NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

印刷和柔性傳感器2022-2032年:技術、參與者、市場

Printed and Flexible Sensors 2022-2032: Technologies, Players, Markets

出版商 IDTechEx Ltd. 商品編碼 1027680
出版日期 內容資訊 英文 468 Slides
商品交期: 最快1-2個工作天內
價格
印刷和柔性傳感器2022-2032年:技術、參與者、市場 Printed and Flexible Sensors 2022-2032: Technologies, Players, Markets
出版日期: 2021年09月10日內容資訊: 英文 468 Slides
簡介

標題
印刷和柔性傳感器2022-2032年:技術、參與者、市場
印刷傳感器市場,包括生物傳感器、有機光電探測器、皮膚貼片和醫療電極、力和壓阻傳感器、壓電、溫度、電容式觸摸傳感器、可拉伸應變傳感器。

"到 2032 年,對連接傳感器網絡的需求將推動印刷傳感器市場達到 49 億美元。"

印刷傳感器是一種快速發展的技術,可提供低成本處理、靈活的薄膜外形和大面積傳感,使其適用於物聯網 (IoT)、工業 4.0、持續健康等新興應用監控等。這份市場研究報告涵蓋了印刷光電探測器、壓阻和壓電壓力傳感器、應變傳感器、溫度傳感器、印刷電極、生物傳感器和電容式觸摸傳感器的技術和應用。

印刷和柔性傳感器構成了除顯示器之外最大的印刷電子市場。事實上,我們預測,到2032 年,全打印傳感器的市場將達到 49 億。儘管其最大的市場——印刷葡萄糖試紙——採用連續葡萄糖監測 (CGM) 方法持續取代,但這種情況還是會發生。因此,許多新應用程序和技術的興起推動了市場增長。

這份報告涵蓋了整個印刷和靈活的傳感器領域。更具體地說,它涵蓋:

  • 壓阻式傳感器
  • 壓電傳感器
  • 印刷光電探測器
  • 溫度傳感器
  • 應變傳感器
  • 電容式觸摸傳感器
  • 氣體傳感器
  • 生物傳感器
  • 柔性可穿戴電極

我們還提供了多參數傳感器的案例研究,這些傳感器利用了多個解決方案處理功能的能力,可以並行打印或層壓打印。印刷傳感器當然需要讀出機制以及天線和電源,因此我們將印刷傳感器集成到新興的柔性混合電子 (FHE) 製造方法中。

新興應用的增長

印刷傳感器涵蓋各種技術和應用,從圖像傳感器到可穿戴電極。每個傳感器類別都力求提供優於現有技術的獨特價值主張,並在廣泛採用的過程中面臨不同的技術和商業挑戰。

圖 1
印刷/柔性傳感器有多種應用,
包括持續健康監測和智能建築。

儘管存在這種多樣性,但仍有多種因素在推動採用多種類型的印刷/柔性傳感器。最重要的是越來越多地採用 "物聯網" 和 "工業 4.0" ,因為它們將需要由通常無線連接的低成本和不顯眼的傳感器組成的廣泛網絡。此外,印刷/柔性傳感器的薄膜外形和保形性使它們能夠集成到更小的設備中,從而為設計人員提供更多的自由來區分他們的產品和潛在的新用例。

薄膜光電探測器

基於印刷有機光電二極管 (OPD) 的大面積圖像傳感器是一項創新技術,代表了對基於 CMOS 的傳統圖像檢測的徹底改變。它的關鍵價值主張是能夠以比現有方法便宜得多的成本製造跨越大面積的傳感器,以及薄膜柔性外形。在大面積上檢測光,而不是在單個小檢測器上,對於獲取生物特徵數據和皮膚成像(如果靈活的話)是非常理想的。挑戰在於光線很容易聚焦,而傳統的圖像傳感器既便宜又成熟。

壓阻式傳感器

印刷壓阻力傳感器是一項長期應用,如今廣泛用於汽車佔用傳感器、樂器、工業設備和一些醫療設備。雖然這些市場有些商品化,但該行業正在創新以獲取新的、差異化的、更高價值的應用。

一個例子是 3D 觸摸面板,它可以測量作為功能位置的作用力,從而能夠識別複雜的 HMI 手勢,而不是現有的電容式觸摸面板。供應商繼續瞄準手機、電腦遊戲和汽車內飾。

區分壓阻傳感器的挑戰在於,許多應用不需要複雜的功能,例如 3D 觸摸或接近感應。□他比較低的技術複雜性也可能意味著進入和價值獲取門檻低。這正在說服一些公司在價值鏈中走上更高的位置,例如提供包含觸覺的更多集成解決方案。

壓電傳感器

壓電傳感器會根據施加的力產生電壓,而不是改變其電阻。雖然與壓阻式傳感器一樣,它們可用於力感測,但它們的製造成本更高且集成起來更不簡單。因此,製造商的主要目標是利用其獨特功能(特別是對高頻振動的敏感性)的應用。

印刷壓電傳感器的商業困難在於它們的能力介於兩種簡單的成熟技術之間:經濟實惠的壓阻式壓力傳感器和靈敏的剛性陶瓷壓電傳感器。然而,薄膜壓電傳感器非常適合一些相對小眾的應用領域,例如結構健康和工業狀態監測。

電容式觸摸傳感器

電容式觸摸傳感器已經完善並廣泛用於智能手機和平板電腦等透明觸摸傳感器。然而,在所使用的透明導電材料、在大面積顯示器上感應觸摸的能力以及電容感應的替代應用(如洩漏檢測和交互式表面)方面,電容式觸摸仍有很大的創新空間。

氧化銦錫 (ITO) 是占主導地位的透明導電薄膜,但具有多種缺點,包括靈活性有限、導電率與透明度之比有限,以及受銦價格和供應鏈影響。新興的溶液可加工替代品包括銀納米線、碳納米管和印刷金屬網。儘管挑戰與 ITO 缺乏霧度和慣性的既定但技術上較差的方法相匹配,替代材料終於在柔性或 3D 形狀物體、大面積多點觸控電容式觸摸屏中找到了市場,甚至現在有時在低成本觸摸中屏幕。電容式觸摸傳感器市場中的另一項重大創新是電流模式傳感器讀數,它既降低了透明導電膜的導電性要求,又顯著提高了靈敏度。

電容應變傳感器

多年來,已經開發並商業化了各種部分或完全印刷的可拉伸應變傳感器。事實證明,基礎技術演示相對容易,但並非每個供應商都能以更低的成本成功過渡到大批量生產。

主要挑戰是柔性應變傳感器通常不會取代現有產品,這意味著需要開發全新的市場。為了應對這一挑戰並獲得更多價值,許多供應商提供垂直整合的 "解決方案" 。一個例子是 "智能手套" ,它可以比相機更準確地實時跟蹤手和手指的運動——它們甚至可以結合觸覺反饋進行訓練。在工業位移傳感、可穿戴電子產品和連續患者監測方面經過多年的發展機會,現在正在出現。

溫度傳感器

印刷也可用於製造溫度傳感器,使用含有矽納米顆粒或碳納米管的複合油墨。鑑於溫度測量需要良好的熱接觸,基於保形基板的傳感器似乎可以提供明確的價值主張。

他們的主要挑戰是成本低、重量輕且非常成熟的解決方案(例如熱敏電阻和電阻溫度檢測器)的普遍性。因此,印刷溫度傳感器具有最明確的價值主張應用,需要使用保形陣列的空間分辨率,例如監測傷口或皮膚不適。電動汽車中的電池監測是另一個備受關注的極具前景的應用,其主要吸引力在於重量輕且易於與軟包電池集成。

氣體和濕度傳感器

氣體和濕度傳感器也可以打印,但目前大多數是由陶瓷而不是有機材料製成。其中一些陶瓷被印刷為具有非常高固化溫度的 "厚膜" ,使它們與柔性基板不兼容。新興方法基於功能化碳納米管和其他有機半導體。多個屬性略有不同的傳感器可以組合起來形成一個 "電子鼻" ,它們的複合輸出對每個分析物顯示出不同的 "指紋" 。

氣體傳感器已經在許多工業環境中使用,隨著人們對空氣污染的擔憂日益增加,這些傳感器可能會越來越多地被採用。與某些行業不同,靈敏度和分析物存在很大差異化空間,導致市場分散。印刷氣體傳感器提供獨特功能的另一個有前途的長期應用是直接印刷到食品包裝上以測量食品降解。然而,這可能需要開發靈活的混合電子設備,以通過連續製造以及靈活 I C等使能技術的開發來使這種能力具有成本效益。

生物傳感器

按收入和數量計算,最大的印刷傳感器類別是印刷生物傳感器,主要是葡萄糖試紙。年需求量達數十億。然而,由於越來越多地採用對患者友好的連續血糖監測,使用量正在逐漸下降,這一趨勢將繼續增長。與此同時,由於監管機構試圖抑制測試價格並因此侵蝕了利潤率,因此出現了巨大的價格壓力和商品化。儘管如此,這仍然是印刷和柔性傳感器領域中銷量和收入最大的業務。重要的是,印刷生物傳感器不僅限於葡萄糖傳感,其他傳感器陣列也在不斷湧現。

