表紙
市場調查報告書
商品編碼
1030243

電動汽車用的電動機市場 2022-2032年

Electric Motors for Electric Vehicles 2022-2032

出版日期: | 出版商: IDTechEx Ltd. | 英文 321 Pages | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
電動汽車用的電動機 2022-2032年
電動汽車電機的全球市場。電機技術、軸向磁通、輪內和基準測試。精細的區域預測。汽車、兩輪車、公共汽車、貨車和卡車。

到 2032 年,每年需要超過 1 億台電動汽車電機。

快速增長的電動汽車市場對全球多個地區和不同車輛類別的電動機提出了巨大的需求。在這個市場中,我們看到了電機技術和拓撲、功率和扭矩密度、材料利用率和熱管理方面的趨勢。本報告針對純電動或混合動力汽車、貨車、卡車、公共汽車和兩輪車市場中的這些趨勢,提供 OEM 用例、基準測試和精細的市場預測。

電動機確實是電動汽車 (EV) 背後的驅動力。除了電池和電力電子設備外,電動機也是動力傳動系統中的關鍵部件。儘管牽引電機最初是在 1800 年代開發的,但今天市場仍在不斷發展,新設計、功率和扭矩密度的提高以及對所用材料的更多考慮。這些不僅僅是通過軸向磁通電機和各種原始設備製造商完全消除稀土等發展的漸進式改進。

IDTechEx 關於 2022-2032 年電動汽車電機的最新報告詳細介紹了電動汽車電機市場中的 OEM 戰略、趨勢和新興技術。2015 年至 2020 年間在多個地理區域銷售的 250 多種電動汽車模型的廣泛模型數據庫有助於對電機類型、性能、熱管理和市場份額進行精細的市場分析。主要原始設備製造商的技術和戰略被考慮用於汽車、兩輪車、輕型商用車(貨車)、卡車和公共汽車,以及幾個用例和幾個電機單元的基準測試。新興技術也涉及到 2032 年的市場預測,例如軸向磁通和輪轂電機。

IDTechEx 分析純電動汽車和新興替代品中電機的關鍵參數。資料來源:電動汽車電機。

軸向磁通和其他新興選項

一項關鍵的新興電機技術是軸向磁通技術。軸向磁通電機中的磁通量平行於旋轉軸(與徑向磁通電機中的垂直軸相比)。雖然幾乎整個 EV 市場都在使用徑向磁通電機,但軸向磁通電機具有多種優勢。這些包括增加的功率和扭矩密度以及適合在各種場景中集成的薄餅形狀因子。儘管之前缺乏採用,但該技術已經發展到我們已經看到了極大興趣的狀態。戴姆勒收購了主要參與者 YASA 以在即將推出的 AMG 電動平台中使用他們的電機,而雷諾已與 WHYLOT 合作,從 2025 年開始在其混合動力車中使用軸向磁通電機。如今汽車 EV 的軸向磁通市場非常小,但 IDTechEx 預計會有大幅增長未來 10 年需求旺盛,首先應用於高性能汽車和某些混合動力汽車。IDTechEx 還看到了輪轂電機和開關磁阻電機等典型 EV 電機的其他替代品的一些有前景的應用。

IDTechEx 預測對汽車軸向磁通電機的需求將大幅增加。資料來源:電動汽車電機。

材料和稀土

電動汽車電機市場的一個關鍵考慮因素是磁性材料。從 2015 年到 2020 年,永磁 (PM) 電機在電動汽車市場中的份額始終保持在 75% 以上。這些電機中使用的磁鐵通常富含稀土,主要是釹,但也經常含有一系列重稀土,如鏑。這些永磁電機具有出色的功率密度和效率。然而,除了主要限於中國的供應鏈之外,稀土還擔心採礦和廢物問題。2011 年,中國限制這些材料的出口導致價格大幅上漲,價格約為上年的 5 倍。這些因素結合在一起,導致多家原始設備製造商設計不含稀土的電機,例如雷諾在 Zoe 中的繞線轉子設計和奧迪在 e-tron 中的感應電機。雖然雷諾是使用繞線轉子設計的主要 OEM,但寶馬在其第 5 代驅動器中採用了類似的設計。然而,稀土價格已經穩定並保持相當穩定,我們已經看到其他人轉向 PM 設計,例如特斯拉和奧迪的下一代車型。2021年上半年釹的價格再次大幅上漲,再次給這個市場帶來了不確定性。儘管存在這些擔憂,IDTechEx 預計 PM 設計仍將是未來電動機的主要形式,儘管重點是稀土,尤其是重稀土的減少。

絕大多數汽車市場都在使用永磁電機。資料來源:電動汽車電機。

主要報告內容:

BEV、PHEV 和 HEV 的電動機市場分析,涉及汽車、兩輪車、輕型商用車(貨車)、卡車和公共汽車,包括:

  • 對不同的電機類型/拓撲進行基準測試
  • OEM 策略
  • 電動汽車行業趨勢及其對電動機的影響
  • 電機設計趨勢
  • 新興電機技術和基準測試:軸向磁通、輪內和開關磁阻
  • 材料利用:磁鐵(包括稀土)和繞組(圓形或髮夾)
  • 電動機的熱管理
  • 電動汽車用例和基準測試
  • 公司簡介,包括面試

來自 IDTechEx 的分析師訪問

購買所有報告都包括與專家分析師最多 30 分鐘的電話時間,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要

