表紙
市場調查報告書
商品編碼
1031452

燃料電池電動車 2022-2042年

Fuel Cell Electric Vehicles 2022-2042

出版日期: | 出版商: IDTechEx Ltd. | 英文 413 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
燃料電池電動車 2022-2042年
燃料電池乘用車、輕型商用車、卡車和公共汽車的燃料電池汽車部署、技術和全球前景分析。FCEV 單位銷量、燃料電池需求、電池需求和市場價值預測。

到 2042 年,燃料電池電動汽車的市場價值將達到 1600 億美元。

IDTechEx 的報告 "燃料電池電動汽車 2022-2042" 探討了乘用車、輕型商用車、卡車和城市客車市場上道路燃料電池汽車的發展現狀。該報告討論了燃料電池在這些不同運輸應用中部署的技術和經濟方面,以及 IDTechEx 對 2042 年燃料電池汽車未來的獨立展望。

為了應對氣候變化和糟糕的城市空氣質量帶來的威脅,許多國家/地區正在收緊排放法規,以減少公路運輸的影響。這項立法迫使汽車原始設備製造商遠離傳統的內燃機,轉向全電動和燃料電池電動動力系統。

雖然純電池電動汽車 (BEV) 市場開始在許多運輸領域起飛,但鋰離子電池的能量密度限制意味著電池電動汽車的行駛里程受到最大重量的限制車輛可以攜帶的電池數量以及該車輛內電池的可用空間。燃料電池技術為汽車製造商提供了一條擴大汽車續航里程的途徑,同時仍能顯著減少道路廢氣排放。

利用燃料電池,通過氫氣(作為燃料儲存在加壓罐中的燃料)和氧氣(來自淨化的進氣)之間的化學反應發電,燃料電池系統可以提供比當前電池電力系統更高的能量密度。與純電動汽車相比,這種改進的能量密度使汽車在加油之間的續航里程更長。

燃料電池系統的另一個顯著優勢是,為氫罐加油類似於為傳統內燃機車輛加油(幾分鐘),並且比相對較慢的充電(可能需要幾個小時)快得多。FCEV 的續航里程和加油優勢對於零排放重型卡車和巴士運營的可行性尤為重要,因為這些卡車和公交車的日常續航里程要求高、運營時間長,並且需要運營靈活性。

燃料電池乘用車

在車輛內部署燃料電池並不是一個新概念。包括豐田、福特、本田、通用、現代、大眾、戴姆勒和寶馬在內的主要原始設備製造商在過去 30 年中投入了大量資金來推進這項技術。對於乘用車來說,開發燃料電池已經投入了大量的精力和費用,但這些努力的結果是,到 2021 年,只有豐田和現代兩大 OEM 生產 FCEV 汽車,而生產的 FCEV 不到 10,000 輛。 2020 年銷售。與 FCEV 同期起步的純電動汽車,2020 年銷量超過 300 萬輛。

前 3 名 FCEV 汽車製造商市場份額

來源:IDTechEx "燃料電池電動汽車2022-2042"

制氫

燃料電池汽車的部署面臨著相當大的挑戰,包括降低燃料電池系統組件的成本以降低燃料電池汽車的前期成本,以及推出足夠的加氫基礎設施以使駕駛 FCEV 可行。同樣重要的是廉價的 "綠色" 氫的可用性,它是通過使用可再生電力電解水生產的,新 IDTechEx 報告中的分析強調,這對於 FCEV 提供其出售的環境證書至關重要。

在最發達的,最便宜的,可伸縮的當前可用的氫產生方法是蒸汽甲烷(天然氣)重整。H2產生通過該方法被稱為 "灰氫" 。然而,該方法產生的CO 2的體積顯著,這意味著使用灰色氫會提供超過現代內燃機汽車非常有限的減排潛力FCEV的油井到車輪的碳足跡。此IDTechEx的報告著眼於碳捕獲和儲存(CCS)技術,這些技術將需要大大減少從□□SMR碳排放,以產生所謂的 "藍氫" 。CCS尚未得到證實的比例,雖然是吸引了來自各大能源企業相當大的興趣。理想的途徑。將產生來自可再生能源包括風能,太陽能和水能,分解水為氫和氧通過電解的 "綠色氫" 使用電力,但是,這種方法的成本效益,因此依賴於利用廉價的可再生電力,這是尚未得到廣泛應用。

IDTechEx 估算
不同卡車動力系統的 gCO2/km 排放量

*2030 年綠色氫的優勢在於它被假定為 100% 可再生電力,而 2030 BEV 使用電網平均強度。

來源:IDTechEx "燃料電池電動汽車2022-2042" 。

儘管燃料電池汽車面臨巨大挑戰,但世界各國政府現在都在為零排放汽車的發展提供前所未有的支持,包括日本、韓國、德國和中國在內的幾個主要經濟體都支持零排放汽車的發展。從化石燃料到更廣泛的氫經濟的廣泛轉變。在政府的支持下,大型跨國能源公司越來越感興趣,他們已經認識到他們需要一個戰略來過渡到更清潔的燃料,以及幾家主要原始設備製造商(主要是豐田和現代)表現出的堅定承諾,目前有一個明確的協調一致的努力推動FCEV的開發和部署。

燃料電池卡車和公共汽車

IDTechEx 報告特別關注重型卡車和客車市場,這些市場運行要求苛刻的應用,需要較長的日常行駛里程,限制了加油時間的可用性,並且需要操作靈活性。雖然汽車行業的這一部分也面臨著越來越嚴格的立法要求以減少廢氣排放,但 BEV 解決方案在這些應用中的可行性可能較低,因為提供日常工作循環所需的鋰離子電池的重量和成本令人望而卻步。因此,這些應用提供了燃料電池汽車可以提供唯一可行的零排放解決方案的細分市場。新報告詳細探討了採用燃料電池商用車的挑戰,包括資本支出成本、H2 燃料成本對可行性的影響,以及當前 FCEV 部署的示例。

這份報告及其詳細的市場預測將引起汽車價值鏈中的公司的興趣:燃料電池和電解槽製造商、電池和電動機製造商、加氫基礎設施開發商、零件和系統供應商,以及能源領域的公司部門、政府機構、研究組織以及希望投資一項技術的公司或個人,該技術有可能成為交通部門脫碳工作的重要元素。

來自 IDTechEx 的分析師訪問

購買所有報告都包括與專家分析師最多 30 分鐘的電話時間,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要

  • 1.1. 報告概覽
  • 1.2. 什麼是燃料電池汽車?
  • 1.3. 燃料電池能量密度優勢
  • 1.4. 制氫方法
  • 1.5。運輸用氫氣
  • 1.6. 燃料電池汽車必須是綠色 H2 才能 "綠色"
  • 1.7. FCEV 續航里程優於 BEV 的現實
  • 1.8。零排放中重型卡車的範圍
  • 1.9. 挑戰:綠色氫成本降低
  • 1.10. 20 多年的燃料電池乘用車原型
  • 1.11. 生產中的燃料電池汽車
  • 1.12。2016-2020年FCEV汽車市場份額豐田、現代、本田
  • 1.13. 燃料電池輕型商用車
  • 1.14. Stellantis 推出燃料電池輕型商用車
  • 1.15。重型卡車:BEV 還是燃料電池?
  • 1.16。動力總成和範圍
  • 1.17. 重型汽車燃料電池系統成本
  • 1.18. FC-Bus 發展 30 年
  • 1.19. 客車:FCEV 和 BEV 都有作用?
  • 1.20。FCEV乘用車2018-2042年全球銷量預測
  • 1.21. 按地區分列的 FCEV LCV 銷售預測 2018-2042
  • 1.22。2018-2042 年按地區劃分的 FCEV 重型卡車銷量預測
  • 1.23。FCEV城市客車銷售預測各地區2018年至2042年
  • 1.24。FCEV (LCV, M&HDT, Bus, Car) 燃料電池需求 (MW)
  • 1.25。FCEV(LCV、M&HDT、公共汽車、汽車)市場規模(十億美元)