我們耕種電極

今天,大多數內側電極包括帶有電解凝膠的金屬卡扣,但這些只能短時間使用。對於連續監測,印刷電極正逐漸被用於皮膚貼片,因為它們的使用壽命更長,可以與導電互連(也印刷)一起集成到產品中並且是柔性的。可穿戴電極也非常適合健身環境,並已集成到電子紡織品中,以舒適的方式監測心率。隨著持續監測軟件的發展,印刷可穿戴電極的醫療和健身應用可能會增加,從而產生更大的需求,儘管電子紡織品的耐用性仍然是消費者關注的問題。

概述

十多年來,IDTechEx 一直在研究新興的印刷電子市場,早在 2012 年就發佈了我們的第一份印刷和柔性傳感器報告。從那時起,我們一直密切關注技術和市場發展,採訪全球主要參與者,參加許多會議,提供多個諮詢項目,並舉辦有關該主題的課程和研討會。本報告中包含的 50 多家公司的詳細資料證明了我們洞察力的深度和廣度確實無與倫比。

本報告非常詳細地討論了這些印刷傳感器類別中的每一個,評估了不同的技術和採用的挑戰。我們還為每個技術和應用領域制定了 10 年市場預測,按收入和印刷傳感器領域劃分。

來自 IDTechEx 的分析師訪問

購買所有報告都包括與專家分析師的長達 30 分鐘的電話時間,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要

  • 1.1. 印刷和柔性傳感器簡介
  • 1.2. 印刷/柔性傳感器的主要市場
  • 1.3. 工業 4.0 需要印刷傳感器
  • 1.4. 印刷傳感器在環境和農業監測中的增長機會
  • 1.5。轉向持續的醫療保健監測為印刷/柔性傳感器創造了機會
  • 1.6。滿足應用要求:現任技術VS印刷/柔性傳感器
  • 1.7. 整體印刷傳感器的整體SWOT 分析
  • 1.8。波特斯對整體印刷傳感器市場的五力分析
  • 1.9. 關鍵要點 - 整體印刷/柔性傳感器
  • 1.10. 關鍵要點 - 特定的印刷/柔性傳感器類型
  • 1.11. 回顧之前的印刷/柔性傳感器報告(2020-2030)
  • 1.12。印刷壓阻傳感器的增長領域
  • 1.13. 印刷溫度傳感器的機遇
  • 1.14. 薄膜光電探測器概述
  • 1.15。機會印刷氣體蟾酥RS
  • 1.16。電容應變傳感器的機會。
  • 1.17. 葡萄糖試紙:一個龐大但不斷下滑的市場
  • 1.18。印刷可穿戴式電極傳感器:機遇在醫療保健和健康監測。
  • 1.19. 多功能印刷/柔性傳感器是一種很有前途的方法。
  • 1.20。印刷傳感器應用需要靈活的混合電子設備(FHE 電路)
  • 1.21. 每個印刷傳感器類別的 SWOT 分析

2. 市場預測

  • 2.1. 市場預測方法
  • 2.2. 預測不連續技術採用的困難
  • 2.3. 按傳感器類型劃分的 10 年整體印刷/柔性傳感器預測(收入,百萬美元)
  • 2.4. 不包括生物傳感器的傳感器類型的10 年整體印刷/柔性傳感器預測(收入,百萬美元)
  • 2.5. 10 年壓阻傳感器應用預測(體積,m2)
  • 2.6. 10 年印刷壓阻傳感器應用預測(收入,百萬美元)
  • 2 .7。10 年印刷混合(電容/壓阻)傳感器應用預測(收入,百萬美元)
  • 2.8. 10 年印刷壓電傳感器應用預測(體積,m2)
  • 2.9. 10 年印刷壓電傳感器應用預測(收入,百萬美元)
  • 2.10. 10 年印刷光電探測器應用預測(體積,m2)
  • 2.11. 10 年印刷光電探測器應用預測(收入,百萬美元)
  • 2.12. 按應用劃分的 10 年印刷溫度傳感器預測(體積,m2)
  • 2.13. 按應用劃分的 10 年印刷溫度傳感器預測(收入,百萬美元)
  • 2.14. 10 年印刷應變傳感器應用預測(體積,m2)
  • 2.15。10 年印刷 s列車傳感器應用預測(收入,百萬美元)
  • 2.16. 按技術劃分的 10 年印刷氣體傳感器預測(體積,m2)
  • 2.17. 按技術劃分的 10 年印刷氣體傳感器預測(收入,百萬美元)
  • 2.18. 10 年印刷版濕度傳感器預測(體積,m2)
  • 2.19. 10 年印刷濕度預測(收入,百萬美元)
  • 2.20. 按技術預測的 10 年印刷生物傳感器(體積,m2)
  • 2.21. 技術預測的 10 年印刷生物傳感器(收入,百萬美元)
  • 2.22. 10 年印刷可穿戴電極應用預測(體積,m2)
  • 2.23. 10 年印刷可穿戴電極應用預測(收入,百萬美元)

3. 簡介

  • 3.1.1. 什麼是傳感器?
  • 3.1.2. 傳感器價值鏈示例:數碼相機
  • 3.1.3. 什麼定義了 "印刷" 傳感器?
  • 3.1.4. 印刷與傳統電子產品
  • 3.1.5。印刷/柔性傳感器的主要市場
  • 3.1.6。工業4.0 需要印刷傳感器
  • 3.1.7。印刷傳感器的機遇:促進計算數據分析
  • 3.1.8。印刷傳感器的機遇:人機界面 (HMI)
  • 3.1.9。人機界面 (HMI) 技術
  • 3.1.10。轉向持續的醫療保健監測創造了
  • 3.1.11。印刷傳感器的機遇:醫療保健
  • 3.1.12。印刷傳感器在環境和農業監測中的增長機會
  • 3.1.13。印刷傳感器製造
  • 3.1.14。絲網印刷、槽模印刷、凹版印刷和柔版印刷的簡要概述
  • 3.1.15。數字印刷方法的簡要概述
  • 3.1.16。面向卷對卷 (R2R) 打印
  • 3.1.17。卷對卷 (R2R)製造的優勢
  • 3.1.18。什麼比例打印?
  • 3.1.19。印刷傳感器類別
  • 3.2. COVID-19 對印刷傳感器市場的影響
    • 3.2.1. COVID-19 和用於智能手機的印刷傳感器
    • 3.2.2. COVID-1 9 和印刷傳感器的醫療應用
    • 3.2.3. COVID-19、汽車行業和印刷傳感器
    • 3.2.4. COVID-19、可穿戴技術和印刷傳感器
    • 3.2.5. COVID-19、物聯網和印刷傳感器
    • 3.2.6. COVI D-19 對印刷傳感器市場的影響:結論

4. 印刷壓阻式傳感器

  • 4.1.1. 印刷壓阻傳感器:簡介
  • 4.1.2. 壓阻式與電容式觸摸傳感器
  • 4.2. 印刷壓阻傳感器:技術
    • 4.2.1. 什麼是壓阻?
    • 4.2.2. 滲透相關阻力
    • 4.2.3. 量子隧穿複合材料
    • 4.2.4. 印刷壓阻式傳感器:解剖學
    • 4.2.5. 預ssure傳感架構
    • 4.2.6. 直通模式傳感器
    • 4.2.7. 分流模式傳感器
    • 4.2.8。力與阻力特性
    • 4.2.9. 執行器面積的重要性
    • 4.2.10。力敏墨水
    • 4.2.11。FSR 的完整材料組合方法
    • 4.2.12。分流模式 FSR 傳感器
    • 4.2.13。壓阻式傳感器的 R2R 與 S2S 製造
    • 4.2.14。FSR 電路示例
    • 4.2.15。電路設計對傳感器輸出的影響
    • 4. 2.16. 矩陣壓力傳感器架構
    • 4.2.17。印刷可折疊力感測解決方案 (Peratech)
    • 4.2.18。3D 多點觸控壓力傳感器 (Tangio)
    • 4.2.19。混合 FSR/電容式傳感器
    • 4.2.20。混合 FSR/電容式傳感器(Tangio)
    • 4.2.21。具有一致零位的彎曲傳感器 (Tacterion)
    • 4.2.22。壓阻式傳感器的未來技術發展
    • 4.2.23。創新實驗室:批量生產印刷傳感器
  • 4.3. 印刷壓阻傳感器:應用
    • 4.3.1. 壓阻式傳感器的應用
    • 4.3.2. 印刷 FSR 的醫療應用 (Tekscan)
    • 4.3.3. 印刷 FSR 傳感器的更多醫療應用 (Tekscan)
    • 4.3.4. 力傳感器示例:Vista Medical
    • 4.3.5. 使用印刷壓力傳感器進行牙齒咬合監測(創新實驗室)
    • 4.3.6. 用於智能地板和步態分析的大面積壓力傳感器。
    • 4.3.7。基於紡織品的印刷 FSR 應用
    • 4 .3.8。壓敏織物(Vista Medical)
    • 4.3.9。用於醫療應用的壓阻電子紡織品 (Sensing Tex)
    • 4.3.10。柔性壓敏手套 (Tekscan)
    • 4.3.11。印刷 FSR 的消費電子應用
    • 4.3.12。智能手機中的壓阻式傳感器
    • 4.3.13。便攜式 MIDI 控制器 - The Morph (Sensel)
    • 4.3.14。汽車佔用和安全帶警報傳感器
    • 4.3.15。印刷壓阻傳感器的其他汽車應用
    • 4.3.16。ForcIOT:集成可拉伸壓力傳感器
    • 4.3.17。創新實驗室:空間分辨柔性壓力傳感器
    • 4.3.18。加強社交距離的智能地毯(由於冠狀病毒)
    • 4.3.19。印刷壓阻傳感器應用評估
  • 4.4. 印刷壓阻傳感器:總結
    • 4.4.1. 總結:印刷壓阻傳感器應用
    • 4.4.2. 印刷壓阻傳感器的商業模式
    • 4.4.3. 壓阻式傳感器的SWOT分析
    • 4.4.4. 印刷壓阻傳感器的就緒水平快照
    • 4.4.5。力敏電阻傳感器供應商概覽
    • 4.4.6. 公司簡介:壓阻式傳感器

