨著電動汽車電池在未來幾十年開始達到使用壽命,我們將看到可供回收的退役電動汽車電池呈指數級增長,從而主導市場,帶來巨大的價值機會。

樣本視圖

來源:IDTechEx

該報告對鋰離子電池回收市場的現狀進行了深入分析,包括對全球技術和政策的深入分析。雖然在中國有明顯的優勢,但由於早期制定了特定的鋰離子電池管理政策,歐洲和北美正在迎頭趕上。在對全球超過 85 家鋰離子電池回收商的數據進行分析後,IDTechEx 報告了這些地區計劃於 2022/2023 年開始運營的多個商業規模回收工廠。除了最新的機械、水力和火法冶金工藝描述外,該報告還分析了直接回收的發展。雖然目前處於商業前階段,但直接回收提供了一種有前途的技術,可以重振用過的陰極,並有可能回收其他電池組件,例如陽極和箔,具有很高的環境效益。隨著市場的成熟和經濟尋求先進的循環,直接回收可能在商業上變得可行。

我們發現,要有效回收鋰離子電池,需要解決幾個關鍵問題。電池收集是有效回收鋰離子電池的最重要先決條件之一。如果沒有有效的電池收集網絡,要回收的電池數量少或收集成本高可能會損害回收的經濟性。另一個挑戰是缺乏回收設計,這使得電池拆卸和分類既昂貴又耗時。雖然電動汽車電池更容易收集和龐大的規模提供了巨大的機會,但也帶來了各種技術和經濟挑戰。電動汽車電池組的眾多設計和高電壓意味著安全拆卸仍將是一個複雜且耗時的階段。此外,與消費電子電池相比,電動汽車電池的每千瓦時價值會更低,這意味著回收商如果想在回收過程中實現收支平衡,就必須以更高的純度和效率提取更多材料。

關於報廢 EV 電池的另一個熱門討論是,它們是否應該被回收以獲取原材料,或者是否應該重新用於替代應用(如固定儲能)中的第二次使用。無論退役的電動汽車電池是否被重新利用,它們最終都需要被回收利用。從理論上講,回收是循環經濟中最不可持續的措施,應該是電池無法再使用時的最後一步。然而,在實踐中,要考慮更多的因素。從技術上講,重新利用廢棄電動汽車電池的第二次生命不應對其回收能力產生任何影響——它會延遲回收過程,從而對回收的物流和經濟產生影響。在本報告中,我們討論了鋰離子電池回收的經濟性以及可能影響其價值的關鍵因素。

樣本視圖

來源:IDTechEx

這份 IDTechEx 報告提供了 2020 年至 2042 年期間鋰離子電池回收市場的二十年市場預測,包括數量和市場價值。這些預測按地區、正極化學、鋰離子電池行業(消費電子產品、固定能源存儲、製造廢料和電動汽車)以及關鍵金屬(鋰、鈷、鎳、錳、銅和鋁)的恢復進行細分。電動汽車分為電動汽車、輕型商用車、中重型卡車、公共汽車和兩輪車(踏板車和摩托車)。數據以 GWh、ktonnes 和 10 億美元為單位,並對回收率進行了自下而上的分析。

本報告的關鍵要點:

  • 鋰離子電池市場概況
  • 當前鋰離子電池回收市場格局
  • 綜合分析和回收過程和技術的例子
  • 全球鋰離子電池回收法規和政策
  • 鋰離子電池回收價值鏈與經濟分析
  • 詳細的 20 年鋰離子電池回收市場數量和市場預測;主要地區、部門、正極化學品和主要回收金屬提供了顆粒狀市場預測。

來自 IDTechEx 的分析師訪問

購買所有報告都包括與專家分析師進行長達 30 分鐘的電話通話,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要

  • 1.1. 回收鋰離子電池的驅動程序
  • 1.2. LIB 回收方法概述
  • 1.3. 火法冶金回收
  • 1.4. 濕法冶金回收
  • 1.5。直接回收
  • 1.6. 回收技術比較
  • 1.7. 電動汽車電池回收價值鏈
  • 1.8. 鋰離子電池什麼時候回收?
  • 1.9. 回收還是第二次生命?
  • 1.10. 回收鋰離子電池經濟嗎?
  • 1.11. 鋰離子電池回收的經濟性分析
  • 1.12. 陰極化學對循環經濟的影響
  • 1.13. 部門參與
  • 1.14. 回收市場
  • 1.15。計劃的商業工廠
  • 1.16。2020-2042 年全球鋰離子電池回收市場:按地區(GWh)
  • 1.17. 2020-2042 年全球鋰離子電池回收市場:按地區 (GWh) - 總結
  • 1.18. 2020-2042 年全球鋰離子電池回收市場:按地區(千噸)
  • 1.19. 2020-2042 年全球鋰離子電池回收市場:按地區(千噸)-總結
  • 1.20。2020-2042 年全球鋰離子電池回收市場:按化學分類(千噸)
  • 1.21. 2020-2042 年全球鋰離子電池回收市場:按化學分類(千噸)-總結
  • 1.22。2020-2042 年全球鋰離子電池回收金屬(千噸)
  • 1.23。2020-2042 年全球鋰離子電池回收金屬(千噸) - 摘要
  • 1.24。2020-2042 年全球鋰離子電池回收市場價值(十億美元)
  • 1.25。2020-2042 年全球鋰離子電池回收市場價值(十億美元)——總結