2. 簡介

  • 2.1. 交通脫碳的核心驅動力
  • 2.2. 運輸是溫室氣體排放的主要來源
  • 2.3. 交通溫室氣體排放:中國、美國和歐洲
  • 2.4. EU27+UK 公路運輸溫室氣體排放
  • 2.5. 美國公路運輸溫室氣體排放
  • 2.6. 日本公路運輸的溫室氣體排放
  • 2.7. 城市空氣質量
  • 2.8. 空氣質量差導致過早死亡
  • 2.9. 化石燃料禁令:解釋
  • 2.10. 官方或立法的化石燃料禁令(全國)
  • 2.11. 非官方、起草或提議的化石燃料禁令(全國)
  • 2.12. 化石燃料禁令(城市)
  • 2.13. ICE 的替代品 - 零排放電動汽車
  • 2.14. 什麼是燃料電池汽車?
  • 2.15。燃料電池汽車的吸引力
  • 2.16. 燃料電池的運輸應用
  • 2.17. 豐田移動路線圖
  • 2.18. 為什麼關注氫燃料電池汽車?
  • 2.19. 燃料電池汽車作為氫經濟的一部分
  • 2.20. 燃料電池汽車原型 30 年
  • 2.21. 氫燃料電池汽車的部署障礙
  • 2.22. 氫顏色的萬花筒
  • 2.23. 效率的根本問題
  • 2.24. 燃料電池面臨的挑戰
  • 2.25。挑戰:綠色氫成本降低
  • 2.26. 每英里燃料成本:FCEV、BEV、內燃機
  • 2.27. 量產以降低 FCEV 成本
  • 2.28. 零排放汽車:BEV 蓬勃發展
  • 2.29. FCEV與改進鋰離子電池競爭

3. 燃料電池:技術概述

  • 3.1. 燃料電池簡介
  • 3.2. 什麼是燃料電池?
  • 3.3. 質子交換膜燃料電池
  • 3.4. 燃料電池技術概述
  • 3.5。PEMFC 組件和材料
  • 3.6. 質子交換膜 - 聚合物電解質
  • 3.7. 質子交換膜 - 聚合物電解質
  • 3.8. 電極結構和三相邊界
  • 3.9. 雙極板 (BPP)
  • 3.10. 雙極板材料
  • 3.11. 燃料電池水管理
  • 3.12. PEMFC 冷卻方法
  • 3.13. 燃料成分
  • 3.14. 降低成本所需的大容量
  • 3.15。PEMFC 成本明細
  • 3.16. 燃料電池系統成本
  • 3.17。高溫 PEMFC(高溫-PEMFC)
  • 3.18. PEMFC 市場參與者
  • 3.19. 固體氧化物燃料電池:概述
  • 3.20。固體氧化物燃料電池:電解質
  • 3.21。固體氧化物燃料電池:密封和連接材料
  • 3.22。固體氧化物燃料電池:電池設計
  • 3.23。SOFC市場

4. 制氫

  • 4.1. 氫:能量載體
  • 4.2. 制氫方法
  • 4.3. 氫顏色的萬花筒
  • 4.4. H2 生產方法:蒸汽重整 (SMR)
  • 4.5。H2 生產方法:自熱重整 (ATR)
  • 4.6. H2 生產方法:電解
  • 4.7. 電解槽概述
  • 4.8. 市場上的 AEL
  • 4.9. 市場上的PEMEL
  • 4.10。SOEL公司
  • 4.11. 氫的來源
  • 4.12. 制氫方法
  • 4.13. 通過藍色獲得綠色氫的途徑
  • 4.14. BP Teesside 藍氫項目
  • 4.15。碳捕獲、利用和封存 (CCUS)
  • 4.16。點源碳捕獲 - 概述
  • 4.17。燃燒後 CO2 捕集
  • 4.18。CO2 分離方法
  • 4.19. 碳捕獲的成本
  • 4.20。CCUS的全球地位
  • 4.21。如果所有當前項目開始或保持運營,則碳捕獲能力
  • 4.22. EOR:CCS 的入口

5. 燃料電池客車

  • 5.1. 燃料電池乘用車展望
  • 5.2. 20 多年的燃料電池乘用車原型
  • 5.3. 燃料電池乘用車
  • 5.4。燃料電池轎車零部件
  • 5.5。汽車燃料電池系統和電堆的現狀
  • 5.6. FCEV 汽車運行模式
  • 5.7. 生產中的燃料電池汽車
  • 5.8。燃料電池乘用車的增長
  • 5.9. 2016-2020年FCEV汽車市場份額豐田、現代、本田
  • 5.10. FC-Car 車型選擇非常有限

6. 燃料電池乘用車

  • 6.1. 豐田燃料電池乘用車歷史
  • 6.2. 豐田汽車歐洲
  • 6.3. 豐田 Mirai 第一代 2015
  • 6.4. 豐田 Mirai 第一代組件
  • 6.5。豐田 Mirai 第二代
  • 6.6. Toyota Mirai 2nd Gen. 重大升級
  • 6.7. Toyota Mirai 2nd Gen H2 安全措施
  • 6.8. 購買獎勵
  • 6.9. 豐田未來銷量 2014-2021
  • 6.10. 減少燃料電池汽車的資本支出
  • 6.11. 豐田 FCEV 走普銳斯之路
  • 6.12. 豐田未來示範車隊
  • 6.13. 豐田 FCEV 目標
  • 6.14. 現代燃料電池乘用車歷史
  • 6.15。現代 FCEV 的改進
  • 6.16. 現代 NEXO SUV
  • 6.17。現代 NEXO 組件
  • 6.18。現代 NEXO 氫氣罐
  • 6.19。現代 FCEV 目標
  • 6.20。現代 NEXO 銷售
  • 6.21。韓國補貼激勵措施:FCEV 推動但 BEV 遙遙領先
  • 6.22。本田 Clarity 燃料電池
  • 6.23。本田 FCEV 開發時間表
  • 6.24。本田 Clarity FCEV 組件
  • 6.25。本田停產 FC-Clarity:需求疲軟
  • 6.26。寶馬燃料電池乘用車展望
  • 6.27。BMW i Hydrogen NEXT FCEV
  • 6.28。雷諾-日產燃料電池開發
  • 6.29。日產 e-NV200 SOFC 生物乙醇原型
  • 6.30。通用汽車燃料電池開發
  • 6.31。GM HYDROTEC 燃料電池進化
  • 6.32。通用汽車途徑 "全電動未來"
  • 6.33。戴姆勒梅賽德斯-奔馳 GLC F-CELL
  • 6.34。梅賽德斯-奔馳 GLC F-CELL 組件
  • 6.35。梅賽德斯-奔馳 GLC F-CELL 操作模式
  • 6.36。Mercedes End FCEV 汽車開發
  • 6.37。大眾汽車集團:拒絕FCEV乘用車
  • 6.38。大眾汽車集團 - 作為燃料的 H2 效率低下
  • 6.39。奧迪放棄FCEV開發
  • 6.40。奧迪 A7 Sportback H-Tron
  • 6.41。中國燃料電池汽車
  • 6.42。中國FCEV專注於商用車
  • 6.43。上汽中國FCEV汽車先鋒
  • 6.44。宣佈中國FCEV汽車
  • 6.45。各公司對 FCEV 汽車的態度