5. 印刷壓電傳感器

  • 5.1. 印刷壓電傳感器:技術
    • 5.1.1. 壓電:簡介
    • 5.1.2. 壓電聚合物
    • 5.1.3. 用於傳感和觸覺執行器的基於 PVDF 的聚合物選項
    • 5.1.4. 低溫壓電墨水(Meggitt)
    • 5.1.5。壓電聚合物
    • 5.1.6。印刷壓電傳感器
    • 5.1.7。印刷壓電傳感器:原型
    • 5.1.8。Pyzoflex
  • 5.2. 印刷壓電傳感器:應用
    • 5.2.1. 印刷壓電傳感器的應用
    • 5.2.2. 揚聲器/麥克風中的壓電執行器
    • 5.2.3. 用於工業狀態監測的 PiezoPaint (Meggit)
    • 5 .2.4. 結合能量收集和傳感
    • 5.2.5。VTT/坦佩雷大學:彈性電子學
    • 5.2.6. 壓電傳感器應用的屬性重要性
  • 5.3. 印刷壓電傳感器:總結
    • 5.3.1. 總結:壓電傳感器
    • 5.3.2. 壓電傳感器的SWOT分析
    • 5.3.3. 印刷壓電傳感器的就緒水平快照
    • 5.3.4. 壓電傳感器供應商概覽
    • 5.3.5。公司簡介:壓電傳感器

6. 印刷光電探測器

  • 6.1.1. 薄膜光電探測器簡介
  • 6.1.2. 光電探測器技術比較
  • 6.2. 印刷光電探測器:技術
    • 6.2.1 . 光電探測器工作原理
    • 6.2.2. 量化光電探測器和圖像傳感器的性能
    • 6.2.3. 有機光電探測器 (OPD)
    • 6.2.4. 薄膜光電探測器:優點和缺點
    • 6.2.5. 減少暗電流以增加動態範圍
    • 6.2.6. 根據特定應用定制檢測波長
    • 6.2.7. 將 OPD 擴展到 NIR 區域:使用空腔
    • 6.2.8。第一條OPD生產線
    • 6.2.9. 從溶液製造薄膜光電探測器的技術挑戰
    • 6.2.10。薄膜光電探測器材料
    • 6.2.11。基於非晶矽的柔性圖像傳感器
  • 6.3. 印刷光電探測器:應用
    • 6.3.1. 用於生物識別安全的OPD
    • 6.3.2. 用於醫學成像的噴塗有機光電二極管
    • 6.3.3. 帶有 OPD (ISORG) 的 "顯示指紋"
    • 6.3.4. 使用 TFT 有源矩陣 (ISORG) 的靈活 OPD 應用
    • 6.3.5. 使用 O PD(劍橋顯示技術)進行脈搏血氧飽和度檢測
    • 6.3.6. 基於鈣鈦礦的圖像傳感器(霍爾斯特中心)
    • 6.3.7。學術研究:帶光電探測器的可穿戴皮膚貼片
    • 6.3.8。薄膜光電探測器應用技術要求 <我>6.3.9。薄膜 OPD 和 PPD 應用要求
    • 6.3.10。薄膜 OPD 和 PPD 的應用評估。
    • 6.3.11。採用大面積 OPD 的商業挑戰
  • 6.4. 總結:印刷圖像傳感器
    • 6.4.1. 總結:薄膜有機和鈣鈦礦光電探測器
    • 6.4.2. 大面積OPD圖像傳感器的SWOT分析
    • 6.4.3. 印刷光電探測器的就緒水平快照
    • 6.4.4. 供應商概覽:薄膜光電探測器 < li>6.4.5。公司簡介:印刷圖像傳感器

7. 印刷溫度傳感器

  • 7.1.1. 引入到打印溫度傳感器
  • 7.1.2. 溫度傳感器的類型
  • 7.1.3. 比較電阻溫度傳感器和熱敏電阻
  • 7.2. 印刷溫度傳感器:技術
    • 7.2.1. 用於溫度傳感的矽納米粒子墨水(PST 傳感器)(II)
    • 7.2.2. 印刷金屬 RTD 傳感器:Brewer Science
    • 7.2.3. 蘇用於印刷溫度傳感器bstrate挑戰
    • 7.2.4. 基於印刷無機 NTC 材料的溫度傳感器
    • 7.2.5. 噴墨打印的熱和溫度傳感器陣列(INO - 加拿大國家光學研究所)
    • 7.2.6. 鐠inted小型化鉑加熱器金屬氧化物氣體傳感器(弗勞恩霍夫IKTS)
    • 7.2.7. 用於智能 RFID 傳感器 (CENTI) 的印刷溫度傳感器
    • 7.2.8。學術研究:具有穩定 PEDOT:PSS 的印刷溫度傳感器
    • 7.2.9. 時間溫度指示器 (TTI)
    • 7.2.10。化學 TTI
    • 7.2.11。化學時間溫度指示器
    • 7.2.12。化學時間溫度指示器 (TTI) 示例
  • 7.3. 印刷溫度傳感器:應用
    • 7.3.1. 印刷溫度傳感器的應用
    • 7.3.2. 電池熱管理:需要最佳溫度
    • 7.3.3. 電動汽車電池的溫度監測加快步伐。
    • 7.3.4. 印刷溫度傳感器和加熱器 (IEE)
    • 7.3.5. 用於電池的集成壓力/溫度傳感器和加熱器
    • 7.3.6。集成印刷電子標籤的概念驗證原型
    • 7.3.7。用於靈活溫度SENS新應用ORS
    • 7.3.8。CNT 溫度傳感器(布魯爾科學)
    • 7.3.9。可穿戴溫度監測器
    • 7.3.10。溫度傳感器應用的屬性重要性
  • 7.4. 印刷溫度傳感器:總結
    • 7.4.1 . 總結:印刷溫度傳感器
    • 7.4.2. 印刷溫度傳感器的 SWOT 分析
    • 7.4.3. 印刷溫度傳感器的技術準備水平快照
    • 7.4.4. 印刷溫度傳感器供應商概覽
    • 7.4.5。公司簡介:印刷溫度傳感器

8. 印刷應變傳感器

  • 8.1. 印刷應變傳感器:技術
    • 8.1.1. 電容應變傳感器
    • 8.1.2. 使用介電電活性聚合物(EAP)
    • 8.1.3. 電阻應變傳感器
    • 8.1.4. 3D 打印軟電子(卡爾斯魯厄理工學院)
    • 8.1.5。皮膚啟發的電子產品(Zhenan Bao - 斯坦福大學)
  • 8.2. 印刷應變傳感器:應用離子
    • 8.2.1. 應變傳感器應用
    • 8.2.2. 使用電容式應變傳感器 (Parker Hannifin) 進行動作捕捉
    • 8.2.3. 應變敏感電子紡織品 (Stretchsense)
    • 8.2.4. 應變敏感電子紡織品(Bando Chemical) < li>8.2.5。應變傳感器電子紡織品(雅馬哈和吳羽)
    • 8.2.6. 工業位移傳感器(LEAP Technology)
    • 8.2.7。電阻應變傳感器示例(BeBop 傳感器)
    • 8.2.8。手套電阻應變傳感器 (Polymatech)
  • 8.3. 印刷應變傳感器:總結
    • 8.3.1. 總結:應變傳感器
    • 8.3.2. 柔性應變傳感器的 SWOT 分析
    • 8.3.3. 電容應變傳感器的技術準備水平快照
    • 8.3.4. 印刷高應變傳感器供應商概覽
    • 8.3.5. 公司簡介:應變傳感器

