NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

電動汽車的熱管理 2021-2031年

Thermal Management for Electric Vehicles 2021-2031

出版商 IDTechEx Ltd. 商品編碼 1015122
出版日期 內容資訊 英文 369 Slides
商品交期: 最快1-2個工作天內
價格
電動汽車的熱管理 2021-2031年 Thermal Management for Electric Vehicles 2021-2031
出版日期: 2021年06月23日內容資訊: 英文 369 Slides
簡介

標題
2021-2031 年電動汽車的熱管理
鋰離子電池、牽引電機和電力電子設備的熱管理。材料、技術、OEM 策略、參與者分析和市場預測。

"到 2031 年將達到 2 TWh 的液冷電動汽車電池。"

電動汽車 (EV) 市場增長迅速,甚至證明對 COVID-19 相關的停工具有彈性,2020 年全年都在逐年增長。在 EV 市場中,我們看到電池容量、續航里程、充電率、寬帶隙半導體和高性能牽引電機。此外,電動汽車火災和相關召回使熱失控檢測、預防和保護的概念脫穎而出。所有這些趨勢都需要更有效的熱管理系統、解決方案和材料。

IDTechEx 關於電動汽車熱管理的最新報告詳細介紹了圍繞鋰離子電池、牽引電機和電力電子設備熱管理的 OEM 戰略、趨勢和新興替代方案。這些信息是從主要和次要來源收集的,並結合 2015 年至 2020 年間銷售的 250 多種電動汽車模型的廣泛模型數據庫,提供了對該主題的全面概述。當前使用的技術和策略被描述、分析和預測。還討論並討論了浸入式冷卻等新興替代方案在未來應用中的適用性以及採用率預測。所有預測都提供到 2031 年,包括電動汽車電池需求、電池熱管理策略、熱界面材料、電動機需求和 Si IGBT 或 SiC MOSFET 逆變器等數量。

電動汽車電池的熱管理策略發展迅速,並將繼續如此。資料來源:2021-2031 年電動汽車熱管理

快速充電是電動汽車市場的主要趨勢。如果車輛可以在 30 分鐘內充電,里程焦慮就不再是一個問題。幾款具有這種能力的車輛已進入市場。保時捷 Taycan/奧迪 e-tron GT 平台以及新的現代 EG MP 架構等800 V 系統也出現了更多示例。這些更高的電壓還有助於實現更快的充電。然而,熱管理是快速充電的關鍵考慮因素,在此過程中保持電池冷卻有助於延長電池的壽命,同時也是防止熱失控的主要安全功能。出於這個原因,我們也看到了人們對浸入式冷卻等更多新技術的興趣。

浸入式冷卻在電動汽車市場上具有潛力,從而創造了對介電流體的新需求。資料來源:2021-2031 年電動汽車的熱管理

在 2020 年,電動汽車火災受到高度重視,現代和通用等製造商不得不各自召回近 100,000輛汽車。這些召回的成本估計為現代汽車 9 億美元和通用汽車 12 億美元,更不用說對其電動汽車和電動汽車的整體聲譽造成的損害。雖然人們普遍認為電動汽車起火比燃燒離子汽車起火少見,但電動汽車起火往往更為嚴重,而且由於數量未知,因此受到媒體的更多關注。熱失控的檢測和預防極為重要,尤其是在有關電動汽車安全的法規開始實施的情況下。這也為阻燃或防火絕緣材料提供了防止或限制電池組外部火災進展的機會。鑑於對 EV 電池單元或電池組的設計沒有達成共識,這使得 EV 市場成為熱管理和防火部件和材料製造商的一個有趣的潛在市場。

與電池非常相似,有多種用於冷卻電動機的設計。大多數市場都在使用基於永磁體的牽引電機,其磁鐵在高溫下有變性或變脆的風險。即使對於沒有永磁體的電機,定子繞組在較高溫度下的電阻也會增加,從而導致性能和壽命下降,並有可能損壞周圍的組件。隨著製造商努力提高效率和功率密度,出現了許多發展和創新設計,例如奧迪 e-tron 的內部轉子水-乙二醇冷卻系統。IDTechEx 報告涵蓋了具有 EV 用例的電動機熱管理、新興技術以及對 EV 牽引電動機需求的預測。