7. 燃料電池客車護欄

  • 7.1. FCEV 續航里程優於 BEV 的現實
  • 7.2. 價格比較 FCEV 和遠程 BEV
  • 7.3. FC-Car 加油/充電優勢?
  • 7.4. 乘用車二氧化碳排放量:FCEV、BEV 和 ICE
  • 7.5。發電產生的二氧化碳排放
  • 7.6. 燃料成本 汽油與氫
  • 7.7. 氫氣與電網電力的燃料成本
  • 7.8。挪威每千瓦時推進的燃料成本比較
  • 7.9。特斯拉對燃料電池不感興趣
  • 7.10。動力總成技術在中國的汽車排放量
  • 7.11。FCEV汽車結論
  • 7.12。為什麼要追求燃料電池汽車?

8. 燃料電池輕型商用車

  • 8.1. 輕型商用車定義
  • 8.2. LCV 部門的二氧化碳排放量
  • 8.3. LCV 電氣化的驅動因素
  • 8.4. 電動 LCV 市場驅動因素
  • 8.5。採用 BEV 和 FCEV LCV 的注意事項
  • 8.6. 2020 年歐洲 eLCV 銷量 - BEV 領先 FCEV
  • 8.7. 2020年中國新能源電動汽車銷量
  • 8.8. LCV 範圍要求
  • 8.9. 與卡車相比,LCV 範圍要求。
  • 8.10. BEV LCV 是否提供足夠的續航里程?
  • 8.11. 燃料電池輕型商用車
  • 8.12。燃料電池 LCV 規格示例
  • 8.13. 雷諾集團
  • 8.14. 雷諾氫氣系統圖
  • 8.15。雷諾和 Plug Power FC-LCV 合資企業
  • 8.16. Stellantis 燃料電池輕型商用車
  • 8.17。Stellantis - 雪鐵龍/標緻/沃克斯豪爾/歐寶 FC-Van
  • 8.18. Symbio 燃料電池系統
  • 8.19. 佛吉亞和Symbio
  • 8.20。巴拉德和利納馬輕型燃料電池聯盟
  • 8.21。燃料電池電動貨車 - Holthausen
  • 8.22。燃料電池輕型商用車展望

9. 燃料電池卡車

  • 9.1. 卡車分類
  • 9.2. 全球二氧化碳排放量:中型和重型卡車
  • 9.3. 卡車行業的溫室氣體排放
  • 9.4. 公路貨運市場
  • 9.5。全球公路貨運活動預計增加
  • 9.6. 節油技術領域
  • 9.7. 零(或接近零)尾氣排放卡車的興起
  • 9.8. 重型卡車:BEV 還是燃料電池?
  • 9.9. 零排放中重型卡車的範圍
  • 9.10。電池與燃料電池:行駛里程
  • 9.11。每日占空比需求
  • 9.12。動力總成和範圍
  • 9.13。金融驅動力:歐洲的立法
  • 9.14。重型卡車的外部成本
  • 9.15。重型卡車二氧化碳排放量:FCEV、BEV 和 ICE
  • 9.16。加利福尼亞州的高級清潔卡車法規
  • 9.17。燃料電池製造商在美國燃料電池卡車上的合作
  • 9.18. 燃料電池功率要求
  • 9.19。燃料電池卡車示例規格
  • 9.20。燃料電池卡車:現代
  • 9.21。現代氫動力
  • 9.22。Hyundai Pilot FC-Trucks 在瑞士
  • 9.23。現代 XCIENT 燃料電池卡車來到美國
  • 9.24。美國 XCEINT 更遠距離
  • 9.25。現代 XCIENT 4,000 單位中國訂單
  • 9.26。現代 8 級概念車
  • 9.27。燃料電池卡車:戴姆勒/沃爾沃
  • 9.28。戴姆勒開始測試 GenH2 卡車原型
  • 9.29。電池和燃料電池選項
  • 9.30。Cellcentric:戴姆勒和沃爾沃燃料電池合資企業
  • 9.31。沃爾沃集團:邁向無化石運輸
  • 9.32。斯堪尼亞將專注於純電動卡車
  • 9.33。Horizo□□n 燃料電池技術
  • 9.34。海中電機
  • 9.35。HYZON Motors 重型卡車示意圖
  • 9.36。尼古拉公司
  • 9.37。第一輛尼古拉卡車將是 BEV(不是 FCEV)
  • 9.38。Nikola ONE - 概念驗證
  • 9.39。尼古拉二號:新旗艦燃料電池卡車
  • 9.40。Nikola 商用卡車里程碑
  • 9.41。Nikola 是一家 "能源科技公司" ?
  • 9.42。IDTechEx Take:尼古拉的未來
  • 9.43。燃料電池卡車:KENWORTH (PACCAR)
  • 9.44。燃料電池卡車:TOYOTA/HINO
  • 9.45。燃料電池卡車:巴拉德/UPS
  • 9.46。燃料電池卡車:東風
  • 9.47。阿科拉能源
  • 9.48。H2 卡車與電池電動的成本
  • 9.49。重型汽車燃料電池系統成本
  • 9.50。綠色氫價格發展預測
  • 9.51。綠色氫電解生產成本美國/歐盟
  • 9.52。美國/歐盟電力來源的綠色氫成本
  • 9.53。由限電供電的電解槽
  • 9.54。FCEV卡車氫消耗量
  • 9.55。BOSAL/Ceres Power - SOFC 範圍擴展器
  • 9.56。今天的燃料電池和卡車