9. 印刷氣體傳感器

  • 9.1.1. 印刷氣體傳感器:簡介
  • 9.1.2. 氣體傳感器價值鏈
  • 9.2. 印刷氣體傳感器:技術
    • 9.2.1. 氣體傳感器行業
    • 9.2.2. 化學傳感器的歷史
    • 9.2.3. 向小型化氣體傳感器過渡
    • 9.2.4. 經典傳感器與微型傳感器的比較
    • 9.2.5。可檢測的大氣污染物濃度
    • 9.2.6. 氣體傳感器的五種常見檢測原理
    • 9.2.7。主要可用氣體傳感器的靈敏度
    • 9.2.8。小型化傳感器技術比較
    • 9.2.9。催化燃燒氣S ensors
    • 9.2.10。金屬氧化物半導體 (MOS) 氣體傳感器
    • 9.2.11。印刷 MOS 傳感器
    • 9.2.12。絲網印刷 MOS 傳感器 (Figaro)
    • 9.2.13。帶有印刷電極的 MOS 氣體傳感器 (FIS)
    • 9.2.14。絲網印刷 MOS傳感器(瑞薩電子)
    • 9.2.15。電化學 (EC) 氣體傳感器
    • 9.2.16。電化學氣體傳感器的印刷元件
    • 9.2.17。印刷傳統EC氣體傳感器
    • 9.2.18。絲網印刷微型 EC 氣體傳感器 <我>9.2.19。紅外線氣體傳感器
    • 9.2.20。電子鼻(e-Nose)
    • 9.2.21。將 "電子鼻" 與柔性 IC 集成
    • 9.2.22。基於印刷碳納米管的氣體傳感器
    • 9.2.23。基於碳納米管的氣體指紋電子鼻(PARC)
    • 9.2.24。用於智能 RFID 傳感器 (CENTI) 的印刷濕度傳感器
    • 9.2.25。印刷濕度/水分傳感器(布魯爾科學)
    • 9.2.26。基於有機電子學的濕度傳感器 (Invisense)
    • 9.2.27。用於金屬氧化物氣體傳感器的印刷微型鉑加熱器 (Fraunhofer IKTS)
    • 9.2.28。通過吸附熱感應 CO2
    • 9.2.29。學術研究:低成本可生物降解傳感器
    • 9.2.30。學術研究:碳納米管和催化劑感知蔬菜腐敗
  • 9.3. 印刷氣體傳感器:應用
    • 9.3.1. 氣體傳感器將用於各種物聯網領域
    • 9.3.2. 汽車工業中的氣體傳感器
    • 9.3.3. 空氣質量monitori印刷氣體傳感器納克
    • 9.3.4. 新興市場:個人設備
    • 9.3.5。用於移動設備的氣體傳感器
    • 9.3.6. 帶空氣質量傳感器的手機
    • 9.3.7。H2S專業氣體檢測儀手錶
    • 9.3.8。空氣質量監測的智能此貼小號
    • 9.3.9。家庭和辦公室監控:互聯環境
  • 9.4. 印刷氣體傳感器:總結
    • 9.4.1. 總結:氣體傳感器
    • 9.4.2. 氣體傳感器製造商面臨的未來挑戰
    • 9.4.3. 氣體傳感器的技術就緒水平快照
    • 9.4.4。氣體傳感器的SWOT分析
    • 9.4.5。供應商概覽:印刷氣體傳感器
    • 9.4.6. 公司簡介:氣體傳感器

10。印刷電容式傳感器

  • 10.1. 小學nted電容式傳感器:技術
    • 10.1.1. 電容式傳感器:工作原理
    • 10.1.2. 混合電容/壓阻傳感器
    • 10.1.3. 用於 3D 電子產品中電容傳感的金屬化和材料
    • 10 .1.4. 模內電子產品與薄膜嵌件成型
    • 10.1.5。用於汽車電容傳感的模內電子器件
    • 10.1.6。集成電容感應 (TG0)
    • 10.1.7。新興電流模式傳感器讀數:原理
    • 10.1.8。好處電流模式電容傳感器的讀出的擬合
    • 10.1.9。學術研究:帶有納米壓力傳感器的表皮電子學
  • 10.2. 印刷電容式傳感器:透明導電材料
    • 10.2.1. 透明電容式傳感器的導電材料
    • 10.2.2. 不同 TCF 技術的定量對標
    • 10.2.3. 透明導電薄膜的薄層電阻與厚度
    • 10.2.4. 氧化銦錫:現任透明導電膜
    • 10.2.5。ITO薄膜缺點
    • 10.2.6. 銀納米線:簡介
    • 10.2.7。Ag 霧度:展示 NW 縱橫比的影響
    • 10.2.8. Ag NW 採用的前景
    • 10.2.9。金屬網:光刻,然後蝕刻
    • 10.2.10。直接印刷金屬網透明導電膜:性能
    • 10.2.11。直接印刷金屬網透明導電膜:主要缺點
    • 10.2.12。凸版印刷的銅網透明導電膜
    • 10.2.13。Eastman Kodak:採用印刷銅金屬網技術的透明超低電阻射頻天線
    • 10.2.14。碳納米管 (CNT) 簡介
    • 10.2.15。碳納米管的透明導電膜:PERF ormance
    • 10.2.16。碳納米管透明導電薄膜:市場上商用薄膜的性能
    • 10.2.17。碳納米管透明導電膜:匹配指數
    • 10.2.18。將 AgNW 和 CNT 結合用於 TCF 材料 (C hasm)
    • 10.2.19。PEDOT簡介:PSS
    • 10.2.20。PEDOT:PSS 的性能大幅提升
    • 10.2.21。PEDOT:PSS 性能提高以匹配 ITO-on-PET
    • 10.2.22。用於柔性設備的聚塞吩基導電薄膜(賀利氏)
    • 10.2.23。技術比較
  • 10.3. 印刷電容式傳感器:應用
    • 10.3.1. 電容式觸摸屏上的旋轉錶盤(福特)
    • 10.3.2. 用於電容式觸摸傳感器的 PEDOT:PSS 用例示例
    • 10.3.3. 新興的電流模式傳感器讀數可實現大面積觸摸屏
    • 10.3.4. 包含 C3 Nano 的 AgNW 的可折疊顯示器
  • 10.4. 印刷電容式傳感器:總結
    • 10.4.1. 總結:電容式觸摸傳感器
    • 10.4.2. 摘要:透明導電材料
    • 10.4.3. 電容式觸摸傳感器材料和技術的就緒水平
    • 10.4.4. 電容式觸摸傳感器的SWOT分析
    • 10.4.5。電容式觸摸傳感器透明導體的SWOT 分析
    • 10.4.6。TCF 材料供應商概覽
    • 10.4.7。電容式觸控傳感器企業(不含材料供應商)
    • 10.4.8。公司簡介:電容式傳感器

11。PR INTED生物傳感器

  • 11.1.1. 電化學生物傳感器提供了一種簡單的傳感機制
  • 11.2. 印刷生物傳感器:技術
    • 11.2.1. 電化學生物傳感器機制
    • 11.2.2. P oC電化學生物傳感器中使用的□
    • 11.2.3. 電極沉積:絲網印刷與濺射
    • 11.2.4. 葡萄糖試紙的解剖結構
    • 11.2.5。打印電化學試紙的挑戰
    • 11.2.6. 用於生物流體的印刷 pH 傳感器
  • 11.3. 印刷生物傳感器:應用
    • 11.3.1. 通過相關閱讀器監測葡萄糖試紙
    • 11.3.2. 用於糖尿病管理路線圖的傳感器
    • 11.3.3. 總結:印刷生物傳感器
    • 11.3.4. 用於糖尿病管理的印刷生物傳感器簡介
    • 11.3.5。CGM開始更換試紙(雅培)
    • 11.3.6。比較試紙成本與 CGM
    • 11.3.7。連續血糖監測 (CGM) 導致血糖試紙使用率下降。
    • 11.3.8。電化學傳感器是一種更準確的酮監測方法
    • 11.3.9。帶有印刷傳感器的運動員乳酸監測
    • 11.3.10。打印的護理點膽固醇測試?
    <我>11.4。印刷生物傳感器:總結
    • 11.4.1. 電化學PoC生物傳感器的未來
    • 11.4.2. 印刷生物傳感器的 SWOT 分析
    • 11.4.3. 印刷生物傳感器的就緒水平
    • 11.4.4. 供應商概覽:生物傳感器
    • 11.4.5。生物傳感器:公司簡介

12。印刷的可穿戴電極

  • 12.1. 印刷可穿戴電極:皮膚貼片
    • 12.1.1. 印刷可穿戴電極和皮膚貼片簡介 <我>12.1.2。皮膚貼片案例:改進設備外形
    • 12.1.3. 電極和皮膚貼片的應用
    • 12.1.4. 使用電極測量生物電勢
    • 12.1.5。一次性金屬卡扣電極——電流電極技術
    • 12.1.6。金屬卡扣式 Ag/AgCl 電極的市場
    • 12.1.7。帶有集成電極的皮膚貼片 - 印刷電極的機會。
    • 12.1.8。帶有印刷銀墨的智能貼片(Quad Industries)
    • 12.1.9。QT M edical 開發印刷電極和互連
    • 12.1.10。用於妊娠監測的印刷電極和互連(Monica Healthcare)
    • 12.1.11。柔性和可拉伸電極 (ScreenTec OY)
    • 12.1.12。GE Research:製造一次性可穿戴生命體徵監測設備
    • 12.1.13。印刷無線可穿戴電極(杜邦)
    • 12.1.14。可印刷乾式心電圖電極 (Henkel)
    • 12.1.15。來自漢高的新型印刷電極材料
    • 12.1.16。比較印刷和金屬卡扣電極的性能
    • 12.1.17。印刷乾電極膠的優點
    • 12.1.18。網格印刷電極 (Nissha GSI)
    • 12.1.19。替代印刷電極材料
    • 12.1.20。John Rodgers教授(西北大學):表皮電子學
    • 12.1.21。印刷可穿戴電極:電子紡織品
  • 12.2. 電子紡織品:紡織品與電子產品相遇的地方
    • 12.2.1. 服裝中的生物識別監測
    • 12.2.2. 將心率監測集成到衣服中
    • 12.2.3. 用於生物識別的智能服裝中使用的傳感器
    • 12.2.4. 擁有生物識別監測服裝產品的公司
    • 12.2.5。紡織電極 %0
目錄
Product Code: ISBN 9781913899721

Title:
Printed and Flexible Sensors 2022-2032: Technologies, Players, Markets
Market for printed sensors including biosensors, organic photodetectors, skin patch and medical electrodes, force and piezoresistive sensors, piezoelectric, temperature, capacitive touch sensors, stretchable strain sensors.

