NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

3D列印陶瓷 2022-2032年:技術與市場展望

3D Printing Ceramics 2022-2032: Technology and Market Outlook

出版商 IDTechEx Ltd. 商品編碼 1025104
出版日期 內容資訊 英文 233 Slides
商品交期: 最快1-2個工作天內
價格
3D列印陶瓷 2022-2032年:技術與市場展望 3D Printing Ceramics 2022-2032: Technology and Market Outlook
出版日期: 2021年08月27日內容資訊: 英文 233 Slides
簡介

標題
3D列印陶瓷 2022-2032年:技術和市場展望
精細的市場預測、基於訪談的公司簡介、技術和材料基準研究、案例研究和市場前景。

"到 2032 年,陶瓷 3D 打印市場將成長為自己的利基市場,達到 4 億美元。"

C陶瓷 3D 打印是 3D 打印行業中的一個新興細分市場,在過去 10 年中開始了其商業之旅。與聚合物和金屬 3D 打印相比,陶瓷 3D 打印還很年輕。然而,過去幾年進入該領域的公司越來越多,從大型陶瓷公司到小型 3D 打印初創公司,這表明對陶瓷增材製造的興趣正在上升。

在 IDTechEx 的這份技術報告中,對陶瓷 3D 打印進行了全面的分析,以提供行業的現狀和展望。該報告基於大量主要訪談和 IDTechEx 關於增材製造的歷史數據,提供了陶瓷 3D 打印的廣泛技術基準、材料摘要、主要參與者概述和目標應用。

對陶瓷打印機技術和材料進行基準測試

在 3D 打印行業中,新技術的重要細節被炒作和媒體關注所掩蓋的情況並不少見。對於陶瓷 3D 打印,這意味著新型陶瓷打印機將如何 "改變 3D 打印行業" 或 "徹底改變" 醫學等特定領域的頭條新聞。在本報告中,IDTechEx 切入營銷語言,深入瞭解主導陶瓷增材製造市場的技術核心。除了每個單獨打印過程的詳細概述外,主要技術還通過幾個關鍵參數進行了比較:構建體積、構建速度、材料兼容性、分辨率等。通過對這些技術提供公正的基準測試,IDTechEx 將為最終用戶強調每個流程的優缺點。

來源:IDTechEx

可用於 3D 打印的陶瓷是擴大陶瓷 3D 打印的潛在應用和市場的關鍵。雖然較便宜的氧化物陶瓷(如氧化鋯和氧化鋁)是目前最受歡迎的陶瓷 3D 打印材料,但非用於高性能和高價值應用的氧化物陶瓷(如碳化矽和氮化矽)越來越受歡迎。在本報告中,在綜合分析打印後,可用於 3D打印的陶瓷及其製造商和關鍵材料特性。然後根據它們的機械、熱和介電特性對這些材料進行基準測試,以將它們的性能相互比較以及與傳統製造的陶瓷進行比較。在廣告dition,在陶瓷3D打印新材料的發展趨勢的角度-打印到陶瓷基體複合印刷從多材料/混合3D -被呈現給讀者對陶瓷印刷3D市場一個未來展望

關鍵應用:陶瓷 3D 打印正在獲得市場牽引力

陶瓷 3D 打印主要用於研發和原型製作,但越來越多的行業對陶瓷模具和小批量零件感興趣。這包括高價值行業,例如用於航空航天和國防、化學工程和牙科的熔模鑄造。雖然後一部門潛力巨大,但目前還沒有商業用途,但前一部門的商業應用正在增加;它們代表了陶瓷增材製造向高價值行業滲透的最佳機會。也就是說,研發相關的銷售額仍有增長空間,因為有大量國際研究機構致力於推進陶瓷 3D 打印在能源存儲、醫療設備和碳捕獲等有趣應用中的發展。

陶瓷3D打印市場預測

IDTech Ex通過廣泛的一級和二級研究,為陶瓷 3D 打印行業構建了詳細的 10 年市場預測。這些預測按安裝基礎、技術類型、材料使用和材料組成對行業進行細分。該分析表明,到 2032 年,陶瓷 3D打印將在價值 4 億美元的更廣泛的 3D 打印行業中佔據一席之地。