10。燃料電池巴士

  • 10.1. 燃料電池巴士
  • 10.2. FC-Bus 發展 30 年
  • 10.3. 燃料電池客車的主要優點/缺點
  • 10.4. 燃料電池巴士示意圖
  • 10.5。燃料電池巴士示例規格
  • 10.6. 其他零/低排放總線選項
  • 10.7. 市場空白:燃料電池客車的前景
  • 10.8。純電動公交車:競爭還是互補?
  • 10.9. FCEV 和 BEV 都有作用?
  • 10.10. 基礎設施成本 BEV vs FCEV Bus Depot
  • 10.11。示例分析:Foothill Transit,加利福尼亞州,486 號線
  • 10.12。示例分析:山麓交通
  • 10.13。交付所需的值班里程
  • 10.14。加州運輸機構里程分配
  • 10.15。每天零排放公交車範圍
  • 10.16。BEV 巴士的路線長度適用性
  • 10.17。電池改進會使燃料電池巴士過時嗎?
  • 10.18。循環能源公司
  • 10.19. 比較氫燃料成本與柴油成本
  • 10.20。全球燃料電池巴士部署
  • 10.21。中國燃料電池客車原始設備製造商
  • 10.22。中國燃料電池客車實例
  • 10.23。2020年中國新能源客車銷量
  • 10.24。中國FCEV支持
  • 10.25。2020年中國燃料電池裝機容量
  • 10.26。CEMT - 愛德曼氫能設備
  • 10.27。北京華泰通
  • 10.28。中協
  • 10.29。上海氫能推進技術
  • 10.30。REFIRE - 上海重塑能源科技
  • 10.31。其他中國燃料電池系統製造商
  • 10.32。美國燃料電池系統R&d(北京)有限公司
  • 10.33。豐田 SORA 燃料電池巴士
  • 10.34。豐田燃料電池客車的結構
  • 10.35。日本 FCEV 目標
  • 10.36。現代 ELEC CITY 燃料電池巴士
  • 10.37。韓國 FCEV 目標
  • 10.38。美國燃料電池客車:有源燃料電池客車項目
  • 10.39。美國燃料電池客車:規劃中的燃料電池客車項目
  • 10.40。美國燃料電池客車:燃料電池客車項目完成
  • 10.41。將美國車隊過渡到零排放公交車
  • 10.42。美國巴士車隊向零排放過渡的成本
  • 10.43。美國燃料電池巴士:燃料電池巴士價格
  • 10.44。燃料電池客車資本支出對比其他動力系統
  • 10.45。NREL 燃料電池巴士評估
  • 10.46。燃料電池巴士長期電池組性能數據
  • 10.47。FC 總線可靠性
  • 10.48。FC-Bus 燃料效率和燃料成本
  • 10.49。新傳單 Xcelsior CHARGE H2
  • 10.50。ElDorado National AXESS 燃料電池巴士
  • 10.51。ElDorado National AXESS 示意圖
  • 10.52。范胡爾
  • 10.53。美國校車
  • 10.54。美國 eBus 購車補貼
  • 10.55。歐洲燃料電池巴士部署
  • 10.56。歐盟 JIVE 2 目標
  • 10.57。Solaris Urbino 12 氫巴士
  • 10.58。CaetanoBus H2.City Gold
  • 10.59。豐田汽車歐洲
  • 10.60。SAFRA Businova 氫
  • 10.61。Wrightbus StreetDeck Hydroliner
  • 10.62。Van Hool A330 燃料電池氫動力客車
  • 10.63。ADL Enviro400 FCEV
  • 10.64。歐洲清潔巴士部署計劃
  • 10.65。燃料電池巴士的展望

11。加氫

  • 11.1. 氫的能量密度
  • 11.2. 氫與其他燃料相比
  • 11.3. 運輸氫氣
  • 11.4. 全球 H2 加氣基礎設施
  • 11.5。歐洲加氫基礎設施
  • 11.6. 歐洲氫能路線圖
  • 11.7. 清潔能源夥伴關係
  • 11.8。美國的燃料電池充電基礎設施
  • 11.9。基礎設施成本
  • 11.10。案例分析:氫氣成本
  • 11.11。中國加氫站路線圖
  • 11.12。中國加氫站
  • 11.13. 中國的FCEV部署會是綠色的嗎?
  • 11.14。氫氣卡車加油指南
  • 11.15。發展加氫基礎設施
  • 11.16。燃料電池卡車加油優勢
  • 11.17。長途貨運機會?
  • 11.18. FC-Trucks 促進更廣泛的 FCEV 部署
  • 11.19。Nikola Trucks:氫基礎設施
  • 11.20。基於材料的儲氫

12。FCEV 全球市場預測(LCV、M&HDT、CITY-BUS、CAR)

  • 12.1. 預測假設
  • 12.2. FCEV (LCV, M&HDT, Bus, Car) 2018-2042年全球銷量預測
  • 12.3. FCEV (LCV, M&HDT, Bus, Car) 燃料電池需求 (MW)
  • 12.4. FCEV(LCV、M&HDT、公共汽車、汽車)電池需求(GWh)
  • 12.5。FCEV(LCV、M&HDT、公共汽車、汽車)市場規模(十億美元)

13。市場預測 FC-CARS

  • 13.1. 預測假設
  • 13.2. FCEV乘用車2018-2042年全球銷量預測
  • 13.3. FCEV乘用車燃料電池需求(MW)
  • 13.4. FCEV 乘用車電池需求(GWh)
  • 13.5。FCEV 乘用車市場規模(十億美元)

14。市場預測 FC-LCV

  • 14.1. 預測假設
  • 14.2. 2018-2042年輕型商用車銷量預測(輛)
  • 14.3. FCEV LCV 各地區銷量預測(單位)
  • 14.4. FCEV LCV 燃料電池需求 (MW)
  • 14.5。FCEV LCV 電池需求 (GWh)
  • 14.6. FCEV LCV 市場規模(十億美元)

15。市場預測 FC 卡車

  • 15.1. 預測假設
  • 15.2. 2018-2042年中型卡車銷量預測(台)
  • 15.3. 按地區(單位)劃分的 FCEV MDT 銷售預測
  • 15.4. FCEV MDT 燃料電池需求 (MW)
  • 15.5。FCEV MDT 電池需求 (GWh)
  • 15.6。FCEV MDT 市場規模(十億美元)
  • 15.7。2018-2042年重型卡車銷量預測(輛)
  • 15.8。按地區(單位)劃分的 FCEV HDT 銷售預測
  • 15.9。FCEV HDT 燃料電池需求 (MW)
  • 15.10。FCEV HDT 電池需求 (GWh)
  • 15.11。FCEV HDT 市場規模(十億美元)

16。市場預測 FC 巴士

  • 16.1. 預測假設
  • 16.2. 2016-2042年BEV、PHEV和FCEV城市客車銷量(輛)
  • 16.3. FCEV城市客車按地區銷售預測(單位)
  • 16.4. FCEV 城市客車燃料電池需求 (MW)
  • 16.5。FCEV 城市客車電池需求(GWh)
  • 16.6. FCEV 城市公交車市場規模(十億美元)
目錄
Product Code: ISBN 9781913899776

Title:
Fuel Cell Electric Vehicles 2022-2042
Analysis of fuel cell vehicle deployment, technology and the global outlook for fuel cell passenger cars, light commercial vehicles, trucks, and buses. FCEV unit sales, fuel cell demand, battery demand and market value forecasts.

Fuel cell electric vehicles a $160 billion dollar market by 2042.

IDTechEx's report "Fuel Cell Electric Vehicles 2022-2042" explores the current state of on-road fuel cell vehicle development for passenger car, light commercial vehicle, truck, and city bus markets. The report discusses the technical and economic aspects of fuel cell deployment in these different transport applications with IDTechEx's independent outlook for the future of fuel cell vehicles to 2042.

In response to the threat posed by climate change and poor urban air quality many countries are tightening emissions regulation to reduce the impact from on-road transportation. This legislation is forcing automotive OEMs away from traditional combustion engines and toward all-electric and fuel cell electric powertrains.