"Demand for connected sensor networks will drive printed sensor market to $4.9 billion by 2032."

Printed sensors are a rapidly growing technology that offer low-cost processing, flexible thin-film form factor and large area sensing, making them suitable for emerging applications such as the Internet of Things (IoT), Industry 4.0, continuous health monitoring and more. This market research report covers the technology and applications of printed photodetectors, piezoresistive and piezoelectric pressure sensors, strain sensors, temperature sensors, printed electrodes, biosensors, and capacitive touch sensors.

Printed and flexible sensors constitute the largest printed electronics market outside of displays. Indeed, we forecast that the market for fully printed sensors will reach 4.9 billion by 2032. This takes place despite the sustained displacement of its largest market - printed glucose test strips - with continuous glucose monitoring (CGM) approaches. Market growth is therefore enabled by the rise of many new applications and technologies.

This report covers the entire printed and flexible sensor landscape. More specifically, it covers:

  • Piezoresistive sensors
  • Piezoelectric sensors
  • Printed photodetectors
  • Temperature sensors
  • Strain sensors
  • Capacitive touch sensors
  • Gas sensors
  • Biological sensors
  • Flexible wearable electrodes

We also provide case studies of multi-parameter sensors which utilize the ability of multiple solution processed functionalities to either be printed in parallel or laminated. Printed sensors of course need a readout mechanism along with antennas and a power supply, so we include the integration of printed sensors within the emerging manufacturing methodology of flexible hybrid electronics (FHE).

Growth in emerging applications

Printed sensors span a diverse range of technologies and applications, ranging from image sensors to wearable electrodes. Each sensor category seeks to offers a distinct value proposition over the incumbent technology, with distinct technological and commercial challenges on route to widespread adoption.

Figure 1:
Printed/flexible sensors have multiple applications,
including for continuous health monitoring and smart buildings.

Despite this diversity, there are multiple factors that are driving the adoption of many types of printed/flexible sensors. Most important is the increasing adoption of 'IoT' and 'Industry 4.0' since they will require extensive networks of often wirelessly connected low-cost and unobtrusive sensors. Additionally, the thin-film form factor and conformality of printed/flexible sensors enable them to be incorporated within smaller devices, thus providing increased freedom for designers to differentiate their products and potentially new use cases.

Thin film photodetectors

Large area image sensors based on printed organic photodiodes (OPDs) are an innovative technology, representing a complete change from the conventional CMOS-based image detection. Its key value propositions are the ability to make sensors that span large areas much more cheaply than incumbent approaches, and the thin-film flexible form factor. Detection of light over a large area, rather than at a single small detector, is highly desirable for acquiring biometric data and, if flexible, for imaging through the skin. The challenge is that light is easily focused and that conventional image sensors are both cheap and well established.

Piezoresistive sensors

Printed piezoresistive force sensors are a longstanding application, widely used today in car occupancy sensors, musical instruments, industrial equipment, and some medical devices. While these markets are somewhat commoditized, the sector is innovating to access new, differentiated, higher value applications.

One example is 3D touch panels that can measure applied force as a function position, thus enabling the recognition of complex HMI gestures than the incumbent capacitive touch panels. Suppliers are continuing to target phones, computer gaming and automotive interiors.

The challenge for differentiating piezoresistive sensors is that many applications do not require sophisticated functionality such as 3D touch or proximity sensing. The relatively low technology complexity can also mean that barriers to entry and the value capture are low. This is convincing some to go higher up in the value chain, offering more integrated solutions that incorporate haptics, for example.

Piezoelectric sensors

Piezoelectric sensors generate a voltage in response to an applied force, rather than changing their resistance. While, like piezoresistive sensors, they can be used for force sensing, they are more expensive to manufacture and less straightforward to integrate. As such, manufacturers are primarily targeting applications that utilize their unique capabilities, specifically their sensitivity to high frequency vibrations.

The commercial difficulty for printed piezoelectric sensors is that their capabilities lie midway between two simple established technologies: Affordable piezoresistive pressure sensors, and sensitive, rigid ceramic piezoelectric sensors. However, there are some relatively niche application areas to which thin film piezoelectric sensors are well suited, such as structural health and industrial condition monitoring.

Capacitive touch sensors

Capacitive touch sensors are well-established and widely used for transparent touch sensors such as smartphones and tablets. However, there is still extensive scope for innovation within capacitive touch in terms of the transparent conductive materials used, the ability to sense touch over large area displays, and alternative applications for capacitive sensing such as leak detection and interactive surfaces.

Indium tin oxide (ITO) is the dominant transparent conductive film, but has multiple shortcomings including limited flexibility, a limited conductivity vs transparency ratio, and exposure to the indium price and supply chain. Emerging solution processable alternatives include silver nanowires, carbon nanotubes and printed metal mesh. Despite challenges matching ITO's lack of haze and inertia of an established but technically inferior approach, alternative materials are finally finding market in flexible or 3D shaped objects, in large-area multi-touch capacitive touch screens, and even nowadays sometimes in lower cost touch screens. Another significant innovation within the capacitive touch sensor market is current-mode sensor readout, which both reduces the conductivity requirements of the transparent conductive film and dramatically increased sensitivity.

Capacitive strain sensors

Various partially or fully printed stretchable strain sensors have been developed and commercialized over the years. Basic technology demonstration has proved relatively easy, but not every supplier has succeeded in transitioning to large-volume capability with at lower costs.

The main challenge has been that flexible strain sensors are generally not replacing an existing product, meaning that completely new markets need to be developed. To address this challenge and to capture more value, many suppliers offer vertically integrated 'solutions'. One example is 'smart gloves' that track the movement of the hands and fingers in real time with more accuracy than cameras - they can even be combined with haptic feedback for training purposes. After years of development opportunities in industrial displacement sensing, in wearable electronics, and in continuous patient monitoring are now emerging.

Temperature sensors

Printing can also be used to create temperature sensors, using either a composite ink with silicon nanoparticles or carbon nanotubes. Given that temperature measurement requires good thermal contact, sensors based on conformal substrates might seem to offer a clear value proposition.

Their main challenge is the low cost, light weight, and ubiquity of very mature solutions such as thermistors and resistive temperature detectors. As such, printed temperature sensors have the clearest value proposition applications that require spatial resolution using conformal array, such as monitoring wounds or skin complaints. Monitoring batteries in electric vehicles is another highly promising application that is receiving increased interest, with the light weight and ease of integration with pouch cells the main attractions.

Gas and humidity sensors

Gas and humidity sensors can also be printed, although at present most are made from ceramics rather than organic material. Some of these ceramics are printed as a 'thick film' with very high curing temperatures, rendering them incompatible with flexible substrates. Emerging approaches are based around functionalized carbon nanotubes and other organic semiconductors. Multiple sensors with slightly different properties can be combined to form an 'electronic nose', with their composite output exhibiting a different 'fingerprint' for each analyte.

Gas sensors are already used in many industrial contexts and are likely to be increasingly adopted as concern about air pollution grows. Unlike some sectors, there is substantial scope for differentiation by sensitivity and analyte, leading to a fragmented market. Another promising long-term application in which printed gas sensors offer unique capability is directly printing onto food packaging to measure food degradation. However, this will likely require the development of flexible hybrid electronics to make such capability cost-effective via continuous manufacturing, along with the development of enabling technologies such as flexible ICs.

Biosensors

The largest category of printed sensors by revenue and volume is printed biosensors, dominated by glucose test strips. The annual demand is in the billions. However, use is gradually declining due to the growing adoption of patient-friendly continuous glucose monitoring, a trend that will continue to grow. In parallel, there have been significant price pressures and commoditization as regulators have sought to supress the test prices and in doing so eroded the margins. Despite all this, this remains the largest volume and revenue business in the printed and flexible sensor landscape. Importantly, printed biosensors are not constrained to glucose sensing and an array of other sensors are emerging.

Wearable electrodes

Today, most medial electrodes comprise a metal snap fastening with an electrolytic gel, but these can only be used for short periods. For continuous monitoring, printed electrodes are gradually being adopted into skin patches, since they last longer, can be integrated into a product together with conductive interconnects (also printed) and are flexible. Wearable electrodes are also well suited to fitness context and have been integrated into e-textiles to monitor heart rate in a comfortable way. Both medical and fitness applications of printed wearable electrodes are likely to increase as the software for continuous monitoring develops thus creating greater demand, although the durability in e-textiles remains a concern for consumers.

Overview

IDTechEx has been researching the emerging printed electronics market for well over a decade, launching our first printed and flexible sensor report back in 2012. Since then, we have stayed close to the technical and market developments, interviewing key players worldwide, attending numerous conferences, delivering multiple consulting projects, and running classes and workshops on the topic. The depth and breadth of our insight is truly unrivalled, demonstrated by the detailed profiles of over 50 companies included within this report.