電力電子設備經常被忽視,但在正常運行條件下,主逆變器通常是電動汽車中最熱的組件。大多數市場都在使用 Si IGBT,這些 IGBT 肯定會產生大量熱量,並且需要有效的熱管理,通常將其集成到電機冷卻系統中。近年來,我們已經看到在主牽引逆變器中大量採用 SiC MOSFET。這導致更高的開關頻率並因此導致更高的效率。SiC 的使用還減少了封裝的佔用空間,從而導致更高的功率密度,進而對散熱提出了更大的挑戰。除了這些組件的液體冷卻之外,我們還看到了逆變器封裝本身內的引線鍵合、芯片連接和基板技術的趨勢。每個 OEM 都有自己的電力電子戰略和他們的熱界面材料等選項的實施。IDTechEx 的最新報告包括電力電子設計趨勢以及多個 EV 用例,並預測了 Si IGBT 和 SiC MOSFET 單元的需求。

關鍵主題:

  • 鋰離子電池冷卻:空氣、液體、製冷劑和浸入式
  • 熱界面材料
  • 散熱器和冷卻板
  • 熱失控的重要性、檢測和預防
  • 消防安全:法規和搜索解決方案NS
  • 電機熱管理
  • 電力電子熱管理

來自 IDTechEx 的分析師訪問

所有報告購買都包括與專家分析師的長達 30 分鐘的電話時間,他將幫助您將報告中的關鍵發現與您正在解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要

  • 1.1. 熱管理簡介
  • 1.2. 多個組件的最佳溫度
  • 1.3. 外部環境溫度和氣候控制的影響
  • 1.4. BEV 熱泵預測
  • 1.5。電池冷卻方式分析
  • 1.6. OEM 冷卻方法的未來全球趨勢
  • 1.7. 採用冷卻方法預測
  • 1.8。浸沒流體:基準測試
  • 1.9. 浸沒流體體積預測
  • 1.10. 液體冷卻的主要趨勢總結
  • 1.11. 電動汽車電池組的 TIM:按汽車細分市場預測
  • 1.12。2020 年電池起火及相關召回
  • 1.13. 法規變更
  • 1.14. 阻燃電池材料基準
  • 1.15。防火材料預測
  • 1.16。電動機:永磁與替代品
  • 1.17. 電機單位預測
  • 1.18. 電機冷卻技術:OEM 策略
  • 1.19. 電動汽車中的電力電子
  • 1.20。矽、碳化矽和氮化鎵的基準測試
  • 1.21. 向碳化矽過渡
  • 1.22。電力電子逆變器預測
  • 1.23。傳統功率模塊封裝

2. 簡介

  • 2.1. 熱管理簡介
  • 2.2. 行業術語
  • 2.3. 多個組件的最佳溫度

3. 溫度和熱管理對範圍的影響

  • 3.1. 範圍計算
  • 3.2. 環境溫度和氣候控制的影響
  • 3.3. 與環境溫度的模型比較
  • 3 .4。與氣候控制的模型比較
  • 3.5。概括

4. 機艙供暖的創新

  • 4.1. 整體車輛熱管理
  • 4.2. 技術時間表
  • 4.3. PTC 與熱泵
  • 4.4. 帶熱泵的最新電動汽車
  • 4.5。BEV 熱泵預測
  • 4.6. 進一步創新
  • 4.7. 精密熱管理的優勢
  • 4.8. 熱管理高級控制:關鍵參與者和技術