對陶瓷 3D 打印主要參與者的全面採訪作為對預測的補充,從專業的陶瓷 3D打印公司到金屬/聚合物 3D 打印機製造商,再到陶瓷材料供應商。這些簡介可以讓您深入瞭解引領行業的公司、它們在競爭對手中的地位以及它們在未來面臨的機遇和挑戰。

本報告中回答的關鍵問題:

  • 當前和新興的打印機技術類型有哪些?
  • 價格、構建速度、構建量和精度等指標如何因打印機類型而異?
  • 不同 3D 打印技術的優缺點是什麼?
  • 哪些打印機支持不同的材料類別?
  • 目前 3D 打印機的安裝基數是多少?
  • 活躍在市場上的那些人的市場份額是多少?
  • 市場增長的主要驅動因素和製約因素是什麼?
  • 誰是主要參與者?
  • 從 2022 年到 2032 年,不同類型打印機的銷售將如何演變?
  • 陶瓷 3D 打印的主要應用領域和目標行業是什麼?

來自 IDTechEx 的分析師訪問

購買所有報告都包括與專家分析師最多 30 分鐘的電話時間,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要和結論

  • 1.1. 什麼是陶瓷3D打印?
  • 1.2. 傳統陶瓷成型工藝
  • 1.3. 傳統陶瓷成型工藝的優缺點
  • 1.4. 陶瓷增材製造的基本原理
  • 1.5。陶瓷 3D 打印公司的歷史
  • 1.6. 3D打印陶瓷技術概述
  • 1.7. 陶瓷3D打印技術評估
  • 1.8。分類:按化學分類
  • 1.9. 陶瓷3D打印材料上的標記等
  • 1.10. 3D 打印陶瓷的目標部門
  • 1.11. 3D 打印生物陶瓷的醫學應用概述
  • 1.12。用於牙科應用的 3D 打印氧化鋯
  • 1.13. 用於熔模鑄造的陶瓷 3D 打印
  • 1.14. 化學工程應用
  • 1.15。3D 打印陶瓷的其他應用概述
  • 1.16。不同行業的現狀和市場潛力
  • 1.17. 3D打印陶瓷市場預測
  • 1.18. 技術市場預測
  • 1.19. 陶瓷3D打印機安裝基數逐年
  • 1.20。按成分預測的材料使用量
  • 1.21. 結論
  • 1.22。公司簡介

2. 簡介

  • 2.1. 詞彙表:供參考的常用首字母縮略詞
  • 2.2. 傳統陶瓷成型工藝
  • 2.3. 乾壓
  • 2.4. 熱壓
  • 2.5. 熱等靜壓
  • 2.6. 滑鑄
  • 2.7. 擠壓
  • 2.8. 注塑成型
  • 2.9. 傳統陶瓷成型工藝的優缺點
  • 2.10。什麼是陶瓷3D打印?
  • 2.11. 陶瓷增材製造的基本原理
  • 2.12. 七種不同類型的 3D 打印工藝
  • 2.13. 材料-工藝關係
  • 2.14. 為什麼要採用 3D 打印?
  • 2.15。3D 打印增長的驅動因素和餘波
  • 2.16. 3D 打印市場總體預測
  • 2.17. COVID-19 對股價的影響
  • 2.18. 陶瓷 3D 打印公司的歷史
  • 2.19. 陶瓷 3D 打印專利

3. 陶瓷印刷工藝

  • 3.1. 3D打印陶瓷技術概述
  • 3.2. 擠出:糊狀
  • 3.3. 擠出:熱塑性塑料
  • 3.4. 擠出:顆粒
  • 3.5。還原光聚合:立體光固化成型 (SLA)
  • 3.6. 還原光聚合:數字光處理 (DLP)
  • 3.7. 材料噴射:納米粒子噴射(NPJ)
  • 3.8. 粘合劑噴射
  • 3.9. 為什麼沒有商用 SLS 陶瓷打印機?
  • 3.10. 為什麼沒有商用 SLM 陶瓷打印機?