2. 簡介和鋰離子電池市場概覽

  • 2.1. 什麼是鋰離子電池?
  • 2.2. 鋰離子正極概述
  • 2.3. 鋰離子陽極概述
  • 2.4. 循環壽命和壽命終止
  • 2.5. 電池為什麼會壞?
  • 2.6. 鋰離子降解複雜度
  • 2.7. 報廢鋰離子電池會發生什麼
  • 2.8. 鋰離子電池什麼時候回收?
  • 2.9. 鋰離子供應鏈
  • 2.10. 對鋰離子電池的需求
  • 2.11. 市場概況
  • 2.12. 高鎳陰極驅動器
  • 2.13. 矽陽極 - 合併、收購和投資
  • 2.14. 電池正極技術趨勢
  • 2.15。負極及鋰離子以外的電池技術趨勢
  • 2.16. 鋰離子電池中使用的元素
  • 2.17. 供需概覽
  • 2.18. 原材料短缺的可能性
  • 2.19. 電動汽車的碳排放
  • 2.20. 鋰離子材料的可持續性
  • 2.21. 可疑的採礦實踐
  • 2.22. 驅動程序和約束

3. 回收法規和政策

  • 3.1. 循環經濟
  • 3.2. 回收監管的好處
  • 3.3. 生產者責任延伸
  • 3.4. 中國正在為電動汽車電池回收做準備
  • 3.5。中國法規概覽
  • 3.6. 中國的政策框架
  • 3.7. 中國電動汽車電池追溯管理系統
  • 3.8. 電池回收追溯管理平台
  • 3.9. 中國政策框架的弊端
  • 3.10. 韓國和日本
  • 3.11. 印度
  • 3.12. 歐盟關鍵原材料
  • 3.13. 歐盟電池指令 2006/66/EC
  • 3.14. 歐盟電池指令 2018 修正案
  • 3.15。關於電池和廢電池的歐盟法規提案
  • 3.16. 歐洲電池聯盟
  • 3.17. 在英國建立政策框架
  • 3.18. 英國電池回收行業
  • 3.19. 美國關鍵礦產法
  • 3.20。美國政策
  • 3.21. 國家鋰電池藍圖(美國)
  • 3.22. 美國鋰離子電池回收激勵和稅收減免示例
  • 3.23. 澳大利亞
  • 3.24。澳大利亞 - 電池管理計劃
  • 3.25。運輸
  • 3.26。政策的意外後果
  • 3.27。政策摘要
  • 3.28。新/即將出台的政策摘要

4. 鋰離子回收工藝和技術

  • 4.1.1. 回收歷史 - 鉛酸
  • 4.1.2. 鉛酸電池
  • 4.1.3. 鉛酸與鋰離子成本細分
  • 4.1.4. 需要吸取的教訓
  • 4.1.5. 回收鹼性電池
  • 4.1.6. 回收鋰離子電池的驅動程序 1
  • 4.1.7。回收鋰離子電池的驅動程序 2
  • 4.1.8。回收鋰離子電池的限制
  • 4.1.9。LIB回收過程概述
  • 4.1.10。回收原料流
  • 4.1.11。LIB 回收方法概述
  • 4.1.12。LIB 回收方法概述
  • 4.1.13。回收能力
  • 4.1.14。是否有足夠的全球資源?
  • 4.1.15。材料內容
  • 4.1.16。BEV鋰離子回收質量流量
  • 4.2. 機械加工
    • 4.2.1. 回收不同的鋰離子電池
    • 4.2.2. 回收不同的鋰離子電池
    • 4.2.3. 缺乏包裝標準化
    • 4.2.4. EV LIB放電拆解
    • 4.2.5. 鋰電池拆解
    • 4.2.6. 機械加工分離
    • 4.2.7. 機械加工分離工藝實例
    • 4.2.8. 回收預處理和加工
    • 4.2.9. 過篩
    • 4.2.10。重力分離/渦流分離
    • 4.2.11。泡沫浮選
    • 4.2.12。機械分離流程圖
    • 4.2.13。Recupyl 機械分離流程圖
    • 4.2.14。TES-AMM黑體工藝
  • 4.3. 火法冶金
    • 4.3.1. 火法冶金回收
    • 4.3.2. 火法冶金回收
    • 4.3.3. 火法冶金回收的優勢/劣勢
    • 4.3.4. 優美科回收流程圖
  • 4.4. 濕法冶金和材料回收
    • 4.4.1. 濕法冶金回收
    • 4.4.2. 濕法冶金回收的優勢/劣勢
    • 4.4.3. 通過濕法冶金的回收示例
    • 4.4.4. Recupyl 回收流程圖
    • 4.4.5. TES-AMM濕法冶金工藝流程圖
    • 4.4.6. 電冶金
    • 4.4.7。溶劑萃取
    • 4.4.8. 沉澱
    • 4.4.9。鋰離子回收的機會
  • 4.5。直接回收
    • 4.5.1. 直接回收工藝開發
    • 4.5.2. 直接回收的優勢/劣勢
    • 4.5.3. 濕法冶金-直接混合回收
    • 4.5.4。細胞中心
    • 4.5.5。預處理
    • 4.5.6。電解質分離
    • 4.5.7。陰極-陰極和陰極-陽極分離
    • 4.5.8。粘合劑去除
    • 4.5.9。再鋰化
    • 4.5.10。固態和電化學再鋰化
    • 4.5.11。OnTo技術
    • 4.5.12。陰極修復TM(水熱)
    • 4.5.13。陰極恢復和再生
    • 4.5.14。固態與陰極癒合
    • 4.5.15。升級改造
    • 4.5.16。直接回收製造廢料
    • 4.5.17。成本和生命週期分析
  • 4.6. 回收技術結論
    • 4.6.1. 鋰離子回收的趨勢
    • 4.6.2. 回收方法圖
    • 4.6.3. 鋰離子生產鏈/迴路
    • 4.6.4. 為回收而設計
    • 4.6.5。回收技術結論
    • 4.6.6。回收技術比較
    • 4.6.7。學術研究
    • 4.6.8。各地區學術研究