5. 電動汽車鋰離子電池的熱管理

  • 5.1. 當前技術和 OEM 策略
    • 5.1.1. 電動汽車電池熱管理簡介
    • 5.1.2. 電池組內部和周圍的材料機會
    • 5.1.3. 主動與被動冷卻
    • 5.1.4. 被動電池冷卻方法
    • 5.1.5。主動電池冷卻方法
    • 5.1.6。風冷
    • 5.1.7。液體冷卻
    • 5.1.8。液體冷卻:設計選項
    • 5.1.9。液體冷卻:另類流感IDS
    • 5.1.10。液體冷卻:大型 OEM 公告
    • 5.1.11。製冷劑冷卻
    • 5.1.12。現代的冷媒冷卻時間表
    • 5.1.13。冷卻液:比較
    • 5.1.14。冷卻策略 熱性能
    • 5.1.1 5. 電池冷卻方式分析
    • 5.1.16。液體冷卻的主要動機
    • 5.1.17。IONITY:歐洲快速充電網絡
    • 5.1.18。改變 OEM 策略 - 液體冷卻
    • 5.1.19。OEM 冷卻方法的未來全球趨勢
    • 5.1.20。按地區劃分的 OEM 冷卻方法
    • 5.1.21。採用冷卻方法預測
    • 5.1.22。IDTechEx展望
  • 5.2. 電動汽車中鋰離子電池的浸入式冷卻
    • 5.2.1. 浸入式冷卻:簡介
    • 5.2.2. 單相與兩相冷卻
    • 5.2.3. 浸入式冷卻液要求
    • 5.2.4. 玩家:電動汽車浸沒液 (1)
    • 5.2.5。玩家:電動汽車浸沒液 ( 2)
    • 5.2.6. 玩家:電動汽車浸沒液 (3)
    • 5.2.7。浸沒流體:密度和熱導率
    • 5.2.8。浸漬液:工作溫度
    • 5.2.9。浸沒流體:粘度
    • 5.2.10。浸入式離子流體:成本
    • 5.2.11。浸沒流體:總結
    • 5.2.12。參與者:XING Mobility、3M 和嘉實多
    • 5.2.13。球員:裡馬克和索爾維
    • 5.2.14。參與者:M&I 材料和法拉第未來
    • 5.2.15。參與者:Exoes、e- Mersiv 和 FUCHS Lubricants
    • 5.2.16。球員:克雷塞爾和殼牌
    • 5.2.17。邁凱輪 Speedtail 和 Artura
    • 5.2.18。梅賽德斯-AMG
    • 5.2.19。SWOT 分析 - 電動汽車的浸入式冷卻
    • 5.2.20。沉浸式市場採用預測
    • 5.2.21。浸沒流體體積預測
  • 5.3. 相變材料 (PCM)
    • 5.3.1. 用於電動汽車的相變材料 (PCM)
    • 5.3.2. PCM 類別和優缺點
    • 5.3.3. 典型材料
    • 5 .3.4. 相變材料 - 概述
    • 5.3.5。相變材料 - 概述 (2)
    • 5.3.6. 商用 PCM 的工作溫度範圍
    • 5.3.7。PCM:電動汽車中的玩家
    • 5.3.8。作為熱能儲存的相變材料
    • 5.3.9。PCM 與電池案例研究
    • 5.3.10。球員:蘇南普
  • 5.4. 散熱器和冷卻板
    • 5.4.1. 散熱器或散佈的冷卻板
    • 5.4.2. 雪佛蘭 Volt 和 Dana
    • 5.4.3. 高級冷卻板
    • 5.4.4. 高級冷卻板:滾焊鋁
    • 5.4.5。石墨散熱器
  • 5.5。其他有趣的發展
    • 5.5.1. 主動式電池間冷卻解決方案:圓柱形
    • 5.5.2. 鐠inted溫度傳感器和加熱器
    • 5.5.3. 標籤冷卻是解決方案嗎?
    • 5.5.4。熱電冷卻
    • 5.5.5。皮膚冷卻:Aptera Solar EV
  • 5.6. EV 電池的熱管理:OEM 用例
    • 5.6.1. 奧迪e-tron
    • 5.6.2. 奧迪e-tron GT
    • 5.6.3. 寶馬i3
    • 5.6.4。比亞迪刀片
    • 5.6.5。雪佛蘭螺栓
    • 5.6.6。法拉第未來 FF 91
    • 5.6.7。現代科納
    • 5.6.8。現代 E-GMP
    • 5.6.9。捷豹 I-PACE
    • 5.6.10。名爵ZS電動車
    • 5.6.11。裡維安
    • 5.6.12。Romeo 電源熱管理
    • 5.6.13。特斯拉 Model S P85D
    • 5.6.14。特斯拉 Model 3/Y
    • 5.6.15。特斯拉取消電池模塊
    • 5.6.16。豐田普銳斯PHEV
