NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

電動汽車的電力電子技術 2022-2032年

Power Electronics for Electric Vehicles 2022-2032

出版商 IDTechEx Ltd. 商品編碼 1027681
出版日期 內容資訊 英文 201 Slides
商品交期: 最快1-2個工作天內
價格
電動汽車的電力電子技術 2022-2032年 Power Electronics for Electric Vehicles 2022-2032
出版日期: 2021年09月10日內容資訊: 英文 201 Slides
簡介

標題
電動汽車的電力電子技術 2022-2032年
汽車逆變器、車載充電器 (OBC)、碳化矽 (SiC) MOSFET、寬帶隙 (WBG) 半導體和 800V 平台。

"下一代碳化矽 (SiC) 電力電子設備正以 27% 的複合年增長率佔領電動汽車市場。"

電動汽車正席捲全球。IDTechEx 預測,未來十年電動汽車市場的複合年增長率為 25%,全球市場至少將在未來二十年保持增長。

電動汽車的出現抹殺了上個世紀的汽車工程,因為擁有數百個運動部件的內燃機正在讓位於通常只有不到 20 個運動部件的電動動力系統。

電動動力總成創新的新焦點是電池、牽引電機和電力電子設備。第t echnological進步這些部件由必要改善車輛的範圍,安全性,壽命,當然,可持續運輸。

驅動

IDTechEx 報告 "電動汽車電力電子" 重點關注汽車電力電子的重要性,分析趨勢和正在進行的潛在材料變化,以及整個價值鏈中創造的大量機會。

汽車電力電子:逆變器、車載充電器和 DC-DC轉換器

電力電子是一種用於控制和轉換電力的固態電子。對於電動汽車,它由三個關鍵設備組成:車載充電器、為電池充電的交直流整流器;個E逆變器,高功率的DC到AC轉換器,用於將電池電力牽引電動機; 以及用於高壓牽引電池的 DC-DC 轉換器,為低壓電池供電(用於酒店設施)。

&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&nb的藻; < i>來源:IDTechEx

最關鍵的是主逆變器,它以最高功率運行並促進牽引。此處的任何效率改進都可以在不改變電池容量的情況下提高車輛行駛里程。

這推動了從矽 IGBT 向碳化矽 MOSFET 的快速轉變,由特斯拉領導,早在 2017 年,隨著 Model 3 的發佈,該公司推出了首款採用定制碳化矽 MOSFET 的汽車逆變器,其中包含銅帶鍵合和銀燒結芯片粘接漿料,來自意法半導體。

如今,碳化矽 MOSFET 的供應鏈增長繼續滾雪球,參與者包括 ROHM Semiconductor、Cree、Denko、Infineon 、Denso、Bosch、Delphi、Vitesco(Continental)、Dana 等,擴大產能並形成夥伴關係以跟上快速的需求。該報告探討了這些供應鏈動態,從半導體製造到逆變器供應商,並使用 IDTechEx 汽車模型數據庫提供市場份額。

對於車載充電器,主要趨勢是更高功率的運行。此處採用寬帶隙 (WBG) 開關仍然很重要但不太重要,因為 OBC 不影響車輛範圍。雖然 4kW 以下的車載充電器在十年前是標準配置,但在電池容量增加和對快速充電的持續需求的推動下,如今大多數新車型都配備了 6-10kW 的 OBC。

額定值更高的 OBC也很重要,因為大多數公共充電裝置都是交流電,這意味著車載充電器通常會成為充電時間的瓶頸。例如,插入 22kW 交流充電器的 BMW i3 只能以 11kW 充電,因為這是其車載充電器的容量。

最終,OBC 的最終目標是 22kW,這是目前豪華電動汽車的領域,但雷諾 Zoe 等一些例外。

該報告預測了逆變器、車載充電器和 DC-DC 轉換器的單位需求、GW 和市場價值(十億美元),並按功率開關技術(SiC MOSFET、Si IGBT)和電壓水平劃分。