  • 1.1. 電動機
  • 1.2. 電動牽引電機類型
  • 1.3. 電動牽引電機的基準測試
  • 1.4. 電動機類型市場份額概覽(2020 年)
  • 1.5。按車輛和傳動系統劃分的電機總數預測
  • 1.6. 按車輛和傳動系統的總電機功率預測
  • 1.7. 按車輛和傳動系統劃分的汽車市場總規模預測
  • 1.8。預測評論
  • 1.9. 汽車電機預測(電機類型)
  • 1.10. 電動牽引電機技術趨勢評述
  • 1.11. 汽車電機預測(區域)
  • 1.12。汽車電機預測(傳動系統)
  • 1.13. 汽車電動機價值 $ 預測(傳動系統)
  • 1.14. 電動兩輪車:功率等級
  • 1.15。按功率等級的電動兩輪車電機預測
  • 1.16。電機數量、類型和功率趨勢:輕型商用車 (LCV)
  • 1.17. LCV 電機預測(傳動系統)
  • 1.18. 卡車電機類型市場份額和功率輸出要求
  • 1.19. 卡車電動機預測(動力傳動系統和類別)
  • 1.20。電動巴士馬達
  • 1.21. 巴士電機預測(動力傳動系統)
  • 1.22。HEV汽車製造商市場份額
  • 1.23。全球 HEV 汽車電機-發電機需求預測
  • 1.24。軸向磁通電機
  • 1.25。商用軸向磁通電機的基準
  • 1.26。汽車軸向磁通電機預測
  • 1.27。輪轂電機
  • 1.28。輪轂電機預測
  • 1.29。BEV 的軸向通量和輪內基準
  • 1.30。磁鐵價格上漲風險
  • 1.31。圓形繞組與棒形繞組:原始設備製造商
  • 1.32。冷卻技術:OEM 策略
  • 1.33。BEV 功率密度基準測試
  • 1.34。2021 年按車輛類別劃分的平均電機功率 (kWp)
  • 1.35。電機磁鐵材料預測(噸)
  • 1.36。銅鋁繞組預測(噸)
  • 1.37。訪問 10 個 IDTechEx 門戶配置文件

2. 簡介

  • 2.1. 電動汽車:基本原理
  • 2.2. 並聯和串聯混合動力:解釋
  • 2.3. 電動汽車:典型規格
  • 2.4. 行業術語
  • 2.5. 電動機:持續發展
  • 2.6. COVID-19 對電機行業的影響

3. 電動牽引電機的類型和基準

  • 3.1.1. 電動牽引電機類型
  • 3.1.2. 電動牽引電機的基準測試
  • 3.1.3. 峰與連續屬性
  • 3.1.4. 效率
  • 3.1.5。無刷直流電機 (BLDC):工作原理
  • 3.1.6。BLDC 電機:優點,缺點
  • 3.1.7。BLDC 電機:基準分數
  • 3.1.8。永磁同步電機 (PMSM):工作原理
  • 3.1.9。PMSM:優點,缺點
  • 3.1.10。PMSM:基準分數
  • 3.1.11。PMSM 和 BLDC 之間的差異
  • 3.1.12。繞線轉子同步電機 (WRSM):工作原理
  • 3.1.13。雷諾的無磁電機
  • 3.1.14。WRSM 電機:基準分數
  • 3.1.15。WRSM:優點,缺點
  • 3.1.16。交流感應電機 (ACIM):工作原理
  • 3.1.17。交流感應電機 (ACIM)
  • 3.1.18。交流感應電機:基準分數
  • 3.1.19。交流感應電機:優點,缺點
  • 3.1.20。磁阻電機
  • 3.1.21。磁阻電機:工作原理
  • 3.1.22。開關磁阻電機 (SRM)
  • 3.1.23。開關磁阻電機:基準分數
  • 3.1.24。永磁輔助磁阻 (PMAR)
  • 3.1.25。PMAR Motors:基準分數
  • 3.1.26。再生
  • 3.2. 電動牽引電機:總結和基準測試結果
    • 3.2.1. 牽引電機結構及優點比較
    • 3.2.2. 電機效率比較
    • 3.2.3. 電動牽引電機的基準測試
    • 3.2.4. 多電機:解釋

4. 電動汽車的汽車市場

  • 4.1. 按地區劃分的 BEV 和 PHEV 電機類型市場份額
  • 4.2. 主要汽車製造商在 PMSM 上的收斂
  • 4.3. 電機類型市場份額預測
  • 4.4. 汽車電動牽引電機趨勢評述
  • 4.5。汽車電機預測(區域)
  • 4.6. 汽車電機預測(傳動系統)
  • 4.7. 汽車電動機價值 $ 預測(傳動系統)
  • 4.8. 汽車電機功率預測(區域)
  • 4.9. 汽車電機功率預測(傳動系統)
  • 4.10。汽車電動機價值 $ 預測(傳動系統)
  • 4.11. 電動汽車研究

5. 電動兩輪車

  • 5.1. 電動兩輪車的重要性
  • 5.2. 電動兩輪車:功率等級
  • 5.3. 電動兩輪車電壓特性
  • 5.4. 電動摩托車性能
  • 5.5。摩托車有獨特的要求
  • 5.6. 兩輪車中的電機技術
  • 5.7. 電動兩輪車的組件開發人員
  • 5.8。電動摩托車
  • 5.9. Magalec:用於賽車的電動馬達
  • 5.10. 哈雷戴維森 LiveWire
  • 5.11. 零摩托車
  • 5.12。按功率等級的電動兩輪車電機預測
  • 5.13. 電動兩輪車研究