4. CER AMIC 打印機:基準

  • 4.1. 打印機製造商的最大構建量
  • 4.2. 打印機製造商的最小 Z 分辨率
  • 4.3. 打印機基準測試:Z 分辨率與構建體積
  • 4.4. 打印機製造商的最小 XY 分辨率
  • 4.5。按技術類型劃分的構建速度
  • 4.6. 多材料陶瓷打印機
  • 4.7. 打印機基準測試:構建量與價格
  • 4.8. 打印機基準測試:Z 分辨率與價格
  • 4.9. 陶瓷 3D 打印技術評估

5. 陶瓷 3D 打印材料:基準

  • 5.1. 陶瓷3D打印材料覆蓋範圍
  • 5.2. 分類:按原料類型
  • 5.3. 分類:按應用
  • 5.4. 分類: 由 Che mistry
  • 5.5。市場上的陶瓷3D打印材料
  • 5.6. 3DP陶瓷材料的機械性能
  • 5.7. 3DP陶瓷材料的熱性能
  • 5.8。3DP陶瓷材料的平均密度
  • 5.9. 3DP 陶瓷材料的彎曲強度與密度
  • 5.10. 氧化鋁比較 - AM 與非 AM
  • 5.11. 氧化鋯比較 - AM 與非 AM
  • 5.12。碳化矽和氮化矽特性比較 - AM 與非 AM
  • 5.13. 陶瓷基複合材料 (CMC)
  • 5.14。陶瓷作為 3D 打印的增強材料
  • 5.15。用於 3D 打印的陶瓷材料製造商

6. 陶瓷 3D 打印材料:數據表

  • 6.1. 氧化鋁 (Al2O3)
  • 6.2. 氧化鋯 (ZrO2)
  • 6.3. 二氧化矽 (SiO2)
  • 6.4。氮化矽 (Si3N4 β-SiAlON)
  • 6.5。碳化矽 (SiC)
  • 6.6. 氮化鋁 (AlN)
  • 6.7. 碳
  • 6.8. 羥基磷灰石 (Ca10(PO4)6(OH)2)
  • 6.9. 磷酸三鈣 (β-Ca3(PO4)2)
  • 6.10. 堇青石 (Mg2Al4Si5O18 )

7. 醫療應用:生物陶瓷簡介

  • 7.1. 生物材料和生物陶瓷定義
  • 7.2. 生物陶瓷的臨床用途(非 AM)
  • 7.3. 生物陶瓷與其他生物材料的特性
  • 7.4. 的Advanta GES和生物陶瓷的缺點
  • 7.5。應力屏蔽
  • 7.6. 惰性生物陶瓷
  • 7.7. 羥基磷灰石
  • 7.8。多孔羥基磷灰石
  • 7.9。磷酸三鈣
  • 7.10。3D 打印生物陶瓷的醫學應用概述

8. 醫療應用:用於骨組織工程的生物陶瓷支架

  • 8.1. 什麼是組織工程?
  • 8.2. 自體骨移植
  • 8.3. 組織工程支架
  • 8.4. 用於骨缺損修復的生物陶瓷
  • 8.5。生物陶瓷支架的 3D 打印
  • 8.6. 用於骨缺損的 3D 打印生物陶瓷支架的生物學益處
  • 8.7. 3D打印生物陶瓷支架的功效
  • 8.8. 3D打印生物陶瓷支架的缺點
  • 8.9. 3D 打印生物陶瓷支架的展望

9. 醫療應用:顱頜面植入物

  • 9.1. 顱頜面外科
  • 9.2. 用於 CMF 手術的自體骨和組織移植
  • 9.3. 3D 打印生物陶瓷 CMF I植入物
  • 9.4. 顱面植入物
  • 9.5。3DP生物陶瓷顱面植入物的臨床研究
  • 9.6. 用於上頜穩定的微型鋼板和螺釘
  • 9.7. 頜骨植入物
  • 9.8. 3DP 生物陶瓷植入物案例研究:Cerhum
  • 9.9. O三維印刷生物陶瓷CMF植入物的utlook

10。醫療應用:其他

  • 10.1. 3D 打印陶瓷醫療器械和工具
  • 10.2. 3D 打印陶瓷醫療器械
  • 10.3. 3D 打印陶瓷脊柱植入物
  • 10.4. 使用 3D 打印陶瓷製成的膝關節植入物

11。醫療應用:總結

  • 11.1. 3D 打印生物陶瓷的醫學應用概述
  • 11.2. 3D打印陶瓷醫療植入物和設備的採用現狀
  • 11.3. 用於醫療應用的 3D 打印生物陶瓷的優缺點
  • 11.4. 3D 打印醫療設備的監管概述
  • 11.5。FDA 醫療器械時間表