碳化矽 MOSFET、GaN HEMT 和封裝材料創新

如今,矽絕緣柵雙極晶體管 (IGBT) 在汽車電力電子產品中佔據主導地位,但正在快速過渡到第六代寬帶隙半導體:碳化矽 (SiC) 金屬氧化物場效應晶體管 (MOSFET)和氮化鎵 (G aN) 高電子遷移率晶體管 (HEMT)。

WBG 半導體是一項重大變革,使電力電子設備更加高效、功率密集且能夠在高溫下運行。這對於改善電動汽車續航里程或降低成本(通過縮小電池容量)至關重要。

由於半導體芯片不再是高溫運行和使用壽命的瓶頸,封裝材料創造了新的機遇。新型銀燒結焊膏取代傳統焊料、銅線和帶狀鍵合,以及改進的熱管理系統和材料,將成為必要。

該報告預測了 2032 年寬帶隙汽車電力電子產品的普及,並探討了我們預期在包裝材料中看到的趨勢。

800V - 1000V 汽車

寬帶隙半導體開關可實現更高效的高壓操作(800V - 1000V),從而帶來350kW 直流快速充電等優勢。轉向 800V 並不像重新佈線電池那麼簡單:需要對電池、熱管理系統、逆變器 (WBG)、電機和高壓電纜進行深入的系統更改和重新設計。

儘管如此,情況正在迅速發展,至少有 10 家汽車製造商致力於開發將在 800 - 1000V 之間運行的車型和車輛平台,所有產品的發佈時間表都在 2021 年 - 2025 年之間。

在接下來的幾年裡,800V 將主要(但不是唯一)存在於奢侈品領域,我們將其定義為起價高於 5 萬美元的基本型號。轉向 800V 平台並不一定保證採用碳化矽 MOSFET,但卻是其強大的推動力。但是,對於924V Lucid Air 等 900V 以上的平台,碳化矽將是唯一現實的選擇。

該報告通過 IDTechEx 跟蹤的高壓模型和平台採用自下而上的方法提供了對 800V 逆變器的預測。

< h4>來自 IDTechEx 的分析師訪問

購買所有報告都包括與專家分析師最多 30 分鐘的電話時間,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要

  • 1.1. 報告介紹
  • 1.2. 電動汽車預測(單位銷售)
  • 1.3. 電動汽車中的電力電子
  • 1.4. 寶WER電子設備範圍
  • 1.5。電源開關歷史
  • 1.6. 矽、碳化矽和氮化鎵的基準測試
  • 1.7. 800V 和 SiC 的優勢
  • 1.8。半導體含量增加
  • 1.9. 碳化矽供應鏈
  • 1.10. 汽車電源模塊市場份額
  • 1.11. SiC MOSFET 和 Si IGBT 逆變器的電壓和半導體技術預測 2022 - 2032(單位銷售額)
  • 1.12。800V - 1000V 逆變器預測 (2022-2032)
  • 1.13. SiC MOSFET 和 Si IGBT 汽車電力電子預測(GW)
  • 1.14. 2022-2032 年功率水平的車載充電器預測
  • 1.15。到 2032 年的逆變器、OBC、LV 轉換器預測 (GW)
  • 1.16。按設備劃分的汽車電力電子市場規模(十億美元)
  • 1.17. 按技術劃分的汽車電力電子市場規模(十億美元)
  • 1.18. 訪問 IDTechEx 門戶配置文件

2. 電動汽車市場

  • 2.1. 行業術語
  • 2.2. 電動汽車:典型規格
  • 2.3. 全球電動汽車市場
  • 2.4. 插電式混合動力車注定失敗
  • 2.5. 電動汽車司機
  • 2.6. 電動車障礙
  • 2.7. 揭穿電動汽車的神話:排放只是轉向發電?
  • 2.8. 化石燃料禁令
  • 2.9. 官方或立法的化石燃料禁令
  • 2.10. 非官方、起草或提議的化石燃料禁令
  • 2.11. 電動汽車預測(單位銷售)