6. 電動輕型商用車 (ELCV)

  • 6.1. 介紹
  • 6.2. LCV 定義
  • 6.3. eLCV 市場驅動因素
  • 6.4. 區域概要
  • 6.5。eLCV 中使用的電機
  • 6.6. 電機數量、類型和功率趨勢:LCV
  • 6.7. LCV 電機預測(傳動系統)
  • 6.8. 輕型商用車研究

7. 電動卡車

  • 7.1. 電動卡車:驅動程序和障礙
  • 7.2. 卡車分類
  • 7.3. 零排放中重型卡車的範圍
  • 7.4. 沃爾沃
  • 7.5。Meritor 供應 Hyliion、Volta 卡車、Lion Electric 和 Autocar 卡車
  • 7.6. 卡車電機類型市場份額和功率輸出要求
  • 7.7. 卡車電動機預測(動力傳動系統和類別)
  • 7.8。電動卡車研究

8. 電動巴士

  • 8.1. 總線類型
  • 8.2. 電動巴士採用的挑戰
  • 8.3. 公交車電氣化的驅動因素和時機
  • 8.4. 達納TM4
  • 8.5。設備製造商
  • 8.6. 採埃孚
  • 8.7. Traktionssysteme 奧地利 (TSA)
  • 8.8. 電動巴士馬達
  • 8.9. 巴士電機預測(動力傳動系統)
  • 8.10. 電動巴士研究

9. HEV 驅動技術

  • 9.1. HEV汽車製造商市場份額
  • 9.2. 混合動力協同驅動/豐田混合動力系統
  • 9.3. 混合動力協同驅動/豐田混合動力系統
  • 9.4. 本田
  • 9.5。本田運動混合動力系統
  • 9.6. 本田的 2 馬達混合動力系統
  • 9.7. 日產 Note e-POWER
  • 9.8. 現代索納塔混合動力車
  • 9.9. 豐田普銳斯驅動電機:2004-2010
  • 9.10。豐田普銳斯驅動電機:2004-2017
  • 9.11。混合 MG 的比較
  • 9.12。全球 HEV 汽車電機/發電機趨勢
  • 9.13。HEV 汽車 MG 趨勢和假設
  • 9.14。全球HEV汽車MG需求預測
  • 9.15。高壓混合動力汽車研究

10. 新興電機技術

  • 10.1.1. 特斯拉的碳纖維電機
  • 10.1.2. Equipmake:功率密度最高的電機?
  • 10.1.3. AVL 蜂鳥
  • 10.1.4. 雷諾潛在的下一代汽車
  • 10.2. 軸向磁通電機
    • 10.2.1. 徑向磁通電機
    • 10.2.2. 軸向磁通電機
    • 10.2.3. 徑向磁通與軸向磁通電機
    • 10.2.4. 有軛與無軛軸向通量
    • 10.2.5。軸向磁通電機:有趣的玩家
    • 10.2.6. 軸向磁通電機播放器列表
    • 10.2.7。飛機中的軸向磁通電機
    • 10.2.8. 西門子
    • 10.2.9。AVID EVO 10 kW/kg
    • 10.2.10。AVID登陸大訂單
    • 10.2.11。EMRAX
    • 10.2.12。麥格納克斯
    • 10.2.13。麥格力推進
    • 10.2.14。賽埃塔
    • 10.2.15。惠洛特
    • 10.2.16。WHYLOT 和雷諾
    • 10.2.17。YASA 軸向磁通電機
    • 10.2.18。YASA 和科尼賽克
    • 10.2.19。亞薩和法拉利
    • 10.2.20。YASA 供應 Makani 無人機
    • 10.2.21。戴姆勒收購 YASA
    • 10.2.22。商用軸向磁通電機的基準
    • 10.2.23。汽車軸向磁通電機預測
  • 10.3. 輪轂電機
    • 10.3.1. 輪轂電機
    • 10.3.2. 輪轂電機的風險與機遇
    • 10.3.3. 埃拉菲
    • 10.3.4. 寶石汽車
    • 10.3.5。日本電產
    • 10.3.6。百變電氣
    • 10.3.7。輪轂電機車輛示例
    • 10.3.8。輪轂電機的軸向磁通
    • 10.3.9。輪轂電機預測
  • 10.4. 軸向磁通和輪轂電機對比 BEV 電機
    • 10.4.1. BEV 的軸向通量和輪內基準
    • 10.4.2. BEV 的軸向通量和輪內基準
    • 10.4.3. 相對於傳統的軸向通量和輪內基準
  • 10.5。開關磁阻電機的出現?
    • 10.5.1。開關磁阻電機 (SRM)
    • 10.5.2. SRM 沒有永久磁鐵
    • 10.5.3. 先進電機 (AEM)
    • 10.5.4。AEM 和賓利
    • 10.5.5。RETORQ電機
    • 10.5.6。轉潮科技