This report discusses each of these printed sensor categories in considerable detail, evaluating the different technologies and the challenges to adoption. We also develop 10-year market forecasts for each technology and application sector, delineated by both revenue and printed sensor area.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. An introduction to printed and flexible sensors
  • 1.2. Key markets for printed/flexible sensors
  • 1.3. Industry 4.0 requires printed sensors
  • 1.4. Growth opportunities for printed sensors in environmental and agricultural monitoring
  • 1.5. Shift to continuous healthcare monitoring creates opportunities for printed/flexible sensors
  • 1.6. Meeting application requirements: Incumbent technologies vs printed/flexible sensors
  • 1.7. Overall SWOT analysis of printed sensors overall
  • 1.8. Porters' five forces analysis for overall printed sensor market
  • 1.9. Key takeaways - for printed/flexible sensors overall
  • 1.10. Key takeaways - specific printed/flexible sensor types
  • 1.11. Reviewing the previous printed/flexible sensor report (2020-2030)
  • 1.12. Growth areas for printed piezoresistive sensors
  • 1.13. Opportunities for printed temperature sensors
  • 1.14. Overview of thin film photodetectors
  • 1.15. Opportunities for printed gas sensors
  • 1.16. Opportunities for capacitive strain sensors.
  • 1.17. Glucose test strips: A large but declining market
  • 1.18. Printed wearable electrode sensors: Opportunities in healthcare and fitness monitoring.
  • 1.19. Multifunctional printed/flexible sensors are a promising approach.
  • 1.20. Printed sensor applications require flexible hybrid electronics (FHE circuits)
  • 1.21. SWOT analysis for each printed sensor category

2. MARKET FORECASTS

  • 2.1. Market forecast methodology
  • 2.2. Difficulties of forecasting discontinuous technology adoption
  • 2.3. 10-year overall printed / flexible sensor forecast by sensor type (revenue, in USD millions)
  • 2.4. 10-year overall printed / flexible sensor forecast by sensor type excluding biosensors (revenue, in USD millions)
  • 2.5. 10-year piezoresistive sensor forecast by application (volume, in m2)
  • 2.6. 10-year printed piezoresistive sensor forecast by application (revenue, in USD millions)
  • 2.7. 10-year printed hybrid (capacitive/piezoresistive) sensor forecast by application (revenue, in USD millions)
  • 2.8. 10-year printed piezoelectric sensor forecast by application (volume, in m2)
  • 2.9. 10-year printed piezoelectric sensor forecast by application (revenue, in USD millions)
  • 2.10. 10-year printed photodetector forecast by application (volume, in m2)
  • 2.11. 10-year printed photodetector forecast by application (revenue, in USD millions)
  • 2.12. 10-year printed temperature sensor forecast by application (volume, in m2)
  • 2.13. 10-year printed temperature sensor forecast by application (revenue, USD millions)
  • 2.14. 10-year printed strain sensor forecast by application (volume, in m2)
  • 2.15. 10-year printed strain sensor forecast by application (revenue, USD millions)
  • 2.16. 10-year printed gas sensors forecasts by technology (volume, in m2)
  • 2.17. 10-year printed gas sensor forecasts by technology (revenue, in USD millions)
  • 2.18. 10-year printed humidity sensor forecasts (volume, in m2)
  • 2.19. 10-year printed humidity forecasts (revenue, in USD millions)
  • 2.20. 10-year printed biosensors forecast by technology (volume, in m2)
  • 2.21. 10-year printed biosensors forecast by technology (revenue, in USD millions)
  • 2.22. 10-year printed wearable electrodes forecast by application (volume, in m2)
  • 2.23. 10-year printed wearable electrodes forecast by application (revenue, in USD millions)

3. INTRODUCTION

  • 3.1.1. What is a sensor?
  • 3.1.2. Sensor value chain example: Digital camera
  • 3.1.3. What defines a 'printed' sensor?
  • 3.1.4. Printed vs conventional electronics
  • 3.1.5. Key markets for printed/flexible sensors
  • 3.1.6. Industry 4.0 requires printed sensors
  • 3.1.7. Opportunities for printed sensors: Facilitating computational data analysis
  • 3.1.8. Opportunities for printed sensors: Human machine interfaces (HMI)
  • 3.1.9. Human machine interface (HMI) technologies
  • 3.1.10. Shift to continuous healthcare monitoring creates
  • 3.1.11. Opportunities for printed sensors: Healthcare
  • 3.1.12. Growth opportunities for printed sensors in environmental and agricultural monitoring
  • 3.1.13. Printed sensor manufacturing
  • 3.1.14. A brief overview of screen, slot-die, gravure and flexographic printing
  • 3.1.15. A brief overview of digital printing methods
  • 3.1.16. Towards roll to roll (R2R) printing
  • 3.1.17. Advantages of roll-to-roll (R2R) manufacturing
  • 3.1.18. What proportion is printed?
  • 3.1.19. Printed sensor categories
  • 3.2. Impact of COVID-19 on the printed sensor market
    • 3.2.1. COVID-19 and printed sensors for smartphones
    • 3.2.2. COVID-19 and medical applications of printed sensors
    • 3.2.3. COVID-19, the automotive sector and printed sensors
    • 3.2.4. COVID-19, wearable technology and printed sensors
    • 3.2.5. COVID-19, IoT and printed sensors
    • 3.2.6. Impact of COVID-19 on the printed sensor market: Conclusions

4. PRINTED PIEZORESISTIVE SENSORS

  • 4.1.1. Printed piezoresistive sensors: An introduction
  • 4.1.2. Piezoresistive vs capacitive touch sensors
  • 4.2. Printed piezoresistive sensors: Technology
    • 4.2.1. What is piezoresistance?
    • 4.2.2. Percolation dependent resistance
    • 4.2.3. Quantum tunnelling composite
    • 4.2.4. Printed piezoresistive sensors: Anatomy
    • 4.2.5. Pressure sensing architectures
    • 4.2.6. Thru mode sensors
    • 4.2.7. Shunt mode sensors
    • 4.2.8. Force vs resistance characteristics
    • 4.2.9. Importance of actuator area
    • 4.2.10. Force sensitive inks
    • 4.2.11. Complete material portfolio approach for FSRs
    • 4.2.12. Shunt-mode FSR sensors by the roll
    • 4.2.13. R2R vs S2S manufacturing for piezoresistive sensors
    • 4.2.14. Example FSR circuits
    • 4.2.15. Effect of circuit design on sensor output
    • 4.2.16. Matrix pressure sensor architecture
    • 4.2.17. Printed foldable force sensing solution (Peratech)
    • 4.2.18. 3D multi-touch pressure sensors (Tangio)
    • 4.2.19. Hybrid FSR/capacitive sensors
    • 4.2.20. Hybrid FSR/capacitive sensors (Tangio)
    • 4.2.21. Curved sensors with consistent zero (Tacterion)
    • 4.2.22. Future technological development of piezoresistive sensors
    • 4.2.23. InnovationLab: Mass production of printed sensors
  • 4.3. Printed piezoresistive sensors: Applications
    • 4.3.1. Applications of piezoresistive sensors
    • 4.3.2. Medical applications of printed FSRs (Tekscan)
    • 4.3.3. More medical applications of printed FSR sensors (Tekscan)
    • 4.3.4. Force sensor examples: Vista Medical
    • 4.3.5. Dental occlusion monitoring with printed pressure sensors (Innovation Lab)
    • 4.3.6. Large-area pressure sensors for smart flooring and gait analysis.
    • 4.3.7. Textile-based applications of printed FSR
    • 4.3.8. Pressure sensitive fabric (Vista Medical)
    • 4.3.9. Piezoresistive e-textiles for medical applications (Sensing Tex)
    • 4.3.10. Flexible pressure-sensitive gloves (Tekscan)
    • 4.3.11. Consumer electronic applications of printed FSR
    • 4.3.12. Piezoresistive sensors in smartphones
    • 4.3.13. A portable MIDI controller - The Morph (Sensel)
    • 4.3.14. Automotive occupancy and seat belt alarm sensors
    • 4.3.15. Other automotive applications for printed piezoresistive sensors
    • 4.3.16. ForcIOT: Integrated stretchable pressure sensors
    • 4.3.17. InnovationLab: Spatially resolved flexible pressure sensor
    • 4.3.18. Smart carpet to enforce social distancing (due to coronavirus)
    • 4.3.19. Printed piezoresistive sensor application assessment
  • 4.4. Printed piezoresistive sensors: Summary
    • 4.4.1. Summary: Printed piezoresistive sensor applications
    • 4.4.2. Business models for printed piezoresistive sensors
    • 4.4.3. SWOT analysis of piezoresistive sensors
    • 4.4.4. Readiness level snapshot of printed piezoresistive sensors
    • 4.4.5. Force sensitive resistor sensor supplier overview
    • 4.4.6. Company profiles: Piezoresistive sensors

5. PRINTED PIEZOELECTRIC SENSORS

  • 5.1. Printed piezoelectric sensors: Technology
    • 5.1.1. Piezoelectricity: An introduction
    • 5.1.2. Piezoelectric polymers
    • 5.1.3. PVDF-based polymer options for sensing and haptic actuators
    • 5.1.4. Low temperature piezoelectric inks (Meggitt)
    • 5.1.5. Piezoelectric polymers
    • 5.1.6. Printed piezoelectric sensor
    • 5.1.7. Printed piezoelectric sensors: prototypes
    • 5.1.8. Pyzoflex
  • 5.2. Printed piezoelectric sensors: Applications
    • 5.2.1. Applications for printed piezoelectric sensors
    • 5.2.2. Piezoelectric actuators in loudspeaker/microphones
    • 5.2.3. PiezoPaint for industrial condition monitoring (Meggit)
    • 5.2.4. Combining energy harvesting and sensing
    • 5.2.5. VTT/Tampere University: Elastronics
    • 5.2.6. Attribute importance for piezoelectric sensor applications
  • 5.3. Printed piezoelectric sensors: Summary
    • 5.3.1. Summary: Piezoelectric sensors
    • 5.3.2. SWOT analysis of piezoelectric sensors
    • 5.3.3. Readiness level snapshot of printed piezoelectric sensors
    • 5.3.4. Piezoelectric sensor supplier overview
    • 5.3.5. Company profiles: Piezoelectric sensors