3. 電力電子簡介

  • 3.1. 什麼是電力電子?
  • 3.2. 電動汽車中的電力電子
  • 3.3. 逆變器:工作原理
  • 3.4. 全橋和半橋
  • 3.5。脈衝寬度調製
  • 3.6. 無源元件
  • 3.7. 直流鏈路電容器
  • 3.8. 傳統電動車逆變器封裝
  • 3.9. 電源開關歷史
  • 3.10. 晶體管基礎知識
  • 3.11. 寬帶隙半導體基礎知識 (1)
  • 3.12. 寬帶隙半導體基礎 (2)
  • 3.13. 三菱電機 SiC 器件的進步
  • 3.14. 矽、碳化矽和氮化鎵的基準測試
  • 3.15。電動汽車中的 SiC MOSFET 與 GaN HEMT (1)
  • 3.16 . 電動汽車中的 SiC MOSFET 與 GaN HEMT (2)
  • 3.17. 汽車 GaN 器件供應商
  • 3.18. WBG 器件的應用摘要
  • 3.19. 半導體含量增加

4. 汽車逆變器

  • 4.1. 傳統電動車逆變器封裝
  • 4.2. 功率器件類型
  • 4.3. 電動汽車逆變器基準測試
  • 4.4. 逆變器封裝的碳化矽尺寸減小
  • 4.5。SiC 對逆變器封裝的影響
  • 4.6. 羅門碳化矽逆變器
  • 4.7. 過渡到 SiC MOSFET
  • 4.8. SiC逆變器體驗曲線
  • 4.9. 碳化矽功率器件的局限性
  • 4.10。碳化矽電源路線圖

5. 供應鏈

  • 5.1. 汽車電源模塊市場份額
  • 5.2. 碳化矽供應鏈
  • 5.3 . 電源模塊供應鏈與創新
  • 5.4. 碳化矽功率模塊的價值鏈
  • 5.5。英飛凌
  • 5.6. 英飛凌碳化矽路線圖
  • 5.7. 英飛凌的 HybridPACK 被多家製造商使用
  • 5.8。現代 E-GMP
  • 5.9. 現代E-GMP 800V 逆變器供應商
  • 5.10. 羅姆半導體 (1)
  • 5.11. 羅姆半導體 (2)
  • 5.12。羅姆半導體 (3)
  • 5.13. 意法半導體
  • 5.14。德爾福科技(博格華納)
  • 5.15。Cree Wolfspeed 650V MOSFET
  • 5.16。V olvo重型的SiC逆變器
  • 5.17。其他 SiC 逆變器項目和公告
  • 5.18。福特和博格華納
  • 5.19. 福特和捨弗勒
  • 5.20。FCA (1)
  • 5.21。FCA (2)
  • 5.22。洛茲敦汽車公司
  • 5.23。通用汽車
  • 5.24。雪佛蘭螺栓電源模塊
  • 5.25。Chevy Bolt 電源模塊(由 LG Electronics/Infineon 提供)
  • 5.26。GM:Ultium 平台
  • 5.27。奧迪 e-tron 2018
  • 5.28。德爾福、克裡、橡樹嶺國家實驗室和沃爾沃

6. 包裝材料與創新
  • 6.1. 世代電源模塊封裝
  • 6.2. 傳統功率模塊封裝
  • 6.3. 模組封裝材料尺寸
  • 6.4. 銲線
  • 6.5。鋁銲線:一個常見的故障點
  • 6.6. 芯片和基板連接是常見的故障模式
  • 6.7. 先進的引線鍵合技術
  • 6.8. 直接引線鍵合(三菱)
  • 6.9. 特斯拉的 SiC 封裝
  • 6.10. 實踐:減少碳化矽芯片面積
  • 6.11. 特斯拉逆變器橫截面
  • 6.12. 超越鋁引線鍵合的技術演進
  • 6.13. 底板、散熱器、封裝材料
  • 6.14. 英飛凌
  • 6.15。大陸/捷豹路虎
  • 6.16. 日產聆風定制設計
  • 6.17。焊接/芯片貼裝技術的選擇
  • 6.18。結溫升高
  • 6.19。芯片貼裝技術趨勢
  • 6.20。銀燒結膏的出現
  • 6.21。銀燒結膏性能
  • 6.22。銀 (Ag) 燒結:作為附著材料的多功能性
  • 6.23。特斯拉電力電子的演進