12。牙科應用

  • 12.1. 數字牙科和 3D 打印
  • 12.2. 採用的動機
  • 12.3. 數字牙科工作流程
  • 12.4. 牙科應用的 3D 打印工藝和材料
  • 12.5。牙科用陶瓷
  • 12.6. 用於牙科應用的氧化鋯成型
  • 12.7. 用於牙科應用的 3D 打印氧化鋯
  • 12.8。用於牙科應用的 3D 打印氧化鋯
  • 12.9。牙科 3D 打印陶瓷的合作夥伴關係
  • 12.10。牙科工具案例研究:登士柏西諾德

    13。投資鑄造申請

    • 13.1. 熔模鑄造
    • 13.2. 熔模鑄造的優缺點
    • 13.3. 用於熔模鑄造的陶瓷 3D 打印
    • 13.4. 熔模鑄造案例研究:雅集鈣ST
    • 13.5。使用熔模鑄造的行業
    • 13.6. 渦輪葉片熔模鑄造類型
    • 13.7. 渦輪葉片熔模鑄造用陶瓷
    • 13.8. 用於渦輪葉片鑄造的 3D 打印陶瓷芯
    • 13.9. 用於渦輪葉片鑄造的3D 打印陶瓷芯
    • 13.10。DDM系統
    • 13.11。熔模鑄造案例研究:DDM 系統
    • 13.12。完美-3D

    14。化學工程應用

    • 14.1. 化學工程應用 <我>14.2。催化劑支持案例研究:莊信萬豐
    • 14.3. 輻射管插件案例研究:聖戈班
    • 14.4. 需要碳捕獲
    • 14.5。碳捕集、利用和封存 (CCUS)
    • 14.6. 二氧化碳分離方法
    • 14.7. 基於Sor的 CO2 分離
    • 14.8。用於碳捕獲的 3D 打印吸附劑
    • 14.9. 化學分析設備
    • 14.10。原子氣相沉積設備
    • 14.11。化學工程組件
    • 14.12。西格裡碳素
    • 14.13. 化學工程應用

    15。其他新興應用

    • 15.1. 3D 打印陶瓷的其他應用概述
    • 15.2. 電子產品:壓電器件
    • 15.3. 電子:嵌入式電子
    • 15.4. 儲能:固態電池
    • 15.5。儲能:固體氧化物燃料電池
    • 15.6。光學:可變形反射鏡
    • 15.7。光學:光學基板
    • 15.8。空間應用:天線
    • 15.9。5G 通信:天線
    • 15.10。玻璃全瓷芯片
    • 15.11。熱管理設備案例研究:京瓷

    16。藝術與設計應用

    • 16.1. 陶器的陶瓷 3D 打印
    • 16.2. 用於珠寶的陶瓷 3D 打印
    • 16.3. 新興對像

    17。市場分析

    • 17.1. 不同行業的現狀和市場潛力
    • 17.2. 已安裝陶瓷 3D 打印機的市場份額
    • 17.3. 使用陶瓷 3D 打印機的公司
    • 17.4. 值得關注的趨勢:多材料/混合打印機
    • 17.5。多材料噴射 (MMJ)
    • 17.6. 即將推出的多材料打印機

    18。市場預測

    • 18.1. 3D打印陶瓷市場預測
    • 18.2. 3D打印陶瓷市場技術預測
    • 18.3. 陶瓷3D 打印機年銷售額
    • 18.4. 陶瓷3D打印機安裝基數逐年
    • 18.5。陶瓷3D打印材料使用預測
    • 18.6. 按成分劃分的 3D 打印陶瓷使用預測
    • 18.7. 陶瓷 3D 打印材料收入預測
    • 18.8。按收入來源劃分的陶瓷 3D 打印預測
    • 18.9。結論

    19。公司簡介

    • 19.1. 來自 IDTechEx 門戶的 23 份公司簡介(下載鏈接)

    20。附錄

    • 20.1. 3D打印陶瓷市場預測
    • 20.2. 3D打印陶瓷市場技術預測
    • 20.3. 陶瓷 3D 打印機年銷售額
    • 20.4. 陶瓷3D打印機安裝基數逐年
    • 20.5。陶瓷3D打印材料使用預測
    • 20.6。3D打印陶瓷使用成分預測
    • 20.7。陶瓷 3D 打印材料收入預測
    • 20.8。按收入來源劃分的陶瓷 3D 打印預測
目錄
Product Code: ISBN 9781913899677

Title:
3D Printing Ceramics 2022-2032: Technology and Market Outlook
Granular market forecasts, interview-based company profiles, technology and material benchmarking studies, case studies, and market outlook.