6. PRINTED PHOTODETECTORS

  • 6.1.1. Introduction to thin film photodetectors
  • 6.1.2. Comparison of photodetector technologies
  • 6.2. Printed photodetectors: Technology
    • 6.2.1. Photodetector working principles
    • 6.2.2. Quantifying photodetector and image sensor performance
    • 6.2.3. Organic photodetectors (OPDs)
    • 6.2.4. Thin film photodetectors: Advantages and disadvantages
    • 6.2.5. Reducing dark current to increase dynamic range
    • 6.2.6. Tailoring the detection wavelength to specific applications
    • 6.2.7. Extending OPDs to the NIR region: Use of cavities
    • 6.2.8. First OPD production line
    • 6.2.9. Technical challenges for manufacturing thin film photodetectors from solution
    • 6.2.10. Materials for thin film photodetectors
    • 6.2.11. Flexible image sensors based on amorphous Si
  • 6.3. Printed photodetectors: Applications
    • 6.3.1. OPDs for biometric security
    • 6.3.2. Spray-coated organic photodiodes for medical imaging
    • 6.3.3. 'Fingerprint on display' with OPDs (ISORG)
    • 6.3.4. Flexible OPD applications using TFT active matrix (ISORG)
    • 6.3.5. Pulse oximetry sensing with OPD (Cambridge Display Technology)
    • 6.3.6. Perovskite based image sensors (Holst Center)
    • 6.3.7. Academic research: Wearable skin patches with photodetectors
    • 6.3.8. Technical requirements for thin film photodetector applications
    • 6.3.9. Thin-film OPD and PPD application requirements
    • 6.3.10. Application assessment for thin film OPDs and PPDs.
    • 6.3.11. Commercial challenges for large-area OPD adoption
  • 6.4. Summary: Printed image sensors
    • 6.4.1. Summary: Thin film organic and perovskite photodetectors
    • 6.4.2. SWOT analysis of large area OPD image sensors
    • 6.4.3. Readiness level snapshot of printed photodetectors
    • 6.4.4. Supplier overview: Thin film photodetectors
    • 6.4.5. Company profiles: Printed image sensors

7. PRINTED TEMPERATURE SENSORS

  • 7.1.1. Introduction to printed temperature sensors
  • 7.1.2. Types of temperature sensors
  • 7.1.3. Comparing resistive temperature sensors and thermistors
  • 7.2. Printed temperature sensors: Technology
    • 7.2.1. Silicon nanoparticle ink for temperature sensing (PST Sensors) (II)
    • 7.2.2. Printed metal RTD sensors: Brewer Science
    • 7.2.3. Substrate challenges for printed temperature sensors
    • 7.2.4. Temperature sensors based on printed inorganic NTC material
    • 7.2.5. Heat and temperature sensor arrays with inkjet printing (INO - National Optics Institute, Canada)
    • 7.2.6. Printed miniaturized platinum heater for metal-oxide gas sensors (Fraunhofer IKTS)
    • 7.2.7. Printed temperature sensors for smart RFID sensors (CENTI)
    • 7.2.8. Academic research: Printed temperature sensor with stabilized PEDOT:PSS
    • 7.2.9. Time temperature indicators (TTIs)
    • 7.2.10. Chemical TTIs
    • 7.2.11. Chemical Time Temperature Indicators
    • 7.2.12. Examples of Chemical Time Temperature Indicators (TTIs)
  • 7.3. Printed temperature sensors: Applications
    • 7.3.1. Applications for printed temperature sensors
    • 7.3.2. Battery thermal management: Optimal temperature required
    • 7.3.3. Temperature monitoring for electric vehicles batteries gathers pace.
    • 7.3.4. Printed temperature sensors and heaters (IEE)
    • 7.3.5. Integrated pressure/temperature sensors and heaters for battery cells
    • 7.3.6. Proof-of-concept prototype of an integrated printed electronic tag
    • 7.3.7. Novel applications for flexible temperature sensors
    • 7.3.8. CNT temperature sensors (Brewer Science)
    • 7.3.9. Wearable temperature monitors
    • 7.3.10. Attribute importance for temperature sensor applications
  • 7.4. Printed temperature sensors: Summary
    • 7.4.1. Summary: Printed temperature sensors
    • 7.4.2. SWOT analysis of printed temperature sensors
    • 7.4.3. Technology readiness level snapshot of printed temperature sensors
    • 7.4.4. Printed temperature sensor supplier overview
    • 7.4.5. Company profiles: Printed temperature sensors

8. PRINTED STRAIN SENSORS

  • 8.1. Printed strain sensors: Technology
    • 8.1.1. Capacitive strain sensors
    • 8.1.2. Use of dielectric electroactive polymers (EAPs)
    • 8.1.3. Resistive strain sensors
    • 8.1.4. 3D printed soft electronics (Karlsruher Institute for Technology)
    • 8.1.5. Skin-inspired electronics (Zhenan Bao - Stanford University)
  • 8.2. Printed strain sensors: Applications
    • 8.2.1. Strain sensor applications
    • 8.2.2. Motion capture with capacitive strain sensor (Parker Hannifin)
    • 8.2.3. Strain sensitive e-textiles (Stretchsense)
    • 8.2.4. Strain sensitive e-textiles (Bando Chemical)
    • 8.2.5. Strain sensor e-textiles (Yamaha and Kureha)
    • 8.2.6. Industrial displacement sensors (LEAP Technology)
    • 8.2.7. Resistive strain sensor example (BeBop Sensors)
    • 8.2.8. Resistive strain sensor for gloves (Polymatech)
  • 8.3. Printed strain sensors: Summary
    • 8.3.1. Summary: Strain sensors
    • 8.3.2. SWOT analysis of flexible strain sensors
    • 8.3.3. Technology readiness level snapshot of capacitive strain sensors
    • 8.3.4. Printed high-strain sensor supplier overview
    • 8.3.5. Company profiles: Strain sensors

9. PRINTED GAS SENSORS

  • 9.1.1. Printed gas sensors: An introduction
  • 9.1.2. The gas sensor value chain
  • 9.2. Printed gas sensors: Technology
    • 9.2.1. Gas sensor industry
    • 9.2.2. History of chemical sensors
    • 9.2.3. Transition to miniaturised gas sensors
    • 9.2.4. Comparison between classic and miniaturised sensors
    • 9.2.5. Concentrations of detectable atmospheric pollutants
    • 9.2.6. Five common detection principles for gas sensors
    • 9.2.7. Sensitivity for main available gas sensors
    • 9.2.8. Comparison of miniaturised sensor technologies
    • 9.2.9. Pellistor gas sensors
    • 9.2.10. Metal oxide semiconductors (MOS) gas sensors
    • 9.2.11. Printing MOS sensors
    • 9.2.12. Screen printed MOS sensors (Figaro)
    • 9.2.13. MOS gas sensors with printed electrodes (FIS)
    • 9.2.14. Screen printed MOS sensors (Renesas Electronics)
    • 9.2.15. Electrochemical (EC) gas sensors
    • 9.2.16. Printed components of electrochemical gas sensor
    • 9.2.17. Printed traditional EC gas sensor
    • 9.2.18. Screen printed miniaturised EC gas sensor
    • 9.2.19. Infrared gas sensors
    • 9.2.20. Electronic nose (e-Nose)
    • 9.2.21. Integrating an 'electronic nose' with a flexible IC
    • 9.2.22. Printed carbon nanotube based gas sensors
    • 9.2.23. CNT-based electronic nose for gas fingerprinting (PARC)
    • 9.2.24. Printed humidity sensors for smart RFID sensors (CENTI)
    • 9.2.25. Printed humidity/moisture sensor (Brewer Science)
    • 9.2.26. Humidity sensors based on organic electronics (Invisense)
    • 9.2.27. Printed miniaturized platinum heater for metal-oxide gas sensors (Fraunhofer IKTS)
    • 9.2.28. CO2 sensing via heat of adsorption
    • 9.2.29. Academic research: Low-cost biodegradable sensors
    • 9.2.30. Academic research: Carbon nanotubes and catalyst sense vegetable spoilage
  • 9.3. Printed gas sensors: Applications
    • 9.3.1. Gas sensors will find use in various IoT segments
    • 9.3.2. Gas sensors in automotive industry
    • 9.3.3. Printed gas sensors for air quality monitoring
    • 9.3.4. Emerging market: Personal devices
    • 9.3.5. Gas sensors for mobile devices
    • 9.3.6. Mobile phones with air quality sensors
    • 9.3.7. H2S professional gas detector watch
    • 9.3.8. Air quality monitoring for smart cities
    • 9.3.9. Home And Office Monitoring: A Connected Environment
  • 9.4. Printed gas sensors: Summary
    • 9.4.1. Summary: Gas sensors
    • 9.4.2. Future challenges for gas sensor manufacturers
    • 9.4.3. Technology readiness level snapshot of gas sensors
    • 9.4.4. SWOT analysis of gas sensors
    • 9.4.5. Supplier overview: Printed gas sensors
    • 9.4.6. Company profiles: Gas sensors