7. 基材

  • 7.1. 陶瓷基板技術的選擇
  • 7.2. AlN:克服其機械弱點

8. 基板金屬化的方法

  • 8.1. 金屬化方法:DPC、DBC、AMB 和厚膜金屬化
  • 8.2. 直接鍍銅 (DPC):優點和缺點
  • 8.3. 雙鍵合銅 (DBC):優點和缺點
  • 8.4. 活性金屬釬焊 (AMB):優點和缺點
  • 8.5。陶瓷:CTE 不匹配
  • 8. 6. 多層印刷電路板
  • 8.7. 日產聆風逆變器PCB

9. 電力電子冷卻和熱管理

  • 9.1. 電動汽車熱管理簡介
  • 9.2. 主動與被動冷卻
  • 9.3. 液體庫爾玲
  • 9.4. 製冷劑冷卻
  • 9.5。冷卻策略 熱性能
  • 9.6. 冷卻方式分析
  • 9.7. 電力電子冷卻
  • 9.8. 多個組件的最佳溫度
  • 9.9. 為什麼在功率模塊中使用 TIM?
  • 9 .10。為什麼要消除 TIM?
  • 9.11。導熱油脂:其他缺點
  • 9.12。是否已在任何 EV 逆變器模塊中消除了 TIM?
  • 9.13。雙面冷卻
  • 9.14。特斯拉 Model 3 2018 液冷
  • 9.15。日產Leaf液體冷卻
  • 9.16。Jaguar I-PACE 2019 (Continental) 液冷

10。電源模塊 2004-2016

  • 10.1. 豐田普銳斯 2004-2010
  • 10.2. BWM i3(英飛凌)
  • 10.3. 2008年雷克薩斯
  • 10.4. 豐田普銳斯 2010-2015
  • 10.5。日產聆風 2012
  • 10.6. 雷諾佐伊 2013 (Continental)
  • 10.7. 本田雅閣 2014
  • 10.8。本田飛度(三菱)
  • 10.9. 豐田普銳斯 2016 年起
  • 10.10. 雪佛蘭 Volt 2016(德爾福)
  • 10.11。凱迪拉克 2016(日立)
  • 10.12。製造工藝

11。車載充電器

  • 11.1. 板載充電器基礎知識
  • 11.2. 板載充電器電路
  • 11.3. 特斯拉車載充電器/DC DC 轉換器
  • 11.4. 特斯拉碳化矽 OBC
  • 11.5。2022-2032 年功率水平的車載充電器預測

12。800-1000V汽車

  • 12.1. 按電壓等級劃分的歷史 BEV 銷量
  • 12.2. 800V平台公告
  • 12.3. 為什麼要遷移到 800+ V?
  • 12.4. 需要350kW嗎?
  • 12.5。慢速交流充電器占主導地位
  • 12.6。轉向 800V 需要深入的系統更改
  • 12.7. 不同規模的快速充電
  • 12.8。為什麼不能對鋰離子電池進行快速充電?
  • 12.9。物質層面的限速因素
  • 12.10。快速充電設計層次-槓桿PUL升
  • 12.11。保時捷 Taycan 和特斯拉快速充電比較
  • 12.12。800V - 1000V 逆變器預測 (2022 - 2032)
  • 12.13。結論

13。預測

  • 13.1. 道路電動汽車預測(車輛)
  • 13.2. 每個汽車預測的逆變器
  • 13.3. 每輛車有多個電機/逆變器
  • 13.4. SiC MOSFET 和 Si IGBT 逆變器的電壓和半導體技術預測 2022 - 2032(單位銷售額)
  • 13.5。800V - 1000V 逆變器預測 (2022 - 2032)
  • 13.6. SiC MOSFET 和 Si IGBT 汽車電力電子預測 (GW)
  • 13.7. 2022-2032 年功率水平的車載充電器預測
  • 13.8. 到 2032 年的逆變器、OBC、LV 轉換器預測 (GW)
  • 13.9. 按設備劃分的汽車電力電子市場規模(十億美元)
  • 13.10。按技術劃分的汽車電力電子市場規模(十億美元)
  • 13.11。方法
  • 13.12. 逆變器、OBC 和轉換器成本假設(每千瓦美元)
目錄
Product Code: ISBN 9781913899691