    • 5.6.17。豐田RAV4 PHEV
    • 5.6.18。伏打盒
    • 5.6.19。施樂
  • 5.7. EV 電池組的 TIM
    • 5.7.1. 電動汽車熱管理簡介
    • 5.7.2. TIM - 包裝和模塊概述
    • 5.7.3. TIM 應用程序 - 包和模塊
    • 5.7.4. TIM 應用程序 - 單元格格式
    • 5.7.5。陶氏電池組材料
    • 5.7.6。漢高電池組材料
    • 5.7.7。杜邦電池組材料
    • 5.7.8。電動汽車中 TIM 的關鍵特性
    • 5.7.9。電動汽車電池中的間隙墊
    • 5.7.10。從 Pads 切換到 Gap Fillers
    • 5.7.11。點膠 TIM 介紹
    • 5.7.12。點膠 TIM 的挑戰
    • 5.7.13。材料選擇和市場比較
    • 5.7.14。汽車行業的有機矽困境
    • 5.7.15。有機矽替代品
    • 5.7.16。主要參與者和考慮因素
    • 5.7.17。主要參與者及近期公告 (1)
    • 5.7.18。主要參與者及近期公告 (2)
    • 5.7.19。電動汽車用例:奧迪 e-tron
    • 5.7.20。EV 用例:雪佛蘭 Bolt
    • 5.7.21。電動汽車用例:菲亞特 500e
    • 5.7.22。EV 用例:MG ZS EV
    • 5.7.23。電動汽車用例:日產聆風
    • 5.7.24。電動汽車用例:Smart Fortwo(梅賽德斯)
    • 5.7.25。電動汽車用例:特斯拉 Model 3/Y
    • 5.7.26。電動汽車用例:特斯拉、雪佛蘭、現代
    • 5.7.27。特斯拉取消電池模塊
    • 5.7.28。EV 用例摘要
    • 5.7.29。EV 電池 TIM 的商業基準
    • 5.7.30。電池和 TIM 需求趨勢
    • 5.7.31。電動汽車電池組的 TIM:按汽車細分市場預測
    • 5.7.32。電動汽車電池組的 TIM:按 TIM 類型預測
    • 5.7.33。TIM 的其他應用
  • 5.8。熱失控的重要性、檢測和預防
    • 5.8.1. 電動汽車中的熱失控和火災
    • 5.8.2. 2020 年電池起火及相關召回
    • 5.8.3. 韓國電池起火
    • 5.8.4。電池起火的原因
    • 5.8.5。與 ICE 相比,EV 起火
    • 5.8.6。CAUS上課故障
    • 5.8.7。釘子滲透測試
    • 5.8.8。熱失控階段
    • 5.8.9。細胞化學和穩定性
    • 5.8.10。熱失控傳播
    • 5.8.11。多方面的安全考慮
    • 5.8.12。防止電池短路:Soteria
    • 5.8.13。法規變更
    • 5.8.14。什麼級別的預防?
    • 5.8.15。檢測電池組中的熱失控
    • 5.8.16。氣體發生/檢測
    • 5.8.17。傳感器的機會
    • 5.8.18。用於熱失控檢測的商業氣體傳感
  • 5.9. 防火材料
    • 5.9.1。模塊和包裝隔熱材料
    • 5.9.2. 包裝級別預防材料
    • 5.9.3. 新興的消防安全解決方案
    • 5.9.4。電動汽車電池組中的氣凝膠
    • 5.9.5。Aspen Aerogels 美國 OEM 合同
    • 5.9.6。防火塗料
    • 5.9.7。防止熱失控:圓柱形電池到電池
    • 5.9.8。3M - 絕緣材料
    • 5.9.9。ADA Technologies - 防止熱失控傳播材料
    • 5.9.10。陶氏有機矽解決方案
    • 5.9.11。杜邦
    • 5.9.12。ITW Formex
    • 5.9.13。科思創聚碳酸酯
    • 5.9.14。埃肯有機矽解決方案 <李>5.9.15。HeetShield - 超薄絕緣材料
    • 5.9.16。HB富勒
    • 5.9.17。阻燃電池材料基準
    • 5.9.18。阻燃電池材料展望
    • 5.9.19。防火材料預測
  • 5.10。電池盒
    • 5.10.1。輕量化電池外殼
    • 5.10.2. 複合電池外殼
    • 5.10.3. 酚醛樹脂的替代品
    • 5.10.4。大規模複合材料部件以推動可持續運輸- TRB 輕型結構
    • 5.10.5。聚合物是否適合外殼?
    • 5.10.6。走向複合外殼?
    • 5.10.7。Continental 結構塑料 - 蜂窩技術