11。電機材料

  • 11.1.1. 電動機需要哪些材料?
  • 11.2. 磁性材料
    • 11.2.1. 轉子中的磁性材料分佈
    • 11.2.2. ID4 與 Leaf 與 Model 3 轉子
    • 11.2.3. 電機磁鐵成分
    • 11.2.4. 稀土金屬開採
    • 11.2.5。中國對稀土的控制
    • 11.2.6. 磁鐵價格上漲風險
    • 11.2.7。減少電動機中稀土的使用
    • 11.2.8。減少電動機中稀土的使用
    • 11.2.9。沃爾沃資助 Niron 用於無稀土磁鐵
    • 11.2.10。OEM方式
    • 11.2.11。電機磁鐵材料預測(噸)
  • 11.3. 轉子和定子繞組
    • 11.3.1. 轉子中的鋁與銅
    • 11.3.2. 定子中銅的圓線與髮夾
    • 11.3.3. 名爵汽車(上汽)
    • 11.3.4. 大眾的MEB
    • 11.3.5。圓形繞組與棒形繞組:原始設備製造商
    • 11.3.6。髮夾式繞組區域市場份額
    • 11.3.7。鋁繞組與銅繞組
    • 11.3.8。示例:帶有鋁繞組的 SRM?
    • 11.3.9。銅鋁繞組預測(噸)
    • 11.3.10。總結與展望

12。電動機的熱管理

  • 12.1. 電動機:永磁與替代品
  • 12.2. 冷卻電動機
  • 12.3. 當前的 OEM 策略:空氣冷卻
  • 12.4. 當前 OEM 策略:油冷
  • 12.5。裡卡多的新型 48V 電機
  • 12.6. 當前 OEM 策略:水-乙二醇冷卻
  • 12.7. 電動機熱管理概述
  • 12.8。冷卻技術:OEM 策略
  • 12.9。電機冷卻技術市場份額及展望
  • 12.10。按功率輸出的電機冷卻策略
  • 12.11。液體冷卻的最新進展
  • 12.12。沖床動力總成
  • 12.13。新興技術:浸入式冷卻
  • 12.14。新興技術:製冷劑冷卻
  • 12.15。新興技術:相變材料
  • 12.16。灌封和封裝
  • 12.17。選擇正確的電機絕緣
  • 12.18。灌封和封裝:播放器

13。電動汽車:OEM 用例和供應合作夥伴關係

  • 13.1. 愛信精機、電裝和豐田汽車組建 BlueE Nexus
  • 13.2. 奧迪e-tron
  • 13.3. 奧迪e-tron
  • 13.4. 奧迪 Q4 e-tron
  • 13.5。博格華納收購德爾福
  • 13.6. 寶馬 i3 2016
  • 13.7. 寶馬第 5 代駕駛
  • 13.8. 雪佛蘭 Bolt Onwards (LG)
  • 13.9. FCA 和 Dana
  • 13.10。FCA 和達美航空
  • 13.11。FCA 和大陸
  • 13.12。菲亞特 500 電動 (GKN)
  • 13.13. 福特野馬 Mach-E(博格華納和麥格納)
  • 13.14。福特和捨弗勒
  • 13.15。通用 Ultium 驅動器
  • 13.16。現代 E-GMP(博格華納)
  • 13.17。捷豹 I-PACE (AAM)
  • 13.18. LG電子和麥格納
  • 13.19。洛茲敦汽車公司(Elaphe)
  • 13.20。日本電產:富士康會談
  • 13.21。日產聆風
  • 13.22。歐寶/標緻和Vitesco
  • 13.23。保時捷泰康
  • 13.24。Stellantis 共享平台 (Npe)
  • 13.25。特斯拉感應電機
  • 13.26。特斯拉 Model S
  • 13.27。特斯拉永磁電機
  • 13.28。特斯拉模型 3
  • 13.29。豐田普銳斯 2004 至 2010
  • 13.30。豐田普銳斯
  • 13.31。大眾 ID3/ID4
  • 13.32。雅馬哈
  • 13.33。其他電機製造商預測/目標

14。電動汽車:OEM 基準

  • 14.1. BEV 電機規格匯總
  • 14.2. BEV 功率密度基準測試
  • 14.3. BEV 功率密度基準測試
  • 14.4. BEV 功率和扭矩密度基準

15。預測和假設

  • 15.1. 預測方法和假設
  • 15.2. 汽車價格預測和假設
  • 15.3. 每輛車的電機和每輛車的 kWp 假設
  • 15.4. 按車輛和傳動系統劃分的電機總數預測
  • 15.5。按車輛和傳動系統的總電機功率預測
  • 15.6。按車輛和傳動系統劃分的汽車市場總規模預測
  • 15.7。汽車電機預測(區域)
  • 15.8。汽車電機預測(傳動系統)
  • 15.9。汽車電機預測(電機類型)
  • 15.10。汽車電機功率預測(區域)
  • 15.11。汽車電機功率預測(傳動系統)
  • 15.12。汽車電動機價值 $ 預測(傳動系統)
  • 15.13。按功率等級的電動兩輪車電機預測
  • 15.14。LCV 電機預測(傳動系統)
  • 15.15。卡車電動機預測(動力傳動系統和類別)
  • 15.16。巴士電機預測(動力傳動系統)
  • 15.17。全球HEV汽車MG需求預測
  • 15.18。汽車軸向磁通電機預測
  • 15.19。輪轂電機預測
  • 15.20。電機磁鐵材料預測(噸)
  • 15.21。銅鋁繞組預測(噸)
目錄
Product Code: ISBN 9781913899769

Title:
Electric Motors for Electric Vehicles 2022-2032
Global market for electric vehicle motors. Motor technology, axial flux, in-wheel and benchmarking. Granular regional forecasts. Cars, two-wheelers, buses, vans and trucks.

Over 100 million electric vehicle motors required per year by 2032.

The rapidly growing electric vehicle market puts a huge demand on electric motors across several global regions and different vehicle categories. Within this market, we are seeing trends around motor technology and topology, power and torque density, materials utilisation and thermal management. This report addresses these trends within the markets for battery-electric or hybrid cars, vans, trucks, buses and two-wheelers with OEM use-cases, benchmarking and granular market forecasts.