Title:
Power Electronics for Electric Vehicles 2022-2032
Automotive Inverters, Onboard Chargers (OBC), Silicon Carbide (SiC) MOSFETs, Wide-bandgap (WBG) Semiconductors & 800V Platforms.

"Next-gen silicon-carbide (SiC) power electronics devices are taking over EV markets at 27% CAGR."

Electric vehicles are taking the world by storm. IDTechEx predicts 25% CAGR for the electric car market over the next decade, and growth for at least two decades in markets globally.

The emergence of electric vehicles erases the last century of automotive engineering as internal-combustion engines, with hundreds of moving parts, are giving way to an electric powertrain with typically under 20 moving parts.

The new focal points of innovation in electric powertrains are batteries, traction motors and power electronics. The technological advancements for these components are driven by the need for improved vehicle range, safety, lifetime and, of course, sustainable transportation.

The IDTechEx report 'Power Electronics for Electric Vehicles' focuses on the importance of automotive power electronics, analyzing the trends and underlying materials changes underway, alongside the massive opportunities being created throughout the value chain.

Automotive Power Electronics: Inverters, Onboard Chargers & DC-DC Converters

Power electronics is a type of solid-state electronics for controlling and converting power. For electric vehicles, it comprises of three key devices: the onboard charger, an AC - DC rectifier to charge the battery; the inverter, a high-power DC to AC converter for the battery to power the traction motor; and a DC-DC converter for the high-voltage traction battery to power a low-voltage battery (for hotel facilities).

                        Source: IDTechEx

Most critical of all is the main inverter, which operates at the highest power and facilitates traction. Any efficiency improvements here improve vehicle range without altering the battery capacity.

This is driving a rapid transition from silicon IGBTs towards silicon carbide MOSFETs, led by Tesla, which, back in 2017 with the release of the Model 3, introduced the first automotive inverter with custom silicon carbide MOSFETs incorporating copper ribbon-bonding and silver-sintered die-attach pastes, sourced from STMicroelectronics.

Today, growth in the supply chain for silicon carbide MOSFETs continues to snowball, with players including ROHM Semiconductor, Cree, Denko, Infineon, Denso, Bosch, Delphi, Vitesco (Continental), Dana and more, expanding production capacity and forming partnerships to keep up with the rapid demand. The report explores these supply chain dynamics, from semiconductor fabrication to inverter suppliers, and provides market shares using the IDTechEx cars model database.

For onboard chargers, the main trend is towards higher power operation. Here adoption of wide bandgap (WBG) switches is still important but less critical, as the OBC does not affect vehicle range. While onboard chargers under 4kW were the standard a decade ago, today most new models are arriving with 6 - 10kW OBCs, driven by battery capacity increases and the continuous demand for faster charging.

Higher rated OBCs are also important because most public charging installations are AC, meaning the onboard charger often acts as a bottleneck for charging times. For example, a BMW i3 plugged in to a 22kW AC charger will only charge at 11kW, because this is the capacity of its onboard charger.

Eventually, the endgame for OBCs is 22kW, which is currently the domain of luxury electric vehicles, with some exceptions like the Renault Zoe.

The report forecasts inverters, onboard chargers and DC-DC converters in unit demand, GW and market value ($ billion) with splits by power switch technology (SiC MOSFET, Si IGBT) and voltage level.

Silicon carbide MOSFETs, GaN HEMTs and package material innovations

Today, silicon insulated-gate bipolar transistors (IGBTs) are dominant in automotive power electronics, but a rapid transition is underway to a sixth generation of wide bandgap semiconductors: silicon carbide (SiC) metal oxide field effect transistors (MOSFETs) and gallium nitride (GaN) high electron mobility transistors (HEMTs).