6. 電動汽車充電站的熱管理

  • 6.1. 電動汽車充電機制基礎
  • 6.2. 導電充電類型
  • 6.3. 電動汽車充電需要多長時間?
  • 6.4. 直流快充的趨勢
  • 6.5。快速充電增益 - 汽車需要 300 kW?
  • 6.6. 快速充電的散熱注意事項
  • 6.7. 液冷充電站
  • 6.8. Tritium - 直流充電解決方案提供商
  • 6.9. 電纜冷卻實現大功率充電
  • 6.10. 特斯拉為其增壓器採用液冷電纜
  • 6.11. Tesla:用於超快速充電的液冷連接器
  • 6.12. ITT Cannon 液冷充電
  • 6.13. 布魯格 eConnect 液冷電纜
  • 6.14. 浸入式冷卻充電站

7. 電動機的熱管理

  • 7.1. 電機冷卻策略
    • 7.1.1. 電動牽引電機:類型
    • 7.1.2. 電動機:永磁與替代品
    • 7.1.3. 電機單位預測
    • 7.1.4. 冷卻電動機
    • 7.1.5。當前的 OEM 策略:空氣冷卻
    • 7.1.6。當前 OEM 策略:油冷
    • 7.1.7。裡卡多的新馬達
    • 7.1.8。當前 OEM 策略:水-乙二醇冷卻
    • 7. 1.9. 電動機熱管理概述
    • 7.1.10。冷卻技術:OEM 策略
    • 7.1.11。電機冷卻技術展望
    • 7.1.12。液體冷卻的最新進展
    • 7.1.13。新興技術:沉Cooli納克
    • 7.1.14。新興技術:製冷劑冷卻
    • 7.1.15。新興技術:相變材料
    • 7.1.16。灌封和封裝
    • 7.1.17。灌封和封裝:播放器
  • 7.2. 新興汽車Developm的ENT
    • 7.2.1. 徑向磁通與軸向磁通電機
    • 7.2.2. 軸向磁通電機:有趣的玩家
    • 7.2.3. 軸向磁通電機播放器列表
    • 7.2.4. 輪內電機
    • 7.2.5. DHX 超高扭矩電機
    • 7.2.6. 惡趣ipmake:輻條幾何用於永磁電機
    • 7.2.7. Diabatix:冷卻組件的快速設計
    • 7.2.8。集成定子外殼
    • 7.2.9. 與車輛熱管理集成
  • 7.3. EV 電機的熱管理:OEM用例
    • 7.3.1. 奧迪e-tron
    • 7.3.2. 寶馬i3
    • 7.3.3. 雪佛蘭螺栓
    • 7.3.4. 現代 E-GMP
    • 7.3.5. 捷豹 I-PACE
    • 7.3.6。日產聆風
    • 7.3.7。特斯拉 Model S
    • 7.3.8。特斯拉模型 3
    • 7.3.9。對yota 普銳斯

8. 電動汽車動力電子中的熱管理

  • 8.1. 介紹
    • 8.1.1. 什麼是電力電子?
    • 8.1.2. 電動汽車中的電力電子
    • 8.1.3. 電力電子器件系列
    • 8.1.4. 電源開關(晶體管)
    • 8.1.5。電源開關歷史
    • 8.1.6。寬帶隙半導體
    • 8.1.7。矽、碳化矽和氮化鎵的基準測試
    • 8.1.8。碳化矽和氮化鎵的應用
    • 8.1.9。逆變電源模塊
    • 8.1.10。逆變器封裝設計
    • 8.1.11。世代電源模塊封裝
    • 8.1.12。傳統功率模塊封裝
    • 8.1.13。逆變器基準測試
    • 8.1.14。模組封裝材料尺寸
    • 8.1.15。電力電子冷卻
    • 8.1.16。雙面冷卻
    • 8.1.17。底板、散熱器、封裝材料
    • 8.1.18。汽車功率模塊領導者
    • 8.1.19。電源模塊供應鏈與創新
    • 8.1.20。向碳化矽過渡
    • 8.1.21。電力電子逆變器預測
  • 8.2. 超越引線鍵合
    • 8.2.1. 引線鍵合
    • 8.2.2. 鋁銲線:一個常見的故障點
    • 8.2.3. 先進的引線鍵合技術
    • 8.2.4. 特斯拉的新型粘合技術
    • 8.2.5. 直接引線鍵合(三菱)
    • 8.2.6. 超越鋁引線鍵合的技術演進
  • 8.3. 超越焊料
    • 8.3. 1. 芯片和基板附著是常見的故障模式
    • 8.3.2. 焊接技術的選擇
    • 8.3.3. 技術演進:銀燒結
    • 8.3.4. 燒結:Die-to-substrate、Substrate-baseplate or Heat sink、Die Pad to Interconnect等)
    • 8.3.5. 特斯拉電力電子的演變
    • 8.3.6. 芯片貼裝技術趨勢
  • 8.4. 高級基板
    • 8.4.1. 陶瓷基板技術的選擇
    • 8.4.2. AlN:克服其機械弱點
    • 8.4.3. 金屬化方法:DPC、DBC、AMB 和厚膜金屬化
    • 8.4.4. 直接鍍銅 (DPC):優點和缺點
    • 8.4.5。雙鍵銅 (DBC):優點和缺點
    • 8.4.6. 活性金屬釬焊 (AMB):優點和缺點
    • 8.4.7。陶瓷:CTE 不匹配
  • 8.5。消除熱界面材料
    • 8.5.1。為什麼在功率模塊中使用 TIM?
    • 8.5.2. 為什麼要消除 TIM?
    • 8.5.3。導熱矽脂:其他Shortcomi NGS
    • 8.5.4。是否已在任何 EV 逆變器模塊中消除了 TIM?
  • 8.6. 電力電子套件:電動汽車用例
    • 8.6.1。豐田普銳斯 2004-2010
    • 8.6.2. 2008年雷克薩斯
    • 8.6.3. 豐田普銳斯 2010-2015
    • 8.6.4。日產聆風 2012
    • 8.6.5。雷諾佐伊 2013 (Continental)
    • 8.6.6。本田雅閣 2014
    • 8.6.7。本田飛度(三菱)
    • 8.6.8。豐田普銳斯 2016 年起
    • 8.6.9。雪佛蘭 Volt 2016(德爾福)
    • 8.6.10。凱迪拉克 2016 (日立)
    • 8.6.11。奧迪 e-tron 2018
    • 8.6.12。BWM i3(英飛凌)
    • 8.6.13。英飛凌的 HybridPACK 被多家製造商使用
    • 8.6.14。英飛凌
    • 8.6.15。德爾福、克裡、橡樹嶺國家實驗室和沃爾沃 <我>8.6.16。特斯拉的 SiC 封裝
    • 8.6.17。這對 MOSFET 封裝意味著什麼?
    • 8.6.18。特斯拉 Model 3 2018 液冷
    • 8.6.19。Continental/捷豹路虎逆變器
    • 8.6.20。捷豹I-PACE 2019(大陸)液體庫爾玲
    • 8.6.21。日產聆風定制逆變器設計
    • 8.6.22。日產聆風液冷
    • 8.6.23。Chevy Bolt 電源模塊(由 LG Electronics/Infineon 提供)
    • 8.6.24。現代 E-GMP(英飛凌)