Electric motors truly are the driving force behind electric vehicles (EVs). In addition to the batteries and power electronics, the electric motor is a critical component within the drivetrain. Despite electric traction motors originally being developed in the 1800s, the market is still evolving today with new designs, improving power and torque density and more considerations around the materials used. These aren't just incremental improvements either with developments such as axial flux motors and various OEMs eliminating rare-earths altogether.

The latest report from IDTechEx on Electric Vehicle Motors 2022-2032 details OEM strategies, trends and emerging technologies within the motor market for EVs. An extensive model database of over 250 EV models sold between 2015-2020 in several geographic regions aids in a granular market analysis of motor type, performance, thermal management and market shares. Technologies and strategies of major OEMs are considered for cars, two-wheelers, light commercial vehicles (vans), trucks and buses along with several use-cases and benchmarking of several motor units. Emerging technologies are also addressed with market forecasts through to 2032 such as axial flux and in-wheel motors.

IDTechEx analyses key parameters of motors in BEVs and emerging alternatives. Source: Electric Vehicle Motors.

Axial Flux and Other Emerging Options

A key emerging motor technology is that of axial flux. The magnetic flux is parallel to the axis of rotation in an axial flux motor (compared to perpendicular in radial flux machines). Whilst almost the entire EV market is using a form of radial flux motor, axial flux motors present several benefits. These include increased power and torque density and a pancake form factor ideal for integration in various scenarios. Despite the previous lack of adoption, the technology has evolved to the state where we have seen significant interest. Daimler acquired key players YASA to use their motors in the upcoming AMG electric platform and Renault has partnered with WHYLOT to use axial flux motors in their hybrids starting in 2025. The axial flux market in automotive EVs is very small today but IDTechEx expects a huge increase in demand over the next 10 years, with first applications in high-performance vehicles and certain hybrid applications. IDTechEx also sees some promising applications for other alternatives to typical EV motors such as in-wheel motors and switched reluctance motors.

IDTechEx forecast a large increase in demand for automotive axial flux motors. Source: Electric Vehicle Motors.

Materials and Rare-earths

A key consideration for the EV motor market is that of magnetic materials. From 2015-2020 the share of permanent magnet (PM) motors in the electric car market remained consistently above 75%. The magnets used in these motors are typically rich in rare-earths, mainly neodymium, but also often contain a series of heavy rare-earth such as dysprosium. These PM motors present excellent power density and efficiency. However, rare-earths have concerns around mining and waste in addition to a supply chain largely confined to China. In 2011, China restricted exports of these materials resulting in a massive price spike with prices reaching approximately 5 times that of the previous year. These factors combined resulted in several OEMs designing motors without rare-earths such as Renault's wound rotor design in the Zoe and Audi's induction motor in the e-tron. Whilst Renault were the main OEM using a wound rotor design, BMW has adopted similar for their 5th generation drive. However, the price of rare-earths has settled and remained fairly consistent and we have seen others switch to PM designs such as Tesla and Audi's next-generation models. The price of neodymium has risen drastically again in the first half of 2021, once again creating uncertainty in this market. Despite these concerns, IDTechEx expects PM designs to remain the dominant form of electric motor going into the future albeit with a focus on rare-earth and especially heavy rare-earth reductions.

The vast majority of the car market is using permanent magnet motors. Source: Electric Vehicle Motors.

Key Report Content:

Analysis of the electric motor markets in BEVs, PHEVs and HEVs across cars, two-wheelers, light commercial vehicles (vans), trucks and buses including:

  • Benchmarking different motor types/topologies
  • OEM strategies
  • EV industry trends and the impact on electric motors
  • Trends in motor design
  • Emerging motor technologies and benchmarking: axial flux, in-wheel and switched reluctance
  • Materials utilization: magnets (including rare earths) and windings (round or hairpin)
  • Thermal management of electric motors
  • EV use-cases and benchmarking
  • Company profiles including interviews

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Electric Motors
  • 1.2. Electric Traction Motor Types
  • 1.3. Benchmarking Electric Traction Motors
  • 1.4. Overview of Electric Motor Type Market Share (2020)
  • 1.5. Total Motors Forecast by Vehicle and Drivetrain
  • 1.6. Total Motor Power Forecast by Vehicle and Drivetrain
  • 1.7. Total Motor Market Size Forecast by Vehicle and Drivetrain
  • 1.8. Forecast Commentary
  • 1.9. Automotive Electric Motor Forecast (Motor Type)
  • 1.10. Commentary on Electric Traction Motor Tech Trends
  • 1.11. Automotive Electric Motor Forecast (Regional)
  • 1.12. Automotive Electric Motor Forecast (Drivetrain)
  • 1.13. Automotive Electric Motor Value $ Forecast (Drivetrain)
  • 1.14. Electric Two-wheelers: Power Classes
  • 1.15. Electric Two-wheelers Motor Forecast by Power Class
  • 1.16. Motor Number, Type and Power Trends: Light Commercial Vehicles (LCV)
  • 1.17. LCV Electric Motor Forecast (Drivetrain)
  • 1.18. Truck Motor Type Market Share and Power Output Requirements
  • 1.19. Truck Electric Motor Forecast (Drivetrain & Category)
  • 1.20. Electric Bus Motors
  • 1.21. Bus Electric Motor Forecast (Drivetrain)
  • 1.22. HEV Car Manufacturer Market Share
  • 1.23. Global HEV Car Motor-Generator Demand Forecast
  • 1.24. Axial Flux Motors
  • 1.25. Benchmark of Commercial Axial Flux Motors
  • 1.26. Automotive Axial Flux Motor Forecast
  • 1.27. In-wheel Motors
  • 1.28. In-wheel Motors Forecast
  • 1.29. Axial Flux and In-wheel Benchmark against BEVs
  • 1.30. Magnet Price Increase Risk
  • 1.31. Round vs Bar Windings: OEMs
  • 1.32. Cooling Technology: OEM Strategies
  • 1.33. BEV Power Density Benchmarking
  • 1.34. Average Motor Power 2021 by Vehicle Category (kWp)
  • 1.35. Materials in Motor Magnets Forecast (tonnes)
  • 1.36. Copper and Aluminium Winding Forecast (tonnes)
  • 1.37. Access to 10 IDTechEx Portal Profiles