WBG semiconductors are a step-change, making power electronics devices vastly more efficient, power dense and capable of high temperature operation. This will become crucial for improvements to either electric vehicle range or cost reduction (by downsizing battery capacity).

As the semiconductor dies are no longer the bottleneck for high temperature operation and lifetime, new opportunities are created in the packaging materials. Novel silver-sintered pastes replacing conventional solders, copper wire and ribbon bonds, and improved thermal management systems and materials, will become necessary.

The report forecasts uptake of wide-bandgap automotive power electronics though 2032 and explores the resulting trends which we expect to see in the packaging materials.

800V - 1000V Cars

Wide-bandgap semiconductor switches are enabling more efficient high voltage operation (800V - 1000V), which brings advantages such 350kW DC fast-charging. The move to 800V is not as simple as rewiring battery cells: deep system changes and redesigns to the cells, thermal management system, inverter (WBG), motor and high voltage cabling is required.

Nonetheless, the situation is evolving rapidly, with at least ten automakers committed to models and vehicle platforms which will operate between 800 - 1000V, all with release timelines between 2021 - 2025.

800V will predominantly (but not exclusively) exist in the luxury segment for the next few years, which we define as a base model price starting above $50k. The move to 800V platforms does not necessarily guarantee adoption of silicon carbide MOSFETs but is a strong driver for it. However, for platforms above 900V like the 924V Lucid Air, silicon carbide will be the only realistic option.

The report provides forecasts for 800V-capable inverters using a bottom-up approach by the high voltage models and platforms tracked by IDTechEx.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report Introduction
  • 1.2. Electric Car Forecasts (Unit Sales)
  • 1.3. Power Electronics in Electric Vehicles
  • 1.4. Power Electronics Device Ranges
  • 1.5. Power Switch History
  • 1.6. Benchmarking Silicon, Silicon Carbide & Gallium Nitride
  • 1.7. 800V and SiC Benefits
  • 1.8. Semiconductor Content Increased
  • 1.9. SiC Supply Chain
  • 1.10. Automotive Power Module Market Shares
  • 1.11. SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales)
  • 1.12. 800V - 1000V Inverter Forecast (2022-2032)
  • 1.13. SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW)
  • 1.14. Onboard Charger Forecast by Power Level 2022- 2032
  • 1.15. Inverter, OBC, LV Converter Forecast (GW) to 2032
  • 1.16. Automotive Power Electronics Market Size by Device ($ bn)
  • 1.17. Automotive Power Electronics Market Size by Technology ($ bn)
  • 1.18. Access to IDTechEx Portal Profiles

2. ELECTRIC CAR MARKETS

  • 2.1. Industry Terms
  • 2.2. Electric Vehicles: Typical Specs
  • 2.3. The Global Electric Car Market
  • 2.4. Plug-in Hybrids Doomed
  • 2.5. Electric Vehicle Drivers
  • 2.6. Electric Vehicle Barriers
  • 2.7. Debunking EV Myths: Emissions Just Shift to Electricity Generation?
  • 2.8. Fossil Fuel Bans
  • 2.9. Official or Legislated Fossil Fuel Bans
  • 2.10. Unofficial, Drafted or Proposed Fossil Fuel Bans
  • 2.11. Electric Car Forecasts (Unit Sales)

3. INTRODUCTION TO POWER ELECTRONICS

  • 3.1. What is Power Electronics?
  • 3.2. Power Electronics in Electric Vehicles
  • 3.3. Inverters: Working Principle
  • 3.4. Full Bridge & Half Bridge
  • 3.5. Pulse Width Modulation
  • 3.6. Passive Components
  • 3.7. DC Link Capacitors
  • 3.8. Traditional EV Inverter Package
  • 3.9. Power Switch History
  • 3.10. Transistor Basics
  • 3.11. Wide bandgap Semiconductor Basics (1)
  • 3.12. Wide-bandgap Semiconductor Basics (2)
  • 3.13. Mitsubishi Electric SiC Device Advancement
  • 3.14. Benchmarking Silicon, Silicon Carbide & Gallium Nitride
  • 3.15. SiC MOSFETs Vs GaN HEMTs in EV (1)
  • 3.16. SiC MOSFETs Vs GaN HEMTs in EV (2)
  • 3.17. Automotive GaN Device Suppliers
  • 3.18. Applications Summary for WBG Devices
  • 3.19. Semiconductor Content Increased