9. 預測摘要

  • 9.1.1. BEV 熱泵預測
  • 9.1.2. OEM 冷卻方法的未來全球趨勢
  • 9.1.3. 採用冷卻方法預測
  • 9.1.4. 沉浸式市場採用預測
  • 9.1.5。浸沒流體體積預測
  • 9.1.6。電池和 TIM 需求趨勢
  • 9.1.7。電動汽車電池組的 TIM:按汽車細分市場預測
  • 9.1.8。電動汽車電池組的 TIM:按 TIM 類型預測
  • 9.1.9。防火材料預測
  • 9.1.10。電機單位預測
  • 9.1.11。電力電子逆變器預測

10。公司簡介

目錄
Product Code: ISBN 9781913899554

Title:
Thermal Management for Electric Vehicles 2021-2031
Thermal management of Lithium-ion batteries, traction motors and power electronics. Materials, technologies, OEM strategies, player analysis and market forecasts.

"2 TWh of Liquid Cooled Electric Car Batteries by 2031."

The electric vehicle (EV) market is growing rapidly and has even proved resilient to COVID-19 related shutdowns, seeing year on year growth throughout 2020. Within the EV market, we are seeing increases in battery capacity, range, charging rates, wide bandgap semiconductors and high-performance traction motors. Additionally, EV fires and related recalls have brought the concept of thermal runaway detection, prevention and protection to the fore. All of these trends demand more effective thermal management systems, solutions and materials.

The latest report from IDTechEx on Thermal Management for Electric Vehicles details the OEM strategies, trends and emerging alternatives around the thermal management of Li-ion batteries, electric traction motors and power electronics. This information is gathered from primary and secondary sources in combination with an extensive model database of over 250 EV models sold between 2015 and 2020, giving a comprehensive overview of the topic. The technologies and strategies currently in use are described, analysed and forecast. Emerging alternatives like immersion cooling are also addressed and discussed for their suitability in future applications along with adoption forecasts. All forecasts are given through to 2031 and include quantities such as EV battery demand, battery thermal management strategy, thermal interface materials, electric motor demand and Si IGBT or SiC MOSFET inverters.