Whilst the market for pure battery-electric vehicles (BEV) is beginning to take-off in many transport segments, the energy density limits of lithium-ion batteries means that the range of battery electric vehicles is restricted by both the maximum weight of batteries that can be carried by a vehicle and the available space for batteries within that vehicle. Fuel cell technologies offer automakers an avenue to greater vehicle range, whilst still delivering the crucial reduction in on-road exhaust emissions.

Utilising a fuel cell, which generates electricity through a chemical reaction between hydrogen (stored as fuel in pressurised tanks) and oxygen (from purified intake air), fuel cell systems can deliver a greater energy density than current battery electric powertrains. This improved energy density enables greater vehicle range between fuelling than can be delivered by battery electric vehicles.

A further significant benefit of fuel cell systems is that the refuelling of hydrogen tanks is similar to refuelling conventional combustion engine vehicles (a few minutes) and is considerably faster than comparatively slow electric charging, which can take several hours. The range and refuelling advantage of FCEV could be particularly critical for the viability of zero-emission heavy-duty truck and bus operations, where there is a high daily range requirement, long operating hours, and the need for operational flexibility.

Fuel Cell Passenger Cars

The deployment of fuel cells within vehicles is not a new concept. Major OEMs including Toyota, Ford, Honda, GM, Hyundai, Volkswagen, Daimler, and BMW have invested large sums over the past 30-years in advancing the technology. For passenger cars, a huge amount of effort and expense has gone into developing fuel cells, but the culmination of these efforts is the reality that in 2021 only two major OEMs, Toyota and Hyundai, have FCEV cars in production and fewer than 10,000 FCEV were sold in 2020. Battery electric vehicles, whose development began in earnest at a similar time to FCEV, sold more than 3 million units in 2020.

Top 3 FCEV Car Manufacturers Market Share

               Source: IDTechEx "Fuel Cell Electric Vehicles 2022-2042"

Hydrogen Generation

Fuel cell vehicle deployment faces considerable challenges, including decreasing the cost of fuel cell system components to reduce the upfront cost of fuel cell vehicles, and rolling out sufficient hydrogen refuelling infrastructure to make driving a FCEV workable. Also essential will be the availability of cheap 'green' hydrogen, produced by the electrolysis of water using renewable electricity, which analysis in the new IDTechEx report highlights will be vital to FCEVs delivering the environmental credentials on which they are being sold.

The most developed, cheapest, and scalable method currently available for hydrogen generation is steam methane (natural gas) reforming. H2 produced by this method is known as "grey hydrogen". This process however produces a significant volume of CO2, meaning the well-to-wheel carbon footprint of FCEV using grey hydrogen would offer a very limited emission reduction potential over modern combustion engine vehicles. This IDTechEx report looks at carbon capture and storage (CCS) technologies, which will be required to greatly reduce the carbon emission from SMR, to produce so called "blue hydrogen". CCS has yet to be demonstrated a scale, though is attracting considerable interest from major energy firms. The ideal pathway would be to generate "green hydrogen" using electricity from renewable sources including wind, solar and hydro, splitting water into hydrogen and oxygen through electrolysis, however, the cost effectiveness of this method therefore depends on utilising cheap renewable electricity, which is not yet widely available.

IDTechEx Estimate of gCO2/km Emission for
Different Truck Powertrains

*The advantage for green hydrogen in 2030 is because it is assumed to be produced from 100% renewable electricity whereas the 2030 BEV uses a grid average intensity.

Source: IDTechEx "Fuel Cell Electric Vehicles 2022-2042".

Whilst the challenges facing fuel cell vehicles are considerable, many governments around the world are now offering an unprecedented level of support for the development of zero-emission vehicles, with several major economies including Japan, Korea, Germany and China backing efforts for an extensive transformation away from fossil fuels to a wider hydrogen economy. With the backing of governments, increasing interest from large multinational energy firms who have recognised they need a strategy to transition to cleaner fuels, and strong commitment being shown by several major OEMs (though chiefly Toyota and Hyundai), there is currently a clear concerted effort to push FCEV development and deployment.

Fuel Cell Trucks and Buses

Of particular focus in the IDTechEx report are the heavy-duty truck and bus markets, which operate demanding applications that require long daily range, have constrained refuelling time availability, and require operational flexibility. Whilst this segment of the automotive industry is also facing tightening legislative requirements to reduce exhaust emissions, BEV solutions are potentially less feasible in these applications, with the weight and cost of the lithium-ion battery required to deliver the daily-duty cycle prohibitive. These applications therefore offer a market segment where fuel cell vehicles could offer the only viable zero-emission solution. The new report looks in detail at the challenge of employing fuel cell commercial vehicles, including CAPEX costs, the influence of H2 fuel cost on viability, and examples from current FCEV deployments.

This report and it's granular market forecasts will be of interest to companies across the automotive value chain: fuel cell and electrolyser manufacturers, battery and electric motor manufacturers, hydrogen refuelling infrastructure developers, parts and systems suppliers, along with companies in the energy sector, government agencies, research organisations, and companies or individuals looking to invest in a technology that has the potential to be a vital element in efforts to decarbonise the transportation sector.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report Overview
  • 1.2. What is a Fuel Cell Vehicle?
  • 1.3. Fuel Cell Energy Density Advantage
  • 1.4. Hydrogen Production Methods
  • 1.5. Hydrogen for Transport
  • 1.6. Must be Green H2 for Fuel Cell Vehicles to be 'Green'
  • 1.7. Reality of the FCEV Range Advantage over BEV
  • 1.8. Range of Zero Emission Medium and Heavy Trucks
  • 1.9. The Challenge: Green Hydrogen Cost Reduction
  • 1.10. 20+ Years of Fuel Cell Passenger Car Prototypes
  • 1.11. Fuel Cell Cars in Production
  • 1.12. FCEV Car Market Share Toyota, Hyundai, Honda, 2016-2020
  • 1.13. Fuel Cell LCVs
  • 1.14. Stellantis Launch Fuel Cell LCVs
  • 1.15. Heavy-Duty Trucks: BEV or Fuel Cell?
  • 1.16. Powertrain and Range
  • 1.17. Heavy Duty Vehicle Fuel Cell System Costs
  • 1.18. 30 years of FC-Bus Development
  • 1.19. Buses: Both FCEV and BEV to have a Role?
  • 1.20. FCEV Passenger Car Global Sales Forecast 2018-2042
  • 1.21. FCEV LCV Sales Forecast by Region 2018-2042
  • 1.22. FCEV Heavy-Duty Truck Sales Forecast by Region 2018-2042
  • 1.23. FCEV City Bus Sales Forecast by Region 2018-2042
  • 1.24. FCEV (LCV, M&HDT, Bus, Car) Fuel Cell Demand (MW)
  • 1.25. FCEV (LCV, M&HDT, Bus, Car) Market Size ($USD Billion)