2. INTRODUCTION

  • 2.1. Electric Vehicles: Basic Principle
  • 2.2. Parallel and Series Hybrids: Explained
  • 2.3. Electric Vehicles: Typical Specs
  • 2.4. Industry Terms
  • 2.5. Electric Motors: Continued Developments
  • 2.6. The Impact of COVID-19 on the Electric Motor Industry

3. TYPES OF ELECTRIC TRACTION MOTOR AND BENCHMARKING

  • 3.1.1. Electric Traction Motor Types
  • 3.1.2. Benchmarking Electric Traction Motors
  • 3.1.3. Peak vs Continuous Properties
  • 3.1.4. Efficiency
  • 3.1.5. Brushless DC Motors (BLDC): Working Principle
  • 3.1.6. BLDC Motors: Advantages, Disadvantages
  • 3.1.7. BLDC Motors: Benchmarking Scores
  • 3.1.8. Permanent Magnet Synchronous Motors (PMSM): Working Principle
  • 3.1.9. PMSM: Advantages, Disadvantages
  • 3.1.10. PMSM: Benchmarking Scores
  • 3.1.11. Differences Between PMSM and BLDC
  • 3.1.12. Wound Rotor Synchronous Motor (WRSM): Working Principle
  • 3.1.13. Renault's Magnet Free Motor
  • 3.1.14. WRSM Motors: Benchmarking Scores
  • 3.1.15. WRSM: Advantages, Disadvantages
  • 3.1.16. AC Induction Motors (ACIM): Working Principle
  • 3.1.17. AC Induction Motor (ACIM)
  • 3.1.18. AC Induction Motors: Benchmarking Scores
  • 3.1.19. AC Induction Motor: Advantages, Disadvantages
  • 3.1.20. Reluctance Motors
  • 3.1.21. Reluctance Motor: Working Principle
  • 3.1.22. Switched Reluctance Motor (SRM)
  • 3.1.23. Switched Reluctance Motors: Benchmarking Scores
  • 3.1.24. Permanent Magnet Assisted Reluctance (PMAR)
  • 3.1.25. PMAR Motors: Benchmarking Scores
  • 3.1.26. Regeneration
  • 3.2. Electric Traction Motors: Summary and Benchmarking Results
    • 3.2.1. Comparison of Traction Motor Construction and Merits
    • 3.2.2. Motor Efficiency Comparison
    • 3.2.3. Benchmarking Electric Traction Motors
    • 3.2.4. Multiple Motors: Explained

4. MOTOR MARKET IN ELECTRIC CARS

  • 4.1. BEV and PHEV Motor Type Market Share by Region
  • 4.2. Convergence on PMSM by Major Automakers
  • 4.3. Motor Type Market Share Forecast
  • 4.4. Commentary on Electric Traction Motor Trends in Cars
  • 4.5. Automotive Electric Motor Forecast (Regional)
  • 4.6. Automotive Electric Motor Forecast (Drivetrain)
  • 4.7. Automotive Electric Motor Value $ Forecast (Drivetrain)
  • 4.8. Automotive Electric Motor Power Forecast (Regional)
  • 4.9. Automotive Electric Motor Power Forecast (Drivetrain)
  • 4.10. Automotive Electric Motor Value $ Forecast (Drivetrain)
  • 4.11. Electric Car Research

5. ELECTRIC TWO-WHEELERS

  • 5.1. The Importance of Electric Two-wheelers
  • 5.2. Electric Two-wheelers: Power Classes
  • 5.3. Electric Two-wheeler Voltage Characteristics
  • 5.4. Electric Motorcycle Performance
  • 5.5. Motorcycles Have Unique Requirements
  • 5.6. Motor Technologies in Two-wheelers
  • 5.7. Component Developers for Electric Two Wheelers
  • 5.8. Electric Motorcycles
  • 5.9. Magalec: Electric Motors for Racing Bikes
  • 5.10. Harley-Davidson LiveWire
  • 5.11. Zero Motorcycles
  • 5.12. Electric Two-wheelers Motor Forecast by Power Class
  • 5.13. Electric Two-wheeler Research

6. ELECTRIC LIGHT COMMERCIAL VEHICLES (ELCV)

  • 6.1. Introduction
  • 6.2. LCV Definition
  • 6.3. eLCV Market Drivers
  • 6.4. Regional Summary
  • 6.5. Motors Used in eLCVs
  • 6.6. Motor Number, Type and Power Trends: LCV
  • 6.7. LCV Electric Motor Forecast (Drivetrain)
  • 6.8. Light Commercial Vehicle Research