"The ceramics 3D printing market will grow into its own niche to hit $400 million by 2032."

Ceramic 3D printing is an emerging segment within the 3D printing industry that began its commercial journey in the past 10 years. Compared to polymer and metal 3D printing, ceramic 3D printing is young. However, increasing entrants into the field in the past few years, from major ceramics companies to small 3D printing start-ups, illustrate that interest in ceramic additive manufacturing is picking up.

In this technical report from IDTechEx, ceramic 3D printing is comprehensively analysed to provide the current status of and outlook for the industry. Based on numerous primary interviews and IDTechEx's historical data on additive manufacturing, the report provides extensive technology benchmarking, material summaries, major player overviews, and target applications for ceramic 3D printing.

Benchmarking ceramic printer technologies and materials

In the 3D printing industry, it isn't uncommon for the important details about new technologies to become overshadowed by hype and media attention. For ceramic 3D printing, this means headlines about how a new ceramic printer will "change the 3D printing industry" or "revolutionize" a given field like medicine. In this report, IDTechEx cuts through the marketing language to get to the heart of the technologies dominating the ceramic additive manufacturing market. Along with detailed overviews of each individual printing process, the major technologies are compared by several key parameters: build volume, build speed, material compatibility, resolution, and more. By providing impartial benchmarking of these technologies, IDTechEx will highlight the advantages and disadvantages of each process for their end-users.

               Source: IDTechEx

The ceramics available for 3D printing are key to expanding the potential applications and markets that ceramic 3D printing could establish itself in. While less expensive oxide ceramics (like zirconia and alumina) are currently the most popular ceramic 3D printing materials, non-oxide ceramics (like silicon carbide and silicon nitride) for high-performance and high-value applications are growing in popularity. In this report, the ceramics available for 3D printing are identified with their manufacturers and key materials properties after printing being comprehensively analysed. These materials are then benchmarked by their mechanical, thermal, and dielectric properties to compare their performance against each other and against ceramics manufactured traditionally. In addition, perspectives on new materials trends in ceramic 3D printing - from multi-material/hybrid 3D printing to ceramic matrix composite printing - are presented to give readers a future outlook on the ceramics for 3D printing market.

Key applications: where ceramic 3D printing is gaining market traction

Ceramic 3D printing has been used primarily for research & development and prototypes, but it is seeing increasing interest from sectors looking for ceramic tooling and small-batch parts. This includes high-value sectors such as investment casting for aerospace & defence, chemical engineering, and dentistry. While the latter sector has great potential there is no commercial usage as of yet, the former sectors are seeing increasing commercial uptake; they represent ceramic additive manufacturing's best opportunities for high-value industry penetration. That said, there is still room for growth in R&D-related sales, as there is a large number of international research institutes working on progressing ceramic 3D printing in interesting applications like energy storage, medical devices, and carbon capture.

Market forecasts for ceramic 3D printing

Using extensive primary and secondary research, IDTechEx has constructed a detailed 10-year market forecast for the ceramic 3D printing industry. These forecasts break the industry down by install base, technology type, materials usage, and materials composition. This analysis reveals the growth of ceramic 3D printing into its own niche within the broader 3D printing industry worth $400 million by 2032.

Supplementing the forecasts are full profile interviews of the major players in the ceramic 3D printing, which range from dedicated ceramic 3D printing companies to metal/polymer 3D printer manufacturers to ceramic material suppliers. These profiles give insight into the companies leading the industry, their position amongst their competitors, and the opportunities and challenges they face in the future.

Key questions that are answered in this report:

  • What are the current and emerging printer technology types?
  • How do metrics such as price, build speed, build volume and precision vary by printer type?
  • What are the strengths and weaknesses of different 3D printing technologies?
  • Which printers support different material classes?
  • What is the current installed base of 3D printers?
  • What are the market shares of those active in the market?
  • What are the key drivers and restraints of market growth?
  • Who are the main players?
  • How will sales of different printer types evolve from 2022 to 2032?
  • What are the main application areas and target sectors for ceramic 3D printing?