5. 鋰離子電池回收的價值鍊和商業模式

  • 5.1. 為什麼鋰離子電池會失效?
  • 5.2. 報廢鋰離子電池會發生什麼
  • 5.3. 鋰離子電池回收價值鏈概述
  • 5.4. 電動汽車電池閉環價值鏈
  • 5.5。電動汽車電池回收價值鏈
  • 5.6. 電動汽車電池回收價值鏈全生命週期觀
  • 5.7. 鋰離子電池什麼時候回收?
  • 5.8. 回收鋰離子電池經濟嗎?
  • 5.9. 電池回收的經濟性分析
  • 5.10. 電池化學對循環經濟的影響
  • 5.11. 陰極化學回收價值
  • 5.12. 回收還是第二次生命?
  • 5.13. 回收或第二次生命:技術經濟分析(1)
  • 5.14. 回收或第二次生命:技術經濟分析 (2)
  • 5.15。回收或第二次生命:補充信息
  • 5.16. 回收對鋰離子電池成本降低的影響
  • 5.17。退役的鋰離子電池去哪兒了?
  • 5.18. 逆向物流:鋰離子電池收集
  • 5.19. 中國電動汽車電池收集網絡案例研究
  • 5.20。電池分類拆解
  • 5.21. 回收設計
  • 5.22. 結束語

6. 回收市場概覽

  • 6.1. LIB回收市場
  • 6.2. 對整個價值鏈回收的興趣
  • 6.3. 鋰離子回收公司的位置
  • 6.4. 歐洲回收
  • 6.5。歐洲回收
  • 6.6. 亞太地區(不包括中國)回收
  • 6.7. 在中國回收
  • 6.8. 北美回收
  • 6.9. 部門參與
  • 6.10. 回收商業化階段
  • 6.11. 回收技術分解
  • 6.12. 回收參與者的狀態
  • 6.13. 計劃的商業工廠
  • 6.14. 全球回收能力
  • 6.15。結論

7. 公司簡介

  • 7.1.1. 包括的公司名單
  • 7.2. 汽車原始設備製造商
    • 7.2.1. 寶馬在電動汽車電池回收方面的戰略合作夥伴關係
    • 7.2.2. 雷諾對鋰離子電池的循環經濟努力
    • 7.2.3. 大眾汽車計劃使用退役的電動汽車電池
    • 7.2.4. 大眾汽車的內部鋰離子電池回收廠
    • 7.2.5. 特斯拉的 "圓形超級工廠"
  • 7.3. 歐洲
    • 7.3.1. 準確度
    • 7.3.2. 阿庫瑟公司
    • 7.3.3. 巴斯夫
    • 7.3.4. 巴特雷克
    • 7.3.5. 迪森費爾德
    • 7.3.6. Duesenfeld 工藝概述
    • 7.3.7。富騰
    • 7.3.8。Fortum 收購 Crisolteq
    • 7.3.9。Fortum 加強與巴斯夫和 Nornickel 的合作
    • 7.3.10。Fortum - 進一步更新
    • 7.3.11。嘉能可 Nikkelverk
    • 7.3.12。Inobat 將回收和採礦與力拓相結合
    • 7.3.13。Nickelhutte Aue
    • 7.3.14。Northvolt 的 Revolt 回收計劃
    • 7.3.15。北伏特
    • 7.3.16。ReLieVe 項目(Suez、Eramet 和 BASF)
    • 7.3.17。Stena 回收 AB
    • 7.3.18。優美科
  • 7.4. 亞洲
    • 7.4.1. 4R能源
    • 7.4.2. 4R Energy 的浪江工廠
    • 7.4.3. 安華泰森
    • 7.4.4. CATL和Brunp回收
    • 7.4.5。在 Brunp 回收工廠爆炸
    • 7.4.6. 同和生態系統公司
    • 7.4.7。生態專業
    • 7.4.8。贛鋒鋰業
    • 7.4.9。寶石
    • 7.4.10。GS E&C 參與現代,包括 SungEel HiTech
    • 7.4.11。廣東光華科技
    • 7.4.12。合肥國軒高科(Gotion)
    • 7.4.13。JX日本金屬礦業
    • 7.4.14。科巴爾
    • 7.4.15。共榮精工
    • 7.4.16。羅姆清潔技術
    • 7.4.17。POSCO與華友鈷業合資
    • 7.4.18。住友
    • 7.4.19。住友工藝
    • 7.4.20。SungEel HiTech POSCO、三星、LG Energy Solutions
    • 7.4.21。TES-AMM (1)
    • 7.4.22。TES-AMM (2)
  • 7.5。北美
    • 7.5.1. 美國錳
    • 7.5.2. 電池資源
    • 7.5.3. 法拉西斯
    • 7.5.4。Farasis回收工藝專利
    • 7.5.5。傳統電池回收和 6K
    • 7.5.6。鋰電池
    • 7.5.7。Li-cycle商業模式
    • 7.5.8。Li-cycle 工藝概述
    • 7.5.9。Lithion 包括 Nouveau Monde Graphite 和 Hyundai Canada
    • 7.5.10。OnTo技術
    • 7.5.11。莊信萬豐和 OnTo Technology
    • 7.5.12。雷迪維烏斯
    • 7.5.13。紅木材料
    • 7.5.14。檢索包括丸紅株式會社和 Hobi International
  • 7.6. 世界其他地區 (RoW)
    • 7.6.1. 環境流
    • 7.6.2. 純電池技術 (PBT)