10. PRINTED CAPACITIVE SENSORS

  • 10.1. Printed capacitive sensors: Technology
    • 10.1.1. Capacitive sensors: Working principle
    • 10.1.2. Hybrid capacitive / piezoresistive sensors
    • 10.1.3. Metallization and materials for capacitive sensing within 3D electronics
    • 10.1.4. In-mold electronics vs film insert molding
    • 10.1.5. In-mold electronics for automotive capacitive sensing
    • 10.1.6. Integrated capacitive sensing (TG0)
    • 10.1.7. Emerging current mode sensor readout: Principles
    • 10.1.8. Benefits of current-mode capacitive sensor readout
    • 10.1.9. Academic research: Epidermal electronics with a nanomesh pressure sensor
  • 10.2. Printed capacitive sensors: Transparent conductive materials
    • 10.2.1. Conductive materials for transparent capacitive sensors
    • 10.2.2. Quantitative benchmarking of different TCF technologies
    • 10.2.3. Sheet resistance vs thickness for transparent conductive films
    • 10.2.4. Indium tin oxide: The incumbent transparent conductive film
    • 10.2.5. ITO film shortcomings
    • 10.2.6. Silver nanowires: An introduction
    • 10.2.7. Ag haze: Demonstrating impact of NW aspect ratio
    • 10.2.8. Prospects for Ag NW adoption
    • 10.2.9. Metal mesh: Photolithography followed by etching
    • 10.2.10. Direct printed metal mesh transparent conductive films: performance
    • 10.2.11. Direct printed metal mesh transparent conductive films: major shortcomings
    • 10.2.12. Toppan Printing's copper mesh transparent conductive films
    • 10.2.13. Eastman Kodak: Transparent ultra low-resistivity RF antenna using printed Cu metal mesh technology
    • 10.2.14. Introduction to Carbon Nanotubes (CNT)
    • 10.2.15. Carbon nanotube transparent conductive films: performance
    • 10.2.16. Carbon nanotube transparent conductive films: performance of commercial films on the market
    • 10.2.17. Carbon nanotube transparent conductive films: Matched index
    • 10.2.18. Combining AgNW and CNTs for a TCF material (Chasm)
    • 10.2.19. Introduction to PEDOT:PSS
    • 10.2.20. Performance of PEDOT:PSS has drastically improved
    • 10.2.21. PEDOT:PSS performance improves to match ITO-on-PET
    • 10.2.22. Polythiophene-based conductive films for flexible devices (Heraeus)
    • 10.2.23. Technology comparison
  • 10.3. Printed capacitive sensors: Applications
    • 10.3.1. Rotary dial on a capacitive touch screen (Ford)
    • 10.3.2. Use case examples of PEDOT:PSS for capacitive touch sensors
    • 10.3.3. Emerging current-mode sensor readout enables large area touch screens
    • 10.3.4. Foldable displays incorporating C3 Nano's AgNWs
  • 10.4. Printed capacitive sensors: Summary
    • 10.4.1. Summary: Capacitive touch sensors
    • 10.4.2. Summary: Transparent conductive materials
    • 10.4.3. Readiness level of capacitive touch sensors materials and technologies
    • 10.4.4. SWOT analysis of capacitive touch sensors
    • 10.4.5. SWOT analysis of transparent conductors for capacitive touch sensors
    • 10.4.6. TCF material supplier overview
    • 10.4.7. Capacitive touch sensor companies (excluding materials suppliers)
    • 10.4.8. Company profiles: Capacitive sensors

11. PRINTED BIOSENSORS

  • 11.1.1. Electrochemical biosensors present a simple sensing mechanism
  • 11.2. Printed biosensors: Technology
    • 11.2.1. Electrochemical biosensor mechanisms
    • 11.2.2. Enzymes used in PoC electrochemical biosensors
    • 11.2.3. Electrode deposition: screen printing vs sputtering
    • 11.2.4. Anatomy of a glucose test strip
    • 11.2.5. Challenges for printing electrochemical test strips
    • 11.2.6. Printed pH sensors for biological fluids
  • 11.3. Printed biosensors: Applications
    • 11.3.1. Glucose test strip monitoring through an associated reader
    • 11.3.2. Sensors for diabetes management roadmap
    • 11.3.3. Summary: Printed biosensors
    • 11.3.4. Introduction to printed biosensors for diabetes management
    • 11.3.5. CGM begins to replace test strips (Abbott)
    • 11.3.6. Comparing test strip costs with CGM
    • 11.3.7. Continuous glucose monitoring (CGM) is causing glucose test strip use to decline.
    • 11.3.8. Electrochemical sensors are a more accurate method of ketone monitoring
    • 11.3.9. Lactic acid monitoring for athletes with printed sensors
    • 11.3.10. Printed point of care cholesterol tests?
  • 11.4. Printed biosensors: Summary
    • 11.4.1. The future of electrochemical PoC biosensors
    • 11.4.2. SWOT analysis of printed biosensors
    • 11.4.3. Readiness level of printed biosensors
    • 11.4.4. Supplier overview: Biosensors
    • 11.4.5. Biosensors: Company profiles

12. PRINTED WEARABLE ELECTRODES

  • 12.1. Printed wearable electrodes: Skin patches
    • 12.1.1. Introduction to printed wearable electrodes and skin patches
    • 12.1.2. The case for skin patches: Improving device form factor
    • 12.1.3. Applications for electrodes and skin patches
    • 12.1.4. Using electrodes to measure biopotential
    • 12.1.5. Disposable metal snap electrodes - the current electrode technology
    • 12.1.6. Market for metal snap Ag/AgCl electrodes
    • 12.1.7. Skin patches with integrated electrodes - an opportunity for printed electrodes.
    • 12.1.8. Smart patch with printed silver ink (Quad Industries)
    • 12.1.9. QT Medical develop printed electrodes and interconnects
    • 12.1.10. Printed electrodes and interconnects for pregnancy monitoring (Monica Healthcare)
    • 12.1.11. Flexible and stretchable electrode (ScreenTec OY)
    • 12.1.12. GE Research: Manufacturing of disposable wearable vital signs monitoring devices
    • 12.1.13. Printed wireless wearable electrodes (Dupont)
    • 12.1.14. Printable dry ECG electrodes (Henkel)
    • 12.1.15. New printed electrode materials form Henkel
    • 12.1.16. Comparing printed and metal snap electrode performance
    • 12.1.17. Advantages of printed dry electrode adhesives
    • 12.1.18. Grid printed electrodes (Nissha GSI)
    • 12.1.19. Alternative printed electrode materials
    • 12.1.20. Prof. John Rodgers (Northwestern University): Epidermal electronics
    • 12.1.21. Printed wearable electrodes: E-textiles
  • 12.2. E-Textiles: Where textiles meet electronics
    • 12.2.1. Biometric monitoring in apparel
    • 12.2.2. Integrating heart rate monitoring into clothing
    • 12.2.3. Sensors used in smart clothing for biometrics
    • 12.2.4. Companies with biometric monitoring apparel products
    • 12.2.5. Textile electrodes
    • 12.2.6. E-textile material use over time
    • 12.2.7. Printed electrodes on clothing (Toyobo)
    • 12.2.8. Monitoring racehorse health with printed electrodes (Toyobo)
    • 12.2.9. Stretchable conductive printed electrodes (Nanoleq)
    • 12.2.10. Sensing functionality woven into textiles (Myant)
  • 12.3. Printed wearable electrodes: Summary
    • 12.3.1. Summary: Flexible wearable electrodes
    • 12.3.2. SWOT analysis of printed flexible wearable electrodes
    • 12.3.3. Readiness level of printed wearable electrodes
    • 12.3.4. Supplier overview: Printed electrodes for skin patches and e-textiles
    • 12.3.5. Company profiles: Flexible wearable electrodes

13. MULTIFUNCTIONAL PRINTED SENSORS

  • 13.1. Multifunctional printed/flexible sensors: Motivation and possible architectures
  • 13.2. Holst Center: Flexible electronics for human-centric healthcare
  • 13.3. Condition monitoring multimodal sensor array
  • 13.4. PARC: Multi-sensor wireless asset tracking system
  • 13.5. 'Sensor-less' sensing of temperature and movement

14. PRINTED SENSORS IN FLEXIBLE HYBRID ELECTRONICS (FHE CIRCUITS).

  • 14.1. Printed sensor applications require flexible hybrid electronics (FHE circuits)
  • 14.2. Defining flexible hybrid electronics (FHE)
  • 14.3. FHE Examples: Combing conventional components with flexible/printed electronics on flexible substrates
  • 14.4. FHE: The best of both worlds?
  • 14.5. What counts as FHE?
  • 14.6. Overcoming the flexibility/functionality compromise
  • 14.7. Integrating sensors in FHE circuits
  • 14.8. ITN Energy: Ultra-thin self-powered sensor platform
  • 14.9. Wine temperature sensing label
  • 14.10. Wearable ECG sensor from VTT
  • 14.11. An electronic nose with FHE (PlasticArm project - ARM, PragmatIC)
  • 14.12. FHE and printed sensors for smart packaging.
  • 14.13. SWOT analysis of printed sensors in FHE circuits
  • 14.14. Supplier overview: Printed sensors in FHE circuits
  • 14.15. Company profiles: Flexible hybrid electronics