The thermal management strategy of EV batteries has evolved rapidly and will continue to do so. Source: Thermal Management for Electric Vehicles 2021-2031

Fast charging is a key trend in the EV market. Range anxiety becomes less of an issue if a vehicle can be charged in less than 30 minutes. Several vehicles have entered the market with this capability. More examples are emerging for 800 V systems too with the likes of the Porsche Taycan/ Audi e-tron GT platform as well as the new Hyundai E-GMP architecture. These higher voltages also help enable faster charging. However, thermal management is a key consideration for fast charging, keeping the batteries cool during this process helps increase the longevity of the cells but is also a major safety feature to prevent thermal runaway. For this reason, we have also seen interest in more novel technologies like immersion cooling.

Immersion cooling has potential in the EV market, creating new demand for dielectric fluids. Source: Thermal Management for EVs 2021-2031

In 2020, there was a great emphasis on EV fires and manufacturers like Hyundai and GM had to recall nearly 100,000 vehicles each. The estimated cost of these recalls was $900 million for Hyundai and $1.2 billion for GM, not to mention the harm to the reputation of their EVs and EVs in general. Whilst it is generally agreed that EV fires are less common than combustion vehicle fires, the EV fires tend to be much more severe and as more of an unknown quantity, gain more attention from the media. Detection and prevention of thermal runaway are extremely important, especially as regulations around EV safety start to be enforced. This also gives opportunities for fire-retardant or fire insulation materials to prevent or limit the progress of fire outside of the battery pack. Given there is no consensus on the design of an EV battery cell or pack, this makes the EV market an interesting landscape of potential for thermal management and fire protection component and material manufacturers.

Much like the batteries, there are several designs for cooling electric motors. The majority of the market is using permanent magnet-based traction motors with magnets that risk denaturing or becoming brittle at high temperatures. Even for motors without permanent magnets, the stator windings will increase in resistance at higher temperatures leading to decreased performance and lifetime as well as the potential to damage surrounding components. As manufacturers strive for higher efficiencies and power density, there are many developments and innovative designs such as the Audi e-tron's internal rotor water-glycol cooling system. The IDTechEx report covers thermal management of electric motors with EV use-cases, emerging technologies and a forecast of demand for EV traction motors.

Power electronics are often overlooked, but the main inverter is often the hottest component in an EV under normal operating conditions. Most of the market is using Si IGBTs which certainly generate significant heat and require effective thermal management which is often integrated into the motors coolant system. In recent years, we have seen significant adoption of SiC MOSFETs in the main traction inverter. This leads to higher switching frequencies and hence higher efficiency. The use of SiC also decreases the footprint of the package leading to higher power density and in turn a greater challenge in heat dissipation. In addition to the liquid cooling of these components, we see trends around the wire bonding, die-attach and substrate technology within the inverter packages themselves. Each OEM has its own strategy for power electronics and their implementation of options such as thermal interface materials. IDTechEx's latest report includes trends in power electronics design as well as several EV use-cases and forecasts the demand of Si IGBT and SiC MOSFET units.

Key topics:

  • Li-ion battery cooling: air, liquid, refrigerant and immersion
  • Thermal interface materials
  • Heat spreaders and cooling plates
  • Thermal runaway importance, detection and prevention
  • Fire safety: regulations and solutions
  • Electric motor thermal management
  • Power electronics thermal management

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Introduction to Thermal Management
  • 1.2. Optimal Temperatures for Multiple Components
  • 1.3. Impact of External Ambient Temperature and Climate Control
  • 1.4. Heat Pumps for BEVs Forecast
  • 1.5. Analysis of Battery Cooling Methods
  • 1.6. Future Global Trends in OEM Cooling Methodologies
  • 1.7. Adoption of Cooling Methodologies Forecast
  • 1.8. Immersion Fluids: Benchmarking
  • 1.9. Immersion Fluid Volume Forecast
  • 1.10. Summary of Key Trends for Liquid Cooling
  • 1.11. TIM for EV Battery Packs: Forecast by Vehicle Segment
  • 1.12. Battery Fires and Related Recalls in 2020
  • 1.13. Regulation Changes
  • 1.14. Fire Retardant Battery Materials Benchmark
  • 1.15. Fire Protection Materials Forecast
  • 1.16. Electric Motors: Permanent Magnet vs Alternatives
  • 1.17. Electric Motor Unit Forecast
  • 1.18. Motor Cooling Technology: OEM Strategies
  • 1.19. Power Electronics in Electric Vehicles
  • 1.20. Benchmarking Silicon, Silicon Carbide & Gallium Nitride
  • 1.21. The Transition to Silicon Carbide
  • 1.22. Power Electronics Inverter Forecast
  • 1.23. Traditional Power Module Packaging