8. 市場預測

  • 8.1. 方法論解釋
  • 8.2. 假設
  • 8.3. 2020-2042 年全球鋰離子電池回收市場:按地區(GWh)
  • 8.4. 2020-2042 年全球鋰離子電池回收市場:按地區 (GWh) - 總結
  • 8.5。2020-2042 年全球鋰離子電池回收市場:按地區(千噸)
  • 8.6. 2020-2042 年全球鋰離子電池回收市場:按地區(千噸)-總結
  • 8.7. 2020-2042 年全球鋰離子電池回收市場:按化學分類(千噸)
  • 8.8. 2020-2042 年全球鋰離子電池回收市場:按化學分類(千噸)-總結
  • 8.9. 全球主要地區化學鋰離子電池回收市場
  • 8.10. 2020-2042 年全球鋰離子電池回收金屬(千噸)
  • 8.11. 2020-2042 年全球鋰離子電池回收金屬(千噸) - 摘要
  • 8.12. 2020-2042 年全球鋰離子電池回收市場價值(十億美元)
  • 8.13. 全球鋰離子電池回收市場價值份額
  • 8.14. 2020-2042 年全球鋰離子電池回收市場價值(十億美元)——總結
  • 8.15。中國
    • 8.15.1。2020-2042年中國鋰離子電池回收市場:按行業(GWh)
    • 8.15.2. 2020-2042 年中國鋰離子電池回收市場:按行業 (GWh) - 總結
    • 8.15.3. 2020-2042年中國鋰離子電池回收市場:按行業分類(千噸)
    • 8.15.4。2020-2042年中國鋰離子電池回收市場:按行業(千噸)-總結
    • 8.15.5。中國鋰離子電池回收市場份額
    • 8.15.6。2020-2042年中國鋰離子電池回收市場:按化學(GWh)
    • 8.15.7。2020-2042年中國鋰離子電池回收市場:按化學(GWh)-總結
    • 8.15.8。2020-2042年中國鋰離子電池回收市場:按化學分類(千噸)
    • 8.15.9。2020-2042年中國鋰離子電池回收市場:按化學(千噸)-總結
    • 8.15.10。中國鋰離子電池正極回收市場份額
    • 8.15.11。2020-2042年中國鋰離子電池回收金屬(千噸)
    • 8.15.12。2020-2042 年中國鋰離子電池回收金屬(千噸) - 總結
  • 8.16. 歐洲
    • 8.16.1。2020-2042 年歐洲鋰離子電池回收市場:按行業(GWh)
    • 8.16.2. 2020-2042 年歐洲鋰離子電池回收市場:按行業 (GWh) - 總結
    • 8.16.3。2020-2042 年歐洲鋰離子電池回收市場:按行業分類(千噸)
    • 8.16.4。2020-2042 年歐洲鋰離子電池回收市場:按行業(千噸)-總結
    • 8.16.5。歐洲各行業鋰離子電池回收市場份額
    • 8.16.6。2020-2042 年歐洲鋰離子電池回收市場:按化學(GWh)
    • 8.16.7。歐洲鋰離子電池回收市場 2020-2042:按化學 2020-2042 (GWh) - 總結
    • 8.16.8。2020-2042 年歐洲鋰離子電池回收市場:按化學分類(千噸)
    • 8.16.9。2020-2042 年歐洲鋰離子電池回收市場:按化學 2020-2042 年(千噸)-總結
    • 8.16.10。2020-2042 年歐洲鋰離子電池回收金屬(千噸)
    • 8.16.11。2020-2042 年歐洲鋰離子電池回收金屬(千噸) - 摘要
  • 8.17. 北美
    • 8.17.1。2020-2042 年北美鋰離子電池回收市場:按行業(GWh)
    • 8.17.2. 2020-2042 年北美鋰離子電池回收市場:按行業 (GWh) - 總結
    • 8.17.3. 2020-2042 年北美鋰離子電池回收市場:按行業分類(千噸)
    • 8.17.4。2020-2042 年北美鋰離子電池回收市場:按行業(千噸)-總結
    • 8.17.5。北美按行業劃分的鋰離子電池回收市場份額
    • 8.17.6。2020-2042 年北美鋰離子電池回收市場:按化學(GWh)
    • 8.17.7。2020-2042 年北美鋰離子電池回收市場:按化學 (GWh) - 總結
    • 8.17.8。2020-2042 年北美鋰離子電池回收市場:按化學分類(千噸)
    • 8.17.9。2020-2042 年北美鋰離子電池回收市場:按化學分類(千噸)-總結
    • 8.17.10。北美 2020-2042 年鋰離子電池回收金屬(千噸)
    • 8.17.11。北美 2020-2042 年鋰離子電池中回收的金屬(千噸) - 摘要
  • 8.18. 部門細分和方法
    • 8.18.1。2020-2042 年全球鋰離子電池回收市場:按行業 (GWh)
    • 8.18.2. 2020-2042 年全球消費電子產品鋰離子電池回收市場:按產品 (GWh)
    • 8.18.3. 消費電子產品 - 回收率
    • 8.18.4。2028-2042 年全球固定儲能鋰離子電池回收市場 (GWh)
    • 8.18.5。用於固定儲能的全球鋰離子電池回收市場 2028-2042:按化學(GWh)
    • 8.18.6。2020-2042 年用於製造廢料的全球鋰離子電池回收市場:按地區 (GWh)
    • 8.18.7。2020-2042 年全球汽車 BEV 鋰離子電池回收市場 (GWh)
    • 8.18.8。2020-2042 年全球汽車 BEV 鋰離子電池回收市場:按化學(GWh)
    • 8.18.9。2020-2042 年全球非汽車電動汽車鋰離子電池回收市場:按車型(GWh)
目錄
Product Code: ISBN 9781913899806

Title:
Li-ion Battery Recycling Market 2022-2042
Global Li-ion battery recycling market analysis including technologies, policies, economics, and 20-year recycling forecasts for Li-ion batteries from electric vehicles, consumer electronics, manufacturing scrap and stationary energy storage.

"12 million tonnes of Li-ion batteries will be recycled in 2042 with the market at a CAGR of 22%."

Li-ion batteries dominate the electric vehicle (EV) market, are part of everyday life in consumer electronics, and will be prevalent in stationary energy storage. However, Li-ion battery sustainability depends on their whole lifecycle, including end-of-life management. Additionally, there are increasing concerns over raw material supplies such as cobalt. Recycling can recover the embedded value of battery metals to create extra revenues and a circular supply chain, which is shielded against the fluctuating commodity prices of battery materials. Stakeholders across the Li-ion battery supply chain are recognising the potential of recycling, and the Li-ion battery recycling market is expected to boom over the next two decades. In 2042, 12 million tonnes of Li-ion batteries will be recycled obtaining $51 billion USD in valuable metals.