2. INTRODUCTION

  • 2.1. The Core Driver for Transport Decarbonization
  • 2.2. Transport a Major Source of Greenhouse Gas Emission
  • 2.3. Transport GHG Emissions: China, US & Europe
  • 2.4. EU27+UK GHG Emission From Road Transport
  • 2.5. US GHG Emission From Road Transport
  • 2.6. Japan GHG Emission From Road Transport
  • 2.7. Urban Air Quality
  • 2.8. Poor Air Quality Causes Premature Deaths
  • 2.9. Fossil Fuel Bans: Explained
  • 2.10. Official or Legislated Fossil Fuel Bans (National)
  • 2.11. Unofficial, Drafted or Proposed Fossil Fuel Bans (National)
  • 2.12. Fossil Fuel Bans (Cities)
  • 2.13. Replacement for ICE - Zero Emission Electric Vehicles
  • 2.14. What is a Fuel Cell Vehicle?
  • 2.15. Attraction of Fuel Cell Vehicles
  • 2.16. Transport Applications for Fuel Cells
  • 2.17. Toyota Mobility Roadmap
  • 2.18. Why is the Focus on Hydrogen Fuel Cell Vehicles?
  • 2.19. Fuel Cell Vehicles a as Part of a Hydrogen Economy
  • 2.20. 30 Years of Fuel Cell Vehicle Prototypes
  • 2.21. Deployment Barriers for Hydrogen Fuel Cell Vehicles
  • 2.22. A Kaleidoscope of Hydrogen Colours
  • 2.23. The Fundamental Issue of Efficiency
  • 2.24. Challenges for Fuel Cells
  • 2.25. The Challenge: Green Hydrogen Cost Reduction
  • 2.26. Fuel Cost per Mile: FCEV, BEV, internal-combustion
  • 2.27. Volume Production to Decrease FCEV Cost
  • 2.28. Zero Emission Vehicles: BEV Booming
  • 2.29. FCEV Competing with Improving Li-ion Batteries

3. FUEL CELLS: TECHNOLOGY OVERVIEW

  • 3.1. Introduction to Fuel Cells
  • 3.2. What is a Fuel Cell?
  • 3.3. Proton Exchange Membrane Fuel Cells
  • 3.4. Fuel Cells Technologies Overview
  • 3.5. PEMFC Assembly and Materials
  • 3.6. Proton Exchange Membrane - Polymer Electrolyte
  • 3.7. Proton Exchange Membrane - Polymer Electrolyte
  • 3.8. Electrode Structure and the Three-Phase Boundary
  • 3.9. Bipolar Plates (BPP)
  • 3.10. Bipolar Plate Materials
  • 3.11. Fuel Cell Water Management
  • 3.12. PEMFC Cooling Methods
  • 3.13. Fuels Composition
  • 3.14. Great Volumes Required to Reduce Costs
  • 3.15. PEMFC Cost Break Down
  • 3.16. Fuel Cell System Costs
  • 3.17. High Temperature PEMFC (high temperature-PEMFC)
  • 3.18. PEMFC Market Players
  • 3.19. Solid Oxide Fuel Cell: Overview
  • 3.20. Solid Oxide Fuel Cell: Electrolyte
  • 3.21. Solid Oxide Fuel Cell: Sealing & Connecting Materials
  • 3.22. Solid Oxide Fuel Cell: Cell Design
  • 3.23. SOFC Market

4. HYDROGEN GENERATION

  • 4.1. Hydrogen: The Energy Carrier
  • 4.2. Hydrogen Production Methods
  • 4.3. A Kaleidoscope of Hydrogen Colours
  • 4.4. H2 Production Methods: Steam Reforming (SMR)
  • 4.5. H2 Production Methods: Autothermal Reforming (ATR)
  • 4.6. H2 Production Methods: Electrolysis
  • 4.7. Electrolyser Overview
  • 4.8. AEL on the market
  • 4.9. PEMEL on the market
  • 4.10. SOEL companies
  • 4.11. Sources of Hydrogen
  • 4.12. Hydrogen Production Methods
  • 4.13. Pathway to Green Hydrogen via Blue
  • 4.14. BP Teesside Blue Hydrogen Project
  • 4.15. Carbon capture, utilization and storage (CCUS)
  • 4.16. Point source carbon capture - overview
  • 4.17. Post-combustion CO2 capture
  • 4.18. Methods of CO2 separation
  • 4.19. The costs of carbon capture
  • 4.20. Global status of CCUS
  • 4.21. Carbon capture capacity if all current projects begin or remain in operation
  • 4.22. EOR: an on-ramp for CCS

5. FUEL CELL PASSENGER CARS

  • 5.1. Outlook for Fuel Cell Passenger Cars
  • 5.2. 20+ Years of Fuel Cell Passenger Car Prototypes
  • 5.3. Fuel Cell Passenger Cars
  • 5.4. Fuel Cell Passenger Car Components
  • 5.5. Status of Automotive Fuel Cell Systems and Stacks
  • 5.6. FCEV Cars Operating Modes
  • 5.7. Fuel Cell Cars in Production
  • 5.8. Growth of Fuel Cell Passenger Cars
  • 5.9. FCEV Car Market Share Toyota, Hyundai, Honda, 2016-2020
  • 5.10. Very Limited FC-Car Model Choice

6. FUEL CELL PASSENGER CAR PLAYERS

  • 6.1. Toyota Fuel Cell Passenger Cars History
  • 6.2. Toyota Motor Europe
  • 6.3. Toyota Mirai 1st Gen 2015
  • 6.4. Toyota Mirai 1st Gen Components
  • 6.5. Toyota Mirai 2nd Generation
  • 6.6. Toyota Mirai 2nd Gen. Significant Upgrades
  • 6.7. Toyota Mirai 2nd Gen H2 Safety Measures
  • 6.8. Purchase Incentives
  • 6.9. Toyota Mirai Sales 2014-2021
  • 6.10. Decreasing CAPEX of FCEV
  • 6.11. Toyota FCEV Following the Prius Pathway
  • 6.12. Toyota Mirai Demonstrator Fleets
  • 6.13. Toyota FCEV Goals
  • 6.14. Hyundai Fuel Cell Passenger Car History
  • 6.15. Hyundai FCEV Improvements
  • 6.16. Hyundai NEXO SUV
  • 6.17. Hyundai NEXO Components
  • 6.18. Hyundai NEXO Hydrogen Tanks
  • 6.19. Hyundai FCEV Goals
  • 6.20. Hyundai NEXO Sales
  • 6.21. Korea Subsidy Incentives: FCEV push but BEV far ahead
  • 6.22. Honda Clarity Fuel Cell
  • 6.23. Honda FCEV Development Timeline
  • 6.24. Honda Clarity FCEV Components
  • 6.25. Honda Discontinue FC-Clarity: Weak Demand
  • 6.26. BMW Fuel Cell Passenger Car Outlook
  • 6.27. BMW i Hydrogen NEXT FCEV
  • 6.28. Renault-Nissan Fuel Cell Development
  • 6.29. Nissan e-NV200 SOFC Bio-Ethanol Prototype
  • 6.30. General Motors Fuel Cell Development
  • 6.31. GM HYDROTEC Fuel Cell Evolution
  • 6.32. GM Pathway "An All Electric Future"
  • 6.33. Daimler Mercedes-Benz GLC F-CELL
  • 6.34. Mercedes-Benz GLC F-CELL Components
  • 6.35. Mercedes-Benz GLC F-CELL Operating Modes
  • 6.36. Mercedes End FCEV Car Development
  • 6.37. Volkswagen Group: No to FCEV Passenger Cars
  • 6.38. Volkswagen Group - H2 Inefficiency as a Fuel
  • 6.39. Audi Abandons FCEV Development
  • 6.40. Audi A7 Sportback H-Tron
  • 6.41. Chinese FCEV Cars
  • 6.42. China FCEV Focus on Commercial Vehicles
  • 6.43. SAIC China's FCEV Car Pioneer
  • 6.44. Announced Chinese FCEV Cars
  • 6.45. Attitude to FCEV Cars by Company