7. ELECTRIC TRUCKS

  • 7.1. Electric Trucks: Drivers and Barriers
  • 7.2. Truck Classifications
  • 7.3. Range of Zero Emission Medium and Heavy Trucks
  • 7.4. Volvo
  • 7.5. Meritor supplies Hyliion, Volta Trucks, Lion Electric and Autocar Trucks
  • 7.6. Truck Motor Type Market Share and Power Output Requirements
  • 7.7. Truck Electric Motor Forecast (Drivetrain & Category)
  • 7.8. Electric Truck Research

8. ELECTRIC BUSES

  • 8.1. Bus Types
  • 8.2. Challenges for Electric Bus Adoption
  • 8.3. Drivers and Timing of Bus Electrification
  • 8.4. Dana TM4
  • 8.5. Equipmake
  • 8.6. ZF
  • 8.7. Traktionssysteme Austria (TSA)
  • 8.8. Electric Bus Motors
  • 8.9. Bus Electric Motor Forecast (Drivetrain)
  • 8.10. Electric Bus Research

9. HEV DRIVE TECHNOLOGY

  • 9.1. HEV Car Manufacturer Market Share
  • 9.2. Hybrid Synergy Drive/ Toyota Hybrid System
  • 9.3. Hybrid Synergy Drive/ Toyota Hybrid System
  • 9.4. Honda
  • 9.5. Honda Sport Hybrid Systems
  • 9.6. Honda's 2 Motor Hybrid System
  • 9.7. Nissan Note e-POWER
  • 9.8. Hyundai Sonata Hybrid
  • 9.9. Toyota Prius Drive Motor: 2004-2010
  • 9.10. Toyota Prius Drive Motor: 2004-2017
  • 9.11. Comparison of Hybrid MGs
  • 9.12. Global HEV Car Motor/Generator Trends
  • 9.13. HEV Car MGs Trends and Assumptions
  • 9.14. Global HEV Car MG Demand Forecast
  • 9.15. High Voltage Hybrid Electric Vehicle Research

10. EMERGING MOTOR TECHNOLOGIES

  • 10.1.1. Tesla's Carbon Wrapped Motor
  • 10.1.2. Equipmake: The Most Power Dense Motor?
  • 10.1.3. AVL Hummingbird
  • 10.1.4. Renault's Potential Next Generation Motor
  • 10.2. Axial Flux Motors
    • 10.2.1. Radial Flux Motors
    • 10.2.2. Axial Flux Motors
    • 10.2.3. Radial Flux vs Axial Flux Motors
    • 10.2.4. Yoked vs Yokeless Axial Flux
    • 10.2.5. Axial Flux Motors: Interesting Players
    • 10.2.6. List of Axial Flux Motor Players
    • 10.2.7. Axial Flux Motors in Aircraft
    • 10.2.8. Siemens
    • 10.2.9. AVID EVO at 10 kW/kg
    • 10.2.10. AVID Landing Large Orders
    • 10.2.11. EMRAX
    • 10.2.12. Magnax
    • 10.2.13. Magelec Propulsion
    • 10.2.14. Saietta
    • 10.2.15. WHYLOT
    • 10.2.16. WHYLOT and Renault
    • 10.2.17. YASA Axial Flux Motors
    • 10.2.18. YASA and Koenigsegg
    • 10.2.19. YASA and Ferrari
    • 10.2.20. YASA Supplies Makani Drone
    • 10.2.21. Daimler Acquires YASA
    • 10.2.22. Benchmark of Commercial Axial Flux Motors
    • 10.2.23. Automotive Axial Flux Motor Forecast
  • 10.3. In-wheel Motors
    • 10.3.1. In-wheel Motors
    • 10.3.2. Risks and Opportunities for In-wheel Motors
    • 10.3.3. Elaphe
    • 10.3.4. Gem Motors
    • 10.3.5. Nidec
    • 10.3.6. Protean Electric
    • 10.3.7. Examples of Vehicles with In-wheel Motors
    • 10.3.8. Axial Flux for In-wheel Motors
    • 10.3.9. In-wheel Motors Forecast
  • 10.4. Axial Flux and In-wheel Motors Benchmarking Against BEV Motors
    • 10.4.1. Axial Flux and In-wheel Benchmark against BEVs
    • 10.4.2. Axial Flux and In-wheel Benchmark against BEVs
    • 10.4.3. Axial Flux and In-wheel Benchmark against Traditional
  • 10.5. Emergence of Switched Reluctance Motors?
    • 10.5.1. Switched Reluctance Motor (SRM)
    • 10.5.2. No Permanent Magnets for SRMs
    • 10.5.3. Advanced Electric Machines (AEM)
    • 10.5.4. AEM and Bentley
    • 10.5.5. RETORQ Motors
    • 10.5.6. Turntide Technologies