The past year has seen interest and investments in the Li-ion battery recycling market accelerate as companies prepare for the mass availability of waste Li-ion batteries. At the moment, the majority come from consumer electronics (e.g. laptops and mobile phones) are never recycled. It is easier to build the collection network for EV batteries because when they can't be utilized in the vehicles anymore, they need to be handled by professionals. In many countries, the extended producer responsibility (EPR) requires the original equipment manufacturers (OEMs) to take care of retired batteries. As EV batteries are beginning to reach their end-of-life in the coming decades, we will see an exponential growth of retired EV batteries available for recycling causing them to dominate the market, bringing huge value opportunities.

SAMPLE VIEW

                  Source: IDTechEx

The report provides an in-depth analysis of the current state of the Li-ion battery recycling market, including a global technology and policy deep-dive. While there is a clear dominance in China, due to establishing specific Li-ion battery management policy early-on, Europe and North America are catching on. Following the analysis of data from over 85 Li-ion battery recyclers worldwide, IDTechEx report on multiple commercial-scale recycling plants planned across these regions to start operation in 2022/2023. In addition to up-to-date mechanical, hydro- and pyrometallurgical process descriptions, the report analyses developments in direct recycling. While currently at a pre-commercial stage, direct recycling offers a promising technology that can reinvigorate spent cathodes and has the potential to recover other battery components, such as the anode and foils, with high environmental benefits. As the market matures and economies seek advanced circularity, direct recycling could become commercially viable.

We found that several key issues need to be addressed for efficient recycling of Li-ion batteries. Battery collection is one of the most important prerequisites for efficient Li-ion battery recycling. Without an efficient battery collection network, the low volume of batteries to be recycled or high cost of collection could damage the economics of recycling. Another challenge is the lack of design for recycling that make battery disassembly and sorting costly and time-consuming. While the easier collection and sheer scale of EV batteries provides a huge opportunity it also comes with various technical and economic challenges. The numerous designs and high voltage of EV battery packs mean safe disassembly will remain a complex and time-consuming stage. Furthermore, the $/kWh value embedded within EV batteries will be lower compared to consumer electronics batteries, meaning recyclers will have to extract more material at higher purities and efficiencies if they want to break even on their recycling process.

Another topical discussion around end-of-life EV batteries is whether they should be recycled to obtain the raw materials or repurposed for a second-life in alternative applications such as stationary energy storage. Whether retired EV batteries are repurposed or not, they will need to be recycled anyway in the end. In theory, recycling is the least sustainable measure in a circular economy and should be the last step when the batteries can't be utilised anymore. However, in practice, many more factors are considered. Technologically, repurposing a second-life for retired EV batteries should not have any effect on its ability to be recycled - it will delay the recycling process and thus have an impact on the logistics and economics of recycling. In this report, we discuss the economics of Li-ion battery recycling and the key factors that might impact its value.

SAMPLE VIEW

                  Source: IDTechEx

This IDTechEx report provides a twenty-year market forecast on the Li-ion battery recycling market for the period 2020-2042, in both volume and market value. The forecasts are broken down by region, cathode chemistry, Li-ion battery sector (consumer electronics, stationary energy storage, manufacturing scrap and EVs), and key metals (lithium, cobalt, nickel, manganese, copper, and aluminium) recovered. EVs are split into electric cars, light-commercial vehicles, medium- and heavy-duty trucks, buses, and two-wheelers (scooters and motorcycles). Data is given in GWh, ktonnes and $bn with a bottom-up analysis of recycling rates.

Key takeaways from this report:

  • Overview of Li-ion battery market
  • Current market landscape of Li-ion battery recycling
  • Comprehensive analysis and examples of recycling processes and technologies
  • Global Li-ion battery recycling regulations and policies
  • Analysis of Li-ion battery recycling value chain and economics
  • Detailed 20-year Li-ion battery recycling market forecast in both volume and market value; granular market forecasts are provided by major regions, sectors, cathode chemistries and key metals recovered.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Drivers for recycling Li-ion batteries
  • 1.2. LIB recycling approaches overview
  • 1.3. Pyrometallurgical recycling
  • 1.4. Hydrometallurgical recycling
  • 1.5. Direct recycling
  • 1.6. Recycling techniques compared
  • 1.7. EV battery recycling value chain
  • 1.8. When will Li-ion batteries be recycled?
  • 1.9. Recycling or second life?
  • 1.10. Is recycling Li-ion batteries economic?
  • 1.11. Economic analysis of Li-ion battery recycling
  • 1.12. Impact of cathode chemistries on recycling economics
  • 1.13. Sector involvement
  • 1.14. Recycling market
  • 1.15. Planned commercial plants
  • 1.16. Global Li-ion battery recycling market 2020-2042: by region (GWh)
  • 1.17. Global Li-ion battery recycling market 2020-2042: by region (GWh) - summary
  • 1.18. Global Li-ion battery recycling market 2020-2042: by region (ktonnes)
  • 1.19. Global Li-ion battery recycling market 2020-2042: by region (ktonnes) - summary
  • 1.20. Global Li-ion battery recycling market 2020-2042: by chemistry (ktonnes)
  • 1.21. Global Li-ion battery recycling market 2020-2042: by chemistry (ktonnes) - summary
  • 1.22. Global recycled metals from Li-ion batteries 2020-2042 (ktonnes)
  • 1.23. Global recycled metals from Li-ion batteries 2020-2042 (ktonnes) - summary
  • 1.24. Global Li-ion battery recycling market value 2020-2042 ($ billion USD)
  • 1.25. Global Li-ion battery recycling market value 2020-2042 ($ billion USD) - summary