4. AUTOMOTIVE INVERTERS

  • 4.1. Traditional EV Inverter Package
  • 4.2. Power Device Types
  • 4.3. Electric Vehicle Inverter Benchmarking
  • 4.4. Silicon Carbide Size Reductions to Inverter Package
  • 4.5. SiC Impact on the Inverter Package
  • 4.6. Rohm Silicon Carbide Inverters
  • 4.7. The Transition to SiC MOSFETs
  • 4.8. SiC Inverter Experience Curve
  • 4.9. Limitations of SiC Power Devices
  • 4.10. SiC Power Roadmap

5. SUPPLY CHAIN

  • 5.1. Automotive Power Module Market Shares
  • 5.2. SiC Supply Chain
  • 5.3. Power Module Supply Chain & Innovations
  • 5.4. Value chain for SiC power modules
  • 5.5. Infineon
  • 5.6. Infineon Silicon Carbide Roadmap
  • 5.7. Infineon's HybridPACK is used by Multiple Manufacturers
  • 5.8. Hyundai E-GMP
  • 5.9. Hyundai E-GMP 800V Inverter Suppliers
  • 5.10. ROHM Semiconductor (1)
  • 5.11. ROHM Semiconductor (2)
  • 5.12. ROHM Semiconductor (3)
  • 5.13. STMicroelectronics
  • 5.14. Delphi Technologies (BorgWarner)
  • 5.15. Cree Wolfspeed 650V MOSFET
  • 5.16. Volvo Heavy Duty SiC Inverter
  • 5.17. Other SiC Inverter Projects & Announcements
  • 5.18. Ford and BorgWarner
  • 5.19. Ford and Schaeffler
  • 5.20. FCA (1)
  • 5.21. FCA (2)
  • 5.22. Lordstown Motors
  • 5.23. General Motors
  • 5.24. Chevy Bolt Power Module
  • 5.25. Chevy Bolt Power Module (by LG Electronics / Infineon)
  • 5.26. GM: Ultium Platform
  • 5.27. Audi e-tron 2018
  • 5.28. Delphi, Cree, Oak Ridge National Laboratory and Volvo

6. PACKAGE MATERIALS & INNOVATIONS

  • 6.1. Power Module Packaging Over the Generations
  • 6.2. Traditional Power Module Packaging
  • 6.3. Module Packaging Material Dimensions
  • 6.4. Wirebonds
  • 6.5. Al Wire Bonds: A Common Failure Point
  • 6.6. Die and Substrate Attach are Common Failure Modes
  • 6.7. Advanced Wirebonding Techniques
  • 6.8. Direct Lead Bonding (Mitsubishi)
  • 6.9. Tesla's SiC package
  • 6.10. In Practice: SiC Die Area Reduction
  • 6.11. Tesla Inverter Cross-section
  • 6.12. Technology Evolution Beyond Al Wire Bonding
  • 6.13. Baseplate, Heat Sink, Encapsulation Materials
  • 6.14. Infineon
  • 6.15. Continental / Jaguar Land Rover
  • 6.16. Nissan Leaf Custom Design
  • 6.17. The Choice of Solder / Die-attach Technology
  • 6.18. Junction Temperature Increasing
  • 6.19. Die Attach Technology Trends
  • 6.20. Silver Sintered Pastes Emerging
  • 6.21. Silver-Sintered Paste Performance
  • 6.22. Silver (Ag) Sintering: Versatility as an Attach Material
  • 6.23. Evolution of Tesla's Power Electronics

7. SUBSTRATES

  • 7.1. The Choice of Ceramic Substrate Technology
  • 7.2. AlN: Overcoming its Mechanical Weakness