7. FUEL CELL PASSENGER CAR BARRIERS

  • 7.1. Reality of the FCEV Range Advantage over BEV
  • 7.2. Price Comparison FCEV and Long Range BEV
  • 7.3. FC-Car Fuelling / Charging Advantage?
  • 7.4. Passenger Car CO2 Emissions: FCEV, BEV & ICE
  • 7.5. CO2 Emission from Electricity Generation
  • 7.6. Fuelling Costs Petrol vs Hydrogen
  • 7.7. Fuelling Costs Hydrogen vs Grid Electricity
  • 7.8. Fuel cost comparison per kWh of propulsion in Norway
  • 7.9. Tesla No Interest in Fuel Cells
  • 7.10. Car Emissions by Powertrain Technology in China
  • 7.11. FCEV Car Conclusions
  • 7.12. Why Pursue Fuel Cell Cars?

8. FUEL CELL LIGHT COMMERCIAL VEHICLES

  • 8.1. Light Commercial Vehicles Definition
  • 8.2. CO2 emission from the LCV sector
  • 8.3. Drivers for LCV Electrification
  • 8.4. Electric LCV Market Drivers
  • 8.5. Considerations for BEV and FCEV LCV Adoption
  • 8.6. Europe eLCV Sales 2020 - BEV Leads FCEV
  • 8.7. China NEV eLCV Sales 2020
  • 8.8. LCV Range Requirement
  • 8.9. LCV Range Requirement Compared to Trucks.
  • 8.10. Do BEV LCVs offer sufficient range?
  • 8.11. Fuel Cell LCVs
  • 8.12. Example Fuel Cell LCV Specifications
  • 8.13. Groupe Renault
  • 8.14. Renault Hydrogen System Diagrams
  • 8.15. Renault and Plug Power FC-LCV Joint Venture
  • 8.16. Stellantis Fuel Cell LCVs
  • 8.17. Stellantis - Citroen / Peugeot / Vauxhall / Opel FC-Van
  • 8.18. Symbio Fuel Cell Systems
  • 8.19. Faurecia and Symbio
  • 8.20. Ballard and Linamar Light-Duty Fuel Cell Alliance
  • 8.21. Fuel Cell Electric Vans - Holthausen
  • 8.22. Outlook for Fuel Cell Light Commercial Vehicles

9. FUEL CELL TRUCKS

  • 9.1. Truck Classifications
  • 9.2. Global CO2 Emission: Medium & Heavy-Duty Trucks
  • 9.3. GHG Emission From the Truck Sector
  • 9.4. Road Freight Market
  • 9.5. Projected Increase in Global Road Freight Activity
  • 9.6. Fuel Saving Technology Areas
  • 9.7. The rise of zero (or near zero) exhaust emission trucks
  • 9.8. Heavy-Duty Trucks: BEV or Fuel Cell?
  • 9.9. Range of Zero Emission Medium and Heavy Trucks
  • 9.10. Batteries vs. Fuel Cells: Driving Range
  • 9.11. Daily Duty Cycle Demand
  • 9.12. Powertrain and Range
  • 9.13. Financial Driver: Legislation in Europe
  • 9.14. External Cost of Heavy-Duty Trucks
  • 9.15. Heavy-Duty Truck CO2 Emissions: FCEV, BEV & ICE
  • 9.16. California's Advanced Clean Trucks Regulation
  • 9.17. Fuel Cell Manufacturers Collaboration on US FC-Trucks
  • 9.18. Fuel Cell Power Requirement
  • 9.19. Fuel Cell Truck Example Specifications
  • 9.20. Fuel Cell Trucks: HYUNDAI
  • 9.21. Hyundai Hydrogen Mobility
  • 9.22. Hyundai Pilot FC-Trucks in Switzerland
  • 9.23. Hyundai XCIENT fuel cell Truck Coming to America
  • 9.24. US XCEINT Longer Range
  • 9.25. Hyundai XCIENT 4,000 Unit China Order
  • 9.26. Hyundai Class 8 Concept
  • 9.27. Fuel Cell Trucks: DAIMLER / VOLVO
  • 9.28. Daimler to Begin Testing GenH2 Truck Prototype
  • 9.29. Battery and Fuel Cell Options
  • 9.30. Cellcentric: Daimler and Volvo fuel cell Joint Venture
  • 9.31. Volvo Group: Toward Fossil Free Transport
  • 9.32. Scania to Concentrate on BEV-Trucks
  • 9.33. Horizon Fuel Cell Technologies
  • 9.34. HYZON Motors
  • 9.35. HYZON Motors Heavy-Duty Truck Schematic
  • 9.36. Nikola Corporation
  • 9.37. First Nikola Truck Will be a BEV (not FCEV)
  • 9.38. Nikola ONE - Proof of Concept
  • 9.39. Nikola TWO: New Flagship Fuel Cell Truck
  • 9.40. Nikola Commercial Truck Milestones
  • 9.41. Nikola an "Energy Technology Company"?
  • 9.42. IDTechEx Take: The Future for Nikola
  • 9.43. Fuel Cell Trucks: KENWORTH (PACCAR)
  • 9.44. Fuel Cell Trucks: TOYOTA / HINO
  • 9.45. Fuel Cell Trucks: BALLARD / UPS
  • 9.46. Fuel Cell Trucks: DONGFENG
  • 9.47. Arcola Energy
  • 9.48. Cost of H2 Trucks vs Battery Electric
  • 9.49. Heavy Duty Vehicle Fuel Cell System Costs
  • 9.50. Green Hydrogen Price Development Forecasts
  • 9.51. Green Hydrogen Electrolysis Production Costs US / EU
  • 9.52. Green Hydrogen Cost by Electricity Source US / EU
  • 9.53. Electrolyser Powered by Curtailed Electricity
  • 9.54. FCEV Truck Hydrogen Consumption
  • 9.55. BOSAL / Ceres Power - SOFC Range Extender
  • 9.56. Fuel Cells and Trucks Today