2. INTRODUCTION AND LI-ION BATTERY MARKET OVERVIEW

  • 2.1. What is a Li-ion battery?
  • 2.2. Li-ion cathode overview
  • 2.3. Li-ion anode overview
  • 2.4. Cycle life and End-of-life
  • 2.5. Why batteries fail?
  • 2.6. Li-ion degradation complexity
  • 2.7. What happens to end-of-life Li-ion batteries
  • 2.8. When will Li-ion batteries be recycled?
  • 2.9. The Li-ion supply chain
  • 2.10. Demand for Li-ion shifting
  • 2.11. Market overview
  • 2.12. Drivers for High-Nickel Cathode
  • 2.13. Silicon Anodes - Mergers, Acquisitions, and Investments
  • 2.14. Battery cathode technology trends
  • 2.15. Battery technology trends in anode and beyond Li-ion
  • 2.16. The elements used in Li-ion batteries
  • 2.17. Supply and demand overview
  • 2.18. Potential for raw material shortage
  • 2.19. Carbon emissions from electric vehicles
  • 2.20. Sustainability of Li-ion materials
  • 2.21. Questionable mining practice
  • 2.22. Drivers and restraints

3. RECYCLING REGULATION AND POLICY

  • 3.1. Circular economy
  • 3.2. Benefits of recycling regulation
  • 3.3. Extended Producer Responsibility
  • 3.4. China is preparing for EV battery recycling
  • 3.5. Overview of Chinese Regulations
  • 3.6. China's Policy Framework
  • 3.7. The EV battery traceability management system in China
  • 3.8. The battery recycling and traceability management platform
  • 3.9. Drawbacks of Chinas policy framework
  • 3.10. South Korea and Japan
  • 3.11. India
  • 3.12. EU critical raw materials
  • 3.13. EU Battery Directive 2006/66/EC
  • 3.14. EU Battery Directive 2018 Amendment
  • 3.15. Proposed EU regulation concerning batteries and waste batteries
  • 3.16. European batteries Alliance
  • 3.17. Building a policy framework in the UK
  • 3.18. UK battery recycling industry
  • 3.19. US Critical Minerals Act
  • 3.20. US Policy
  • 3.21. National Blueprint for Lithium Batteries (US)
  • 3.22. US Li-ion battery recycling incentives and tax breaks examples
  • 3.23. Australia
  • 3.24. Australia - Battery Stewardship Scheme
  • 3.25. Transportation
  • 3.26. Unintended consequences of policy
  • 3.27. Policy Summary
  • 3.28. New/upcoming policy summary

4. LI-ION RECYCLING PROCESSES AND TECHNOLOGIES

  • 4.1.1. Recycling history - Pb-acid
  • 4.1.2. Pb-acid batteries
  • 4.1.3. Pb-acid vs Li-ion cost breakdown
  • 4.1.4. Lessons to be learned
  • 4.1.5. Recycling alkaline cells
  • 4.1.6. Drivers for recycling Li-ion batteries 1
  • 4.1.7. Drivers for recycling Li-ion batteries 2
  • 4.1.8. Constraints on recycling Li-ion batteries
  • 4.1.9. LIB recycling process overview
  • 4.1.10. Recycling feedstock streams
  • 4.1.11. LIB recycling approaches overview
  • 4.1.12. LIB recycling approaches overview
  • 4.1.13. Recycler capabilities
  • 4.1.14. Is there enough global resource?
  • 4.1.15. Material content
  • 4.1.16. BEV Li-ion recycling mass flow
  • 4.2. Mechanical processing
    • 4.2.1. Recycling different Li-ion batteries
    • 4.2.2. Recycling different Li-ion batteries
    • 4.2.3. Lack of pack standardisation
    • 4.2.4. EV LIB discharge and disassembly
    • 4.2.5. LIB disassembly
    • 4.2.6. Mechanical processing and separation
    • 4.2.7. Mechanical processing and separation process example
    • 4.2.8. Recycling pre-treatments and processing
    • 4.2.9. Sieving
    • 4.2.10. Gravity separation/Eddy current separation
    • 4.2.11. Froth flotation
    • 4.2.12. Mechanical separation flow diagram
    • 4.2.13. Recupyl mechanical separation flow diagram
    • 4.2.14. TES-AMM black mass process
  • 4.3. Pyrometallurgy
    • 4.3.1. Pyrometallurgical recycling
    • 4.3.2. Pyrometallurgical recycling
    • 4.3.3. Pyrometallurgical recycling strengths/weaknesses
    • 4.3.4. Umicore recycling flow diagram
  • 4.4. Hydrometallurgy and material recovery
    • 4.4.1. Hydrometallurgical recycling
    • 4.4.2. Hydrometallurgical recycling strengths/weaknesses
    • 4.4.3. Recycling example via hydrometallurgy
    • 4.4.4. Recupyl recycling flow diagram
    • 4.4.5. TES-AMM hydrometallurgical process flow diagram
    • 4.4.6. Electrometallurgy
    • 4.4.7. Solvent extraction
    • 4.4.8. Precipitation
    • 4.4.9. Opportunities in Li-ion recycling
  • 4.5. Direct recycling
    • 4.5.1. Direct recycling process development
    • 4.5.2. Direct recycling strengths/weaknesses
    • 4.5.3. Hydrometallurgical-direct hybrid recycling
    • 4.5.4. ReCell Center
    • 4.5.5. Pre-processing
    • 4.5.6. Electrolyte separation
    • 4.5.7. Cathode-cathode and cathode-anode separation
    • 4.5.8. Binder Removal
    • 4.5.9. Relithiation
    • 4.5.10. Solid-state and electrochemical relithiation
    • 4.5.11. OnTo Technology
    • 4.5.12. Cathode HealingTM (Hydrothermal)
    • 4.5.13. Cathode recovery and rejuvenation
    • 4.5.14. Solid state vs. cathode healing
    • 4.5.15. Upcycling
    • 4.5.16. Direct recycling of manufacturing scrap
    • 4.5.17. Cost and life-cycle analysis
  • 4.6. Recycling technology conclusions
    • 4.6.1. Trends in Li-ion recycling
    • 4.6.2. Recycling methods map
    • 4.6.3. Li-ion production chain/loop
    • 4.6.4. Designed for recycling
    • 4.6.5. Recycling technology conclusions
    • 4.6.6. Recycling techniques compared
    • 4.6.7. Academic research
    • 4.6.8. Academic research by region