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. What is Ceramic 3D Printing?
  • 1.2. Traditional Ceramic Shaping Processes
  • 1.3. Advantages and Disadvantages of Traditional Ceramic Forming Techniques
  • 1.4. Rationale for Ceramic Additive Manufacturing
  • 1.5. History of Ceramic 3D Printing Companies
  • 1.6. 3D Printing Ceramics Technology Overview
  • 1.7. Evaluation of Ceramic 3D Printing Technologies
  • 1.8. Classification: By Chemistry
  • 1.9. Ceramic 3D Printing Materials on the Market
  • 1.10. Target Sectors for 3D-Printed Ceramics
  • 1.11. Overview of Medical Applications of 3D-Printed Bioceramics
  • 1.12. 3D-Printed Zirconia for Dental Applications
  • 1.13. Ceramic 3D Printing for Investment Casting
  • 1.14. Chemical Engineering Applications
  • 1.15. Overview of Other Applications for 3D Printing Ceramics
  • 1.16. Status and Market Potential for Different Sectors
  • 1.17. 3D Printing Ceramics Market Forecast
  • 1.18. Market Forecast by Technology
  • 1.19. Ceramic 3D Printer Install Base by Year
  • 1.20. Materials Usage Forecast by Composition
  • 1.21. Conclusions
  • 1.22. Company Profiles

2. INTRODUCTION

  • 2.1. Glossary: Common Acronyms For Reference
  • 2.2. Traditional Ceramic Shaping Processes
  • 2.3. Dry Pressing
  • 2.4. Hot Pressing
  • 2.5. Hot Isostatic Pressing
  • 2.6. Slip Casting
  • 2.7. Extrusion
  • 2.8. Injection Molding
  • 2.9. Advantages and Disadvantages of Traditional Ceramic Forming Techniques
  • 2.10. What is Ceramic 3D Printing?
  • 2.11. Rationale for Ceramic Additive Manufacturing
  • 2.12. The Seven Different Types of 3D Printing Processes
  • 2.13. Material-Process Relationships
  • 2.14. Why Adopt 3D Printing?
  • 2.15. Drivers and Restraints of Growth for 3D Printing
  • 2.16. Total 3D Printing Market Forecast
  • 2.17. Impact of COVID-19 on Stock Price
  • 2.18. History of Ceramic 3D Printing Companies
  • 2.19. Patents Granted for Ceramic 3D Printing

3. CERAMIC PRINTING PROCESSES

  • 3.1. 3D Printing Ceramics Technology Overview
  • 3.2. Extrusion: Paste
  • 3.3. Extrusion: Thermoplastic
  • 3.4. Extrusion: Pellet
  • 3.5. Vat Photopolymerisation: Stereolithography (SLA)
  • 3.6. Vat photopolymerisation: Digital Light Processing (DLP)
  • 3.7. Material Jetting: Nanoparticle Jetting (NPJ)
  • 3.8. Binder Jetting
  • 3.9. Why are there no commercial SLS ceramic printers?
  • 3.10. Why are there no commercial SLM ceramic printers?

4. CERAMIC PRINTERS: BENCHMARKING

  • 4.1. Largest Build Volumes by Printer Manufacturer
  • 4.2. Minimum Z Resolution by Printer Manufacturer
  • 4.3. Printer Benchmarking: Z Resolution vs Build Volume
  • 4.4. Minimum XY Resolution by Printer Manufacturer
  • 4.5. Build Speed by Technology Type
  • 4.6. Multi-Material Ceramic Printers
  • 4.7. Printer Benchmarking: Build Volume vs Price
  • 4.8. Printer Benchmarking: Z Resolution vs Price
  • 4.9. Evaluation of Ceramic 3D Printing Technologies

5. CERAMIC 3D PRINTING MATERIALS: BENCHMARKING

  • 5.1. Scope of Ceramic 3D Printing Materials Coverage
  • 5.2. Classification: By Feedstock Type
  • 5.3. Classification: By Application
  • 5.4. Classification: By Chemistry
  • 5.5. Ceramic 3D Printing Materials on the Market
  • 5.6. Mechanical Properties of 3DP Ceramic Materials
  • 5.7. Thermal Properties of 3DP Ceramic Materials
  • 5.8. Average Densities of 3DP Ceramic Materials
  • 5.9. Flexural Strength vs Density for 3DP Ceramic Materials
  • 5.10. Alumina Comparison - AM vs non-AM
  • 5.11. Zirconia Comparison - AM vs non-AM
  • 5.12. Silicon Carbide and Nitride Properties Comparison - AM vs non-AM
  • 5.13. Ceramic-Matrix Composites (CMCs)
  • 5.14. Ceramics as Reinforcements in 3D Printing
  • 5.15. Manufacturers of Ceramic Materials for 3D Printing