8. APPROACHES TO SUBSTRATE METALLISATION

  • 8.1. Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation
  • 8.2. Direct Plated Copper (DPC): Pros and Cons
  • 8.3. Double Bonded Copper (DBC): Pros and Cons
  • 8.4. Active Metal Brazing (AMB): Pros and Cons
  • 8.5. Ceramics: CTE Mismatch
  • 8.6. Multi-layered Printed Circuit Boards
  • 8.7. Nissan Leaf Inverter PCB

9. POWER ELECTRONICS COOLING & THERMAL MANAGEMENT

  • 9.1. Introduction to EV Thermal Management
  • 9.2. Active vs Passive Cooling
  • 9.3. Liquid Cooling
  • 9.4. Refrigerant Cooling
  • 9.5. Cooling Strategy Thermal Properties
  • 9.6. Analysis of Cooling Methods
  • 9.7. Power Electronics Cooling
  • 9.8. Optimal Temperatures for Multiple Components
  • 9.9. Why use TIM in Power Modules?
  • 9.10. Why the Drive to Eliminate the TIM?
  • 9.11. Thermal Grease: Other Shortcomings
  • 9.12. Has TIM Been Eliminated in any EV Inverter Modules?
  • 9.13. Double-sided Cooling
  • 9.14. Tesla Model 3 2018 Liquid Cooling
  • 9.15. Nissan Leaf Liquid Cooling
  • 9.16. Jaguar I-PACE 2019 (Continental) Liquid Cooling

10. POWER MODULES 2004-2016

  • 10.1. Toyota Prius 2004-2010
  • 10.2. BWM i3 (by Infineon)
  • 10.3. 2008 Lexus
  • 10.4. Toyota Prius 2010-2015
  • 10.5. Nissan Leaf 2012
  • 10.6. Renault Zoe 2013 (Continental)
  • 10.7. Honda Accord 2014
  • 10.8. Honda Fit (by Mitsubishi)
  • 10.9. Toyota Prius 2016 onwards
  • 10.10. Chevrolet Volt 2016 (by Delphi)
  • 10.11. Cadillac 2016 (by Hitachi)
  • 10.12. Manufacturing Process

11. ONBOARD CHARGERS

  • 11.1. Onboard Charger Basics
  • 11.2. Onboard Charger Circuits
  • 11.3. Tesla Onboard Charger / DC DC converter
  • 11.4. Tesla SiC OBC
  • 11.5. Onboard Charger Forecast by Power Level 2022- 2032

12. 800-1000V CARS

  • 12.1. Historic BEV Sales by Voltage Level
  • 12.2. 800V Platform Announcements
  • 12.3. Why move to 800+ V?
  • 12.4. Is 350kW Needed?
  • 12.5. Slow AC Chargers Dominate
  • 12.6. Moving to 800V Requires Deep System Changes
  • 12.7. Fast Charging at Different Scales
  • 12.8. Why can't you just fast charge Li-ion?
  • 12.9. Rate limiting factors at the material level
  • 12.10. Fast charge design hierarchy - levers to pull
  • 12.11. Porsche Taycan & Tesla Fast Charge Comparison
  • 12.12. 800V - 1000V Inverter Forecast (2022 - 2032)
  • 12.13. Conclusions

13. FORECASTS

  • 13.1. On-road Electric Vehicle Forecasts (Vehicles)
  • 13.2. Inverters per Car Forecast
  • 13.3. Multiple Motors / Inverters per Vehicle
  • 13.4. SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales)
  • 13.5. 800V - 1000V Inverter Forecast (2022 - 2032)
  • 13.6. SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW)
  • 13.7. Onboard Charger Forecast by Power Level 2022- 2032
  • 13.8. Inverter, OBC, LV Converter Forecast (GW) to 2032
  • 13.9. Automotive Power Electronics Market Size by Device ($ bn)
  • 13.10. Automotive Power Electronics Market Size by Technology ($ bn)
  • 13.11. Methodology
  • 13.12. Inverter, OBC & Converter Cost Assumption ($ per kW)