5. VALUE CHAIN AND BUSINESS MODELS FOR LI-ION BATTERY RECYCLING

  • 5.1. Why Li-ion batteries fail?
  • 5.2. What happens to end-of-life Li-ion batteries
  • 5.3. Overview of the Li-ion battery recycling value chain
  • 5.4. Closed-loop value chain of electric vehicle batteries
  • 5.5. EV battery recycling value chain
  • 5.6. The lifecycle view of EV battery recycling value chain
  • 5.7. When will Li-ion batteries be recycled?
  • 5.8. Is recycling Li-ion batteries economic?
  • 5.9. Economic analysis of battery recycling
  • 5.10. Impact of battery chemistries on recycling economics
  • 5.11. Recycling value by cathode chemistry
  • 5.12. Recycling or second life?
  • 5.13. Recycling or second life: techno-economic analysis (1)
  • 5.14. Recycling or second life: techno-economic analysis (2)
  • 5.15. Recycling or second life: complementary information
  • 5.16. Impact of recycling on Li-ion battery cost reduction
  • 5.17. Where are the retired Li-ion batteries?
  • 5.18. Reverse logistics: Li-ion battery collection
  • 5.19. Case study of a EV battery collection network in China
  • 5.20. Battery sorting and disassembling
  • 5.21. Design for recycling
  • 5.22. Concluding remarks

6. RECYCLING MARKET OVERVIEW

  • 6.1. LIB recycling market
  • 6.2. Interest in recycling across the value chain
  • 6.3. Location of Li-ion recycling companies
  • 6.4. European recycling
  • 6.5. European Recycling
  • 6.6. Asia-Pacific (exc. China) recycling
  • 6.7. Recycling in China
  • 6.8. North American recycling
  • 6.9. Sector involvement
  • 6.10. Recycling commercialisation stages
  • 6.11. Recycling technology breakdown
  • 6.12. State of recycling players
  • 6.13. Planned commercial plants
  • 6.14. Global recycling capacity
  • 6.15. Conclusions

7. COMPANY PROFILES

  • 7.1.1. List of companies included
  • 7.2. Automotive OEMs
    • 7.2.1. BMW's strategic partnerships for EV battery recycling
    • 7.2.2. Renault's circular economy efforts for Li-ion batteries
    • 7.2.3. Volkswagen plans for retired EV batteries
    • 7.2.4. Volkswagen's in-house Li-ion battery recycling plant
    • 7.2.5. Tesla's 'circular Gigafactory'
  • 7.3. Europe
    • 7.3.1. Accurec
    • 7.3.2. Akkuser Oy
    • 7.3.3. BASF
    • 7.3.4. Batrec
    • 7.3.5. Duesenfeld
    • 7.3.6. Duesenfeld process overview
    • 7.3.7. Fortum
    • 7.3.8. Fortum acquisition of Crisolteq
    • 7.3.9. Fortum intensify collaboration with BASF and Nornickel
    • 7.3.10. Fortum - further updates
    • 7.3.11. Glencore Nikkelverk
    • 7.3.12. Inobat Combining recycling and mining with Rio Tinto
    • 7.3.13. Nickelhütte Aue
    • 7.3.14. Northvolt's Revolt recycling program
    • 7.3.15. Northvolt
    • 7.3.16. ReLieVe Project (Suez, Eramet and BASF)
    • 7.3.17. Stena Recycling AB
    • 7.3.18. Umicore
  • 7.4. Asia
    • 7.4.1. 4R Energy
    • 7.4.2. 4R Energy's Namie plant
    • 7.4.3. Anhua Taisen
    • 7.4.4. CATL and Brunp Recycling
    • 7.4.5. Blast at Brunp Recycling factory
    • 7.4.6. Dowa Eco-System Co.
    • 7.4.7. EcoPro
    • 7.4.8. Ganfeng Lithium
    • 7.4.9. GEM
    • 7.4.10. GS E&C Involvement with Hyundai, including SungEel HiTech
    • 7.4.11. Guangdong Guanghua Sci-Tech
    • 7.4.12. Hefei Guoxuan High-Tech (Gotion)
    • 7.4.13. JX Nippon Metal Mining
    • 7.4.14. Kobar
    • 7.4.15. Kyoei Seiko
    • 7.4.16. Lohum Cleantech
    • 7.4.17. POSCO Joint venture with Huayou Cobalt
    • 7.4.18. Sumitomo
    • 7.4.19. Sumitomo processes
    • 7.4.20. SungEel HiTech POSCO, Samsung, LG Energy Solutions
    • 7.4.21. TES-AMM (1)
    • 7.4.22. TES-AMM (2)
  • 7.5. North America
    • 7.5.1. American Manganese
    • 7.5.2. Battery Resourcers
    • 7.5.3. Farasis
    • 7.5.4. Farasis recycling process patent
    • 7.5.5. Heritage Battery Recycling and 6K
    • 7.5.6. Li-Cycle
    • 7.5.7. Li-cycle business model
    • 7.5.8. Li-cycle process overview
    • 7.5.9. Lithion including Nouveau Monde Graphite and Hyundai Canada
    • 7.5.10. OnTo Technology
    • 7.5.11. Johnson Matthey and OnTo Technology
    • 7.5.12. Redivivus
    • 7.5.13. Redwood Materials
    • 7.5.14. Retriev Including Marubeni Corporation and Hobi International
  • 7.6. Rest of World (RoW)
    • 7.6.1. Envirostream
    • 7.6.2. Pure Battery Technologies (PBT)