10. FUEL CELL BUSES

  • 10.1. Fuel Cell Buses
  • 10.2. 30 years of FC-Bus Development
  • 10.3. Main Advantages / Disadvantages of Fuel Cell Buses
  • 10.4. Fuel Cell Bus Schematic
  • 10.5. Fuel Cell Bus Example Specifications
  • 10.6. Other Zero / Low Emission Bus Options
  • 10.7. Gaps in the Market: Prospect for fuel cell Buses
  • 10.8. Battery Electric Buses: Rival or Complementary?
  • 10.9. Both FCEV and BEV to have a Role?
  • 10.10. Infrastructure Cost BEV vs FCEV Bus Depot
  • 10.11. Example Analysis: Foothill Transit, California, Line 486
  • 10.12. Example Analysis: Foothill Transit
  • 10.13. Delivering the Required Duty Milage
  • 10.14. Californian Transit Agencies Milage Distribution
  • 10.15. Zero Emission Bus Range Per Day
  • 10.16. Route Length Suitability for BEV Buses
  • 10.17. Will Battery Improvements make Fuel Cell Buses Obsolete?
  • 10.18. Loop Energy Inc
  • 10.19. Comparison Hydrogen Fuel Cost vs Diesel Cost
  • 10.20. Fuel Cell Bus Deployment Worldwide
  • 10.21. Chinese Fuel Cell Bus OEMs
  • 10.22. Chinese Fuel Cell Bus Examples
  • 10.23. NEV Bus Sales in China 2020
  • 10.24. Chinese FCEV Support
  • 10.25. China Fuel Cell Installed Capacity 2020
  • 10.26. CEMT - Edelman Hydrogen Energy Equipment
  • 10.27. Beijing SinoHytec
  • 10.28. Sinosynergy
  • 10.29. Shanghai Hydrogen Propulsion Technology
  • 10.30. REFIRE - Shanghai Reshaping Energy Technology
  • 10.31. Other Chinese Fuel Cell System Manufacturers
  • 10.32. United Fuel Cell System R&D (Beijing) Co.
  • 10.33. Toyota SORA Fuel Cell Bus
  • 10.34. Structure of Toyota fuel cell bus
  • 10.35. JAPAN FCEV Targets
  • 10.36. Hyundai ELEC CITY Fuel Cell Bus
  • 10.37. Korea FCEV Targets
  • 10.38. US Fuel Cell Buses: Active Fuel Cell Bus Project
  • 10.39. US Fuel Cell Buses: fuel cell Bus Projects in Planning
  • 10.40. US Fuel Cell Buses: fuel cell Bus Projects Completed
  • 10.41. Transitioning the US Fleet to Zero Emission Buses
  • 10.42. The Cost of US Bus Fleet Transition to Zero Emission
  • 10.43. US Fuel Cell Buses: fuel cell Bus Price
  • 10.44. fuel cell Bus CAPEX vs Other Powertrains
  • 10.45. NREL Fuel Cell Bus Evaluations
  • 10.46. Fuel Cell Bus Long-Term Stack Performance Data
  • 10.47. FC-Bus Reliability
  • 10.48. FC-Bus Fuel Efficiency and Fuel Cost
  • 10.49. New Flyer Xcelsior CHARGE H2
  • 10.50. ElDorado National AXESS Fuel Cell Bus
  • 10.51. ElDorado National AXESS Schematic
  • 10.52. Van Hool
  • 10.53. US School Buses
  • 10.54. US eBus Purchase Subsidies
  • 10.55. European Fuel Cell Bus Deployment
  • 10.56. EU JIVE 2 Targets
  • 10.57. Solaris Urbino 12 Hydrogen Bus
  • 10.58. CaetanoBus H2.City Gold
  • 10.59. Toyota Motor Europe
  • 10.60. SAFRA Businova Hydrogen
  • 10.61. Wrightbus StreetDeck Hydroliner
  • 10.62. Van Hool A330 fuel cell Hydrogen Bus
  • 10.63. ADL Enviro400 FCEV
  • 10.64. European Clean Bus Deployment Initiative
  • 10.65. Outlook for Fuel Cell Buses

11. HYDROGEN REFUELLING

  • 11.1. Energy Density of Hydrogen
  • 11.2. Hydrogen Compared to Other Fuels
  • 11.3. Transporting Hydrogen
  • 11.4. Worldwide H2 Refuelling Infrastructure
  • 11.5. Europe Hydrogen Refuelling Infrastructure
  • 11.6. Hydrogen Roadmap Europe
  • 11.7. The Clean Energy Partnership
  • 11.8. Fuel Cell Charging Infrastructure in the US
  • 11.9. Infrastructure Costs
  • 11.10. Case Study: Hydrogen Costs
  • 11.11. China Hydrogen Refuelling Station Roadmap
  • 11.12. China Hydrogen Refuelling Stations
  • 11.13. China's FCEV Deployment will it be Green?
  • 11.14. Guide to Hydrogen Truck Refuelling
  • 11.15. Developing Hydrogen Refuelling Infrastructure
  • 11.16. Fuel Cell Truck Refuelling Advantage
  • 11.17. Long-haul Trucking Opportunity?
  • 11.18. FC-Trucks Facilitate Wider FCEV Deployment
  • 11.19. Nikola Trucks: Hydrogen Infrastructure
  • 11.20. Material Based Hydrogen Storage

12. FCEV GLOBAL MARKET FORECASTS (LCV, M&HDT, CITY-BUS, CAR)

  • 12.1. Forecast Assumptions
  • 12.2. FCEV (LCV, M&HDT, Bus, Car) Global Sales Forecast 2018-2042
  • 12.3. FCEV (LCV, M&HDT, Bus, Car) Fuel Cell Demand (MW)
  • 12.4. FCEV (LCV, M&HDT, Bus, Car) Battery Demand (GWh)
  • 12.5. FCEV (LCV, M&HDT, Bus, Car) Market Size ($USD Billion)

13. MARKET FORECASTS FC-CARS

  • 13.1. Forecast Assumptions
  • 13.2. FCEV Passenger Car Global Sales Forecast 2018-2042
  • 13.3. FCEV Passenger Car Fuel Cell Demand (MW)
  • 13.4. FCEV Passenger Car Battery Demand (GWh)
  • 13.5. FCEV Passenger Car Market Size ($USD Billion)

14. MARKET FORECASTS FC-LCV

  • 14.1. Forecast Assumptions
  • 14.2. Light Commercial Vehicles Sales Forecast 2018-2042 (Units)
  • 14.3. FCEV LCV Sales Forecast by Region (Units)
  • 14.4. FCEV LCV Fuel Cell Demand (MW)
  • 14.5. FCEV LCV Battery Demand (GWh)
  • 14.6. FCEV LCV Market Size ($USD Billion)

15. MARKET FORECASTS FC-TRUCKS

  • 15.1. Forecast Assumptions
  • 15.2. Medium-Duty Truck Sales Forecast 2018-2042 (Units)
  • 15.3. FCEV MDT Sales Forecast by Region (Units)
  • 15.4. FCEV MDT Fuel Cell Demand (MW)
  • 15.5. FCEV MDT Battery Demand (GWh)
  • 15.6. FCEV MDT Market Size ($USD Billion)
  • 15.7. Heavy-Duty Truck Sales Forecast 2018-2042 (Units)
  • 15.8. FCEV HDT Sales Forecast by Region (Units)
  • 15.9. FCEV HDT Fuel Cell Demand (MW)
  • 15.10. FCEV HDT Battery Demand (GWh)
  • 15.11. FCEV HDT Market Size ($USD Billion)

16. MARKET FORECASTS FC-BUSES

  • 16.1. Forecast Assumptions
  • 16.2. BEV, PHEV and FCEV City Bus Sales 2016-2042 (Units)
  • 16.3. FCEV City Bus Sales Forecast by Region (Units)
  • 16.4. FCEV City Bus Fuel Cell Demand (MW)
  • 16.5. FCEV City Bus Battery Demand (GWh)
  • 16.6. FCEV City Bus Market Size ($USD Billion)