6. CERAMIC 3D PRINTING MATERIALS: DATASHEETS

  • 6.1. Alumina (Al2O3)
  • 6.2. Zirconia (ZrO2)
  • 6.3. Silica (SiO2)
  • 6.4. Silicon Nitride (Si3N4 & β-SiAlON)
  • 6.5. Silicon Carbide (SiC)
  • 6.6. Aluminum Nitride (AlN)
  • 6.7. Carbon
  • 6.8. Hydroxyapatite (Ca10(PO4)6(OH)2)
  • 6.9. Tricalcium Phosphate (β-Ca3(PO4)2)
  • 6.10. Cordierite (Mg2Al4Si5O18)

7. MEDICAL APPLICATIONS: INTRODUCTION TO BIOCERAMICS

  • 7.1. Biomaterials and Bioceramics Definitions
  • 7.2. Clinical Uses of Bioceramics (non-AM)
  • 7.3. Properties of Bioceramics vs Other Biomaterials
  • 7.4. Advantages and Disadvantages of Bioceramics
  • 7.5. Stress-Shielding
  • 7.6. Inert Bioceramics
  • 7.7. Hydroxyapatite
  • 7.8. Porous Hydroxyapatite
  • 7.9. Tricalcium Phosphate
  • 7.10. Overview of Medical Applications of 3D-Printed Bioceramics

8. MEDICAL APPLICATIONS: BIOCERAMIC SCAFFOLDS FOR BONE TISSUE ENGINEERING

  • 8.1. What is Tissue Engineering?
  • 8.2. Autologous Bone Grafting
  • 8.3. Tissue Engineering Scaffolds
  • 8.4. Bioceramics for Bone Defect Repair
  • 8.5. 3D Printing of Bioceramic Scaffolds
  • 8.6. Biological Benefits of 3D Printing Bioceramic Scaffolds for Bone Defects
  • 8.7. Efficacy of 3D Printed Bioceramic Scaffolds
  • 8.8. Disadvantages of 3D Printed Bioceramic Scaffolds
  • 8.9. Outlook of 3D Printed Bioceramic Scaffolds

9. MEDICAL APPLICATIONS: CRANIO-MAXILLOFACIAL IMPLANTS

  • 9.1. Cranio-Maxillofacial Surgery
  • 9.2. Autologous Bone and Tissue Grafting for CMF Surgery
  • 9.3. 3D Printing Bioceramic CMF Implants
  • 9.4. Craniofacial Implants
  • 9.5. Clinical Study of 3DP Bioceramic Craniofacial Implants
  • 9.6. Miniplates and Screws for Maxillary Stabilization
  • 9.7. Jawbone Implants
  • 9.8. 3DP Bioceramic Implants Case Study: Cerhum
  • 9.9. Outlook of 3D-Printed Bioceramic CMF Implants

10. MEDICAL APPLICATIONS: OTHER

  • 10.1. 3D-Printed Ceramic Medical Instruments and Tools
  • 10.2. 3D-Printed Ceramic Medical Devices
  • 10.3. 3D-Printed Ceramic Spinal Implants
  • 10.4. Knee Implant Made Using 3D-Printed Ceramics

11. MEDICAL APPLICATIONS: SUMMARY

  • 11.1. Overview of Medical Applications of 3D-Printed Bioceramics
  • 11.2. Adoption status of 3D-printed ceramic medical implants and devices
  • 11.3. Advantages and Disadvantages of 3D-Printed Bioceramics for Medical Applications
  • 11.4. Regulatory Overview for 3D-Printed Medical Devices
  • 11.5. FDA Medical Device Timelines

12. DENTAL APPLICATIONS

  • 12.1. Digital Dentistry and 3D Printing
  • 12.2. Motivation for Adoption
  • 12.3. The Digital Dentistry Workflow
  • 12.4. 3D Printing Processes & Materials for Dental Applications
  • 12.5. Ceramics for Dental Applications
  • 12.6. Zirconia Shaping for Dental Applications
  • 12.7. 3D-Printed Zirconia for Dental Applications
  • 12.8. 3D-Printed Zirconia for Dental Applications
  • 12.9. Partnerships for 3D-Printed Ceramics for Dentistry
  • 12.10. Dental Tools Case Study: Dentsply Sirona