8. MARKET FORECASTS

  • 8.1. Methodology explained
  • 8.2. Assumptions
  • 8.3. Global Li-ion battery recycling market 2020-2042: by region (GWh)
  • 8.4. Global Li-ion battery recycling market 2020-2042: by region (GWh) - summary
  • 8.5. Global Li-ion battery recycling market 2020-2042: by region (ktonnes)
  • 8.6. Global Li-ion battery recycling market 2020-2042: by region (ktonnes) - summary
  • 8.7. Global Li-ion battery recycling market 2020-2042: by chemistry (ktonnes)
  • 8.8. Global Li-ion battery recycling market 2020-2042: by chemistry (ktonnes) - summary
  • 8.9. Global Li-ion battery recycling market by chemistry in major regions
  • 8.10. Global recycled metals from Li-ion batteries 2020-2042 (ktonnes)
  • 8.11. Global recycled metals from Li-ion batteries 2020-2042 (ktonnes) - summary
  • 8.12. Global Li-ion battery recycling market value 2020-2042 ($ billion USD)
  • 8.13. Global Li-ion battery recycling market value share
  • 8.14. Global Li-ion battery recycling market value 2020-2042 ($ billion USD) - summary
  • 8.15. China
    • 8.15.1. Li-ion battery recycling market 2020-2042 in China: by sector (GWh)
    • 8.15.2. Li-ion battery recycling market 2020-2042 in China: by sector (GWh) - summary
    • 8.15.3. Li-ion battery recycling market 2020-2042 in China: by sector (ktonnes)
    • 8.15.4. Li-ion battery recycling market 2020-2042 in China: by sector (ktonnes) - summary
    • 8.15.5. Li-ion battery recycling market share by sector in China
    • 8.15.6. Li-ion battery recycling market 2020-2042 in China: by chemistry (GWh)
    • 8.15.7. Li-ion battery recycling market 2020-2042 in China: by chemistry (GWh) - summary
    • 8.15.8. Li-ion battery recycling market 2020-2042 in China: by chemistry (ktonnes)
    • 8.15.9. Li-ion battery recycling market 2020-2042 in China: by chemistry (ktonnes) - summary
    • 8.15.10. Li-ion battery recycling market share by cathode in China
    • 8.15.11. Recycled metals from Li-ion batteries 2020-2042 in China (ktonnes)
    • 8.15.12. Recycled metals from Li-ion batteries 2020-2042 in China (ktonnes) - summary
  • 8.16. Europe
    • 8.16.1. Li-ion battery recycling market 2020-2042 in Europe: by sector (GWh)
    • 8.16.2. Li-ion battery recycling market 2020-2042 in Europe : by sector (GWh) - summary
    • 8.16.3. Li-ion battery recycling market 2020-2042 in Europe: by sector (ktonnes)
    • 8.16.4. Li-ion battery recycling market 2020-2042 in Europe: by sector (ktonnes) - summary
    • 8.16.5. Li-ion battery recycling market share by sector in Europe
    • 8.16.6. Li-ion battery recycling market 2020-2042 in Europe: by chemistry (GWh)
    • 8.16.7. Li-ion battery recycling market 2020-2042 in Europe: by chemistry 2020-2042 (GWh) - summary
    • 8.16.8. Li-ion battery recycling market 2020-2042 in Europe: by chemistry (ktonnes)
    • 8.16.9. Li-ion battery recycling market 2020-2042 in Europe: by chemistry 2020-2042 (ktonnes) - summary
    • 8.16.10. Recycled metals from Li-ion batteries 2020-2042 in Europe (ktonnes)
    • 8.16.11. Recycled metals from Li-ion batteries 2020-2042 in Europe (ktonnes) - summary
  • 8.17. North America
    • 8.17.1. Li-ion battery recycling market 2020-2042 in North America: by sector (GWh)
    • 8.17.2. Li-ion battery recycling market 2020-2042 in North America: by sector (GWh) - summary
    • 8.17.3. Li-ion battery recycling market 2020-2042 in North America: by sector (ktonnes)
    • 8.17.4. Li-ion battery recycling market 2020-2042 in North America: by sector (ktonnes) - summary
    • 8.17.5. Li-ion battery recycling market share by sector in North America
    • 8.17.6. Li-ion battery recycling market 2020-2042 in North America: by chemistry (GWh)
    • 8.17.7. Li-ion battery recycling market 2020-2042 in North America: by chemistry (GWh) - summary
    • 8.17.8. Li-ion battery recycling market 2020-2042 in North America: by chemistry (ktonnes)
    • 8.17.9. Li-ion battery recycling market 2020-2042 in North America: by chemistry (ktonnes) - summary
    • 8.17.10. Recycled metals from Li-ion batteries in North America 2020-2042 (ktonnes)
    • 8.17.11. Recycled metals from Li-ion batteries in North America 2020-2042 (ktonnes) - summary
  • 8.18. Sector breakdown and methodology
    • 8.18.1. Global Li-ion battery recycling market 2020-2042: by sector (GWh)
    • 8.18.2. Global Li-ion battery recycling market 2020-2042 for consumer electronics: by product (GWh)
    • 8.18.3. Consumer electronics - collection rates
    • 8.18.4. Global Li-ion battery recycling market 2028-2042 for stationary energy storage (GWh)
    • 8.18.5. Global Li-ion battery recycling market 2028-2042 for stationary energy storage: by chemistry (GWh)
    • 8.18.6. Global Li-ion battery recycling market 2020-2042 for manufacturing scrap: by region (GWh)
    • 8.18.7. Global Li-ion battery recycling market 2020-2042 for car BEVs (GWh)
    • 8.18.8. Global Li-ion battery recycling market 2020-2042 for car BEVs: by chemistry (GWh)
    • 8.18.9. Global Li-ion battery recycling market 2020-2042 for non-car electric vehicles: by vehicle type (GWh)