11. MATERIALS FOR ELECTRIC MOTORS

  • 11.1.1. Which Materials are Required for Electric Motors?
  • 11.2. Magnetic Materials
    • 11.2.1. Magnetic Material Distribution in Rotors
    • 11.2.2. ID4 vs Leaf vs Model 3 Rotors
    • 11.2.3. Magnet Composition for Motors
    • 11.2.4. Mining of Rare-Earth Metals
    • 11.2.5. China's Control of Rare-Earths
    • 11.2.6. Magnet Price Increase Risk
    • 11.2.7. Reducing Rare-Earth Usage in Electric Motors
    • 11.2.8. Reducing Rare-Earth Usage in Electric Motors
    • 11.2.9. Volvo Funding Niron for Rare-earth Free Magnets
    • 11.2.10. OEM Approaches
    • 11.2.11. Materials in Motor Magnets Forecast (tonnes)
  • 11.3. Rotor and Stator Windings
    • 11.3.1. Aluminium vs Copper in Rotors
    • 11.3.2. Round Wire vs Hairpins for Copper in Stators
    • 11.3.3. MG Motors (SAIC)
    • 11.3.4. VW's MEB
    • 11.3.5. Round vs Bar Windings: OEMs
    • 11.3.6. Hairpin Winding Regional Market Shares
    • 11.3.7. Aluminium vs Copper Windings
    • 11.3.8. Example: SRMs with Aluminium Windings?
    • 11.3.9. Copper and Aluminium Winding Forecast (tonnes)
    • 11.3.10. Summary and Outlook

12. THERMAL MANAGEMENT OF ELECTRIC MOTORS

  • 12.1. Electric Motors: Permanent Magnet vs Alternatives
  • 12.2. Cooling Electric Motors
  • 12.3. Current OEM Strategies: Air Cooling
  • 12.4. Current OEM Strategies: Oil Cooling
  • 12.5. Ricardo's New 48V Motor
  • 12.6. Current OEM Strategies: Water-glycol Cooling
  • 12.7. Electric Motor Thermal Management Overview
  • 12.8. Cooling Technology: OEM Strategies
  • 12.9. Motor Cooling Technology Market Share and Outlook
  • 12.10. Motor Cooling Strategy by Power Output
  • 12.11. Recent Advancements in Liquid Cooling
  • 12.12. Punch Powertrain
  • 12.13. Emerging Technologies: Immersion Cooling
  • 12.14. Emerging Technologies: Refrigerant Cooling
  • 12.15. Emerging Technologies: Phase Change Materials
  • 12.16. Potting & Encapsulation
  • 12.17. Choosing the Right Motor Insulation
  • 12.18. Potting & Encapsulation: Players

13. EV MOTORS: OEM USE-CASES AND SUPPLY PARTNERSHIPS

  • 13.1. Aisin Seiki, DENSO and Toyota Motor form BluE Nexus
  • 13.2. Audi e-tron
  • 13.3. Audi e-tron
  • 13.4. Audi Q4 e-tron
  • 13.5. BorgWarner Acquires Delphi
  • 13.6. BMW i3 2016
  • 13.7. BMW 5th Gen Drive
  • 13.8. Chevrolet Bolt Onwards (LG)
  • 13.9. FCA and Dana
  • 13.10. FCA and Delta
  • 13.11. FCA and Continental
  • 13.12. Fiat 500 Electric (GKN)
  • 13.13. Ford Mustang Mach-E (BorgWarner and Magna)
  • 13.14. Ford and Schaeffler
  • 13.15. GM Ultium Drive
  • 13.16. Hyundai E-GMP (BorgWarner)
  • 13.17. Jaguar I-PACE (AAM)
  • 13.18. LG Electronics and Magna
  • 13.19. Lordstown Motors (Elaphe)
  • 13.20. Nidec: Foxconn Talks
  • 13.21. Nissan Leaf
  • 13.22. Opel/Peugeot and Vitesco
  • 13.23. Porsche Taycan
  • 13.24. Stellantis Shared Platform (Npe)
  • 13.25. Tesla Induction Motor
  • 13.26. Tesla Model S
  • 13.27. Tesla PM Motor
  • 13.28. Tesla Model 3
  • 13.29. Toyota Prius 2004 to 2010
  • 13.30. Toyota Prius
  • 13.31. VW ID3/ID4
  • 13.32. Yamaha
  • 13.33. Other Motor Manufacturer Predictions/Targets

14. EV MOTORS: OEM BENCHMARKING

  • 14.1. BEV Motor Specification Summary
  • 14.2. BEV Power Density Benchmarking
  • 14.3. BEV Power Density Benchmarking
  • 14.4. BEV Power and Torque Density Benchmark

15. FORECASTS AND ASSUMPTIONS

  • 15.1. Forecast Methodology & Assumptions
  • 15.2. Motor Price Forecast and Assumptions
  • 15.3. Motor per Vehicle and kWp per Vehicle Assumptions
  • 15.4. Total Motors Forecast by Vehicle and Drivetrain
  • 15.5. Total Motor Power Forecast by Vehicle and Drivetrain
  • 15.6. Total Motor Market Size Forecast by Vehicle and Drivetrain
  • 15.7. Automotive Electric Motor Forecast (Regional)
  • 15.8. Automotive Electric Motor Forecast (Drivetrain)
  • 15.9. Automotive Electric Motor Forecast (Motor Type)
  • 15.10. Automotive Electric Motor Power Forecast (Regional)
  • 15.11. Automotive Electric Motor Power Forecast (Drivetrain)
  • 15.12. Automotive Electric Motor Value $ Forecast (Drivetrain)
  • 15.13. Electric Two-wheelers Motor Forecast by Power Class
  • 15.14. LCV Electric Motor Forecast (Drivetrain)
  • 15.15. Truck Electric Motor Forecast (Drivetrain & Category)
  • 15.16. Bus Electric Motor Forecast (Drivetrain)
  • 15.17. Global HEV Car MG Demand Forecast
  • 15.18. Automotive Axial Flux Motor Forecast
  • 15.19. In-wheel Motors Forecast
  • 15.20. Materials in Motor Magnets Forecast (tonnes)
  • 15.21. Copper and Aluminium Winding Forecast (tonnes)