13. INVESTMENT CASTING APPLICATIONS

  • 13.1. Investment Casting
  • 13.2. Advantages and Disadvantages of Investment Casting
  • 13.3. Ceramic 3D Printing for Investment Casting
  • 13.4. Investment Casting Case Study: Aristo-Cast
  • 13.5. Industries Using Investment Casting
  • 13.6. Types of Investment Casting for Turbine Blades
  • 13.7. Ceramics for Investment Casting of Turbine Blades
  • 13.8. 3D Printing Ceramic Cores for Turbine Blade Casting
  • 13.9. 3D Printing Ceramic Cores for Turbine Blade Casting
  • 13.10. DDM Systems
  • 13.11. Investment Casting Case Studies: DDM Systems
  • 13.12. PERFECT-3D

14. CHEMICAL ENGINEERING APPLICATIONS

  • 14.1. Chemical Engineering Applications
  • 14.2. Catalyst Supports Case Study: Johnson-Matthey
  • 14.3. Radiant Tube Inserts Case Study: Saint-Gobain
  • 14.4. Need for Carbon Capture
  • 14.5. Carbon Capture, Utilization, and Storage (CCUS)
  • 14.6. Methods of CO2 Separation
  • 14.7. Sorbent-Based CO2 Separation
  • 14.8. 3D-Printed Sorbents for Carbon Capture
  • 14.9. Chemical Analysis Equipment
  • 14.10. Atomic Vapor Deposition Equipment
  • 14.11. Chemical Engineering Components
  • 14.12. SGL Carbon
  • 14.13. Chemical Engineering Applications

15. OTHER EMERGING APPLICATIONS

  • 15.1. Overview of Other Applications for 3D Printing Ceramics
  • 15.2. Electronics: Piezoelectric Devices
  • 15.3. Electronics: Embedded Electronics
  • 15.4. Energy Storage: Solid State Batteries
  • 15.5. Energy Storage: Solid-Oxide Fuel Cells
  • 15.6. Optics: Deformable Mirrors
  • 15.7. Optics: Optical Substrates
  • 15.8. Space Applications: Antennas
  • 15.9. 5G Communications: Antennas
  • 15.10. Glass-Ceramics
  • 15.11. Thermal Management Devices Case Study: Kyocera

16. ARTS AND DESIGN APPLICATIONS

  • 16.1. Ceramic 3D Printing for Pottery
  • 16.2. Ceramic 3D Printing for Jewelry
  • 16.3. Emerging Objects

17. MARKET ANALYSIS

  • 17.1. Status and Market Potential for Different Sectors
  • 17.2. Market Share by Installed Ceramic 3D Printers
  • 17.3. Companies Using Ceramic 3D Printers
  • 17.4. Trend to Watch: Multi-Material/Hybrid Printers
  • 17.5. Multi-Material Jetting (MMJ)
  • 17.6. Upcoming Multi-Material Printers

18. MARKET FORECAST

  • 18.1. 3D Printing Ceramics Market Forecast
  • 18.2. 3D Printing Ceramics Market Forecast by Technology
  • 18.3. Ceramic 3D Printer Sales by Year
  • 18.4. Ceramic 3D Printer Install Base by Year
  • 18.5. Ceramic 3D Printing Materials Usage Forecast
  • 18.6. 3D Printing Ceramics Usage Forecast by Composition
  • 18.7. Ceramic 3D Printing Materials Revenue Forecast
  • 18.8. Ceramic 3D Printing Forecast by Revenue Source
  • 18.9. Conclusions

19. COMPANY PROFILES

  • 19.1. 23 Company Profiles from IDTechEx Portal (download links)

20. APPENDIX

  • 20.1. 3D Printing Ceramics Market Forecast
  • 20.2. 3D Printing Ceramics Market Forecast by Technology
  • 20.3. Ceramic 3D Printer Sales by Year
  • 20.4. Ceramic 3D Printer Install Base by Year
  • 20.5. Ceramic 3D Printing Materials Usage Forecast
  • 20.6. 3D Printing Ceramics Usage Forecast by Composition
  • 20.7. Ceramic 3D Printing Materials Revenue Forecast
  • 20.8. Ceramic 3D Printing Forecast by Revenue Source