2. INTRODUCTION

  • 2.1. Introduction to Thermal Management
  • 2.2. Industry Terms
  • 2.3. Optimal Temperatures for Multiple Components

3. IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE

  • 3.1. Range Calculations
  • 3.2. Impact of Ambient Temperature and Climate Control
  • 3.3. Model Comparison with Ambient Temperature
  • 3.4. Model Comparison with Climate Control
  • 3.5. Summary

4. INNOVATIONS IN CABIN HEATING

  • 4.1. Holistic Vehicle Thermal Management
  • 4.2. Technology Timeline
  • 4.3. PTC vs Heat Pump
  • 4.4. Recent EVs with Heat Pumps
  • 4.5. Heat Pumps for BEVs Forecast
  • 4.6. Further Innovations
  • 4.7. Advantages of Sophisticated Thermal Management
  • 4.8. Thermal Management Advanced Control: Key Players and Technologies

5. THERMAL MANAGEMENT OF LI-ION BATTERIES IN ELECTRIC VEHICLES

  • 5.1. Current Technologies and OEM Strategies
    • 5.1.1. Introduction to EV Battery Thermal Management
    • 5.1.2. Material Opportunities In and Around a Battery Pack
    • 5.1.3. Active vs Passive Cooling
    • 5.1.4. Passive Battery Cooling Methods
    • 5.1.5. Active Battery Cooling Methods
    • 5.1.6. Air Cooling
    • 5.1.7. Liquid Cooling
    • 5.1.8. Liquid Cooling: Design Options
    • 5.1.9. Liquid Cooling: Alternative Fluids
    • 5.1.10. Liquid Cooling: Large OEM Announcements
    • 5.1.11. Refrigerant Cooling
    • 5.1.12. Hyundai's Timeline to Refrigerant Cooling
    • 5.1.13. Coolants: Comparison
    • 5.1.14. Cooling Strategy Thermal Properties
    • 5.1.15. Analysis of Battery Cooling Methods
    • 5.1.16. Main Incentives for Liquid Cooling
    • 5.1.17. IONITY: a European Fast Charging Network
    • 5.1.18. Shifting OEM Strategies - Liquid Cooling
    • 5.1.19. Future Global Trends in OEM Cooling Methodologies
    • 5.1.20. OEM Cooling Methodologies by Region
    • 5.1.21. Adoption of Cooling Methodologies Forecast
    • 5.1.22. IDTechEx Outlook
  • 5.2. Immersion Cooling for Li-ion Batteries in EVs
    • 5.2.1. Immersion Cooling: Introduction
    • 5.2.2. Single-phase vs Two-phase Cooling
    • 5.2.3. Immersion Cooling Fluids Requirements
    • 5.2.4. Players: Immersion Fluids for Electric Vehicles (1)
    • 5.2.5. Players: Immersion Fluids for Electric Vehicles (2)
    • 5.2.6. Players: Immersion Fluids for Electric Vehicles (3)
    • 5.2.7. Immersion Fluids: Density and Thermal Conductivity
    • 5.2.8. Immersion Fluids: Operating Temperature
    • 5.2.9. Immersion Fluids: Viscosity
    • 5.2.10. Immersion Fluids: Costs
    • 5.2.11. Immersion Fluids: Summary
    • 5.2.12. Players: XING Mobility, 3M and Castrol
    • 5.2.13. Players: Rimac and Solvay
    • 5.2.14. Players: M&I Materials and Faraday Future
    • 5.2.15. Players: Exoès, e-Mersiv and FUCHS Lubricants
    • 5.2.16. Players: Kreisel and Shell
    • 5.2.17. McLaren Speedtail and Artura
    • 5.2.18. Mercedes-AMG
    • 5.2.19. SWOT Analysis - Immersion Cooling for EVs
    • 5.2.20. Immersion Market Adoption Forecast
    • 5.2.21. Immersion Fluid Volume Forecast
  • 5.3. Phase Change Materials (PCMs)
    • 5.3.1. Phase Change Materials (PCMs) Emerging for EVs
    • 5.3.2. PCM Categories and Pros and Cons
    • 5.3.3. Typical Materials
    • 5.3.4. Phase Change Materials - Overview
    • 5.3.5. Phase Change Materials - Overview (2)
    • 5.3.6. Operating Temperature Range of Commercial PCMs
    • 5.3.7. PCMs: Players in EVs
    • 5.3.8. Phase Change Material as Thermal Energy Storage
    • 5.3.9. PCM vs Battery Case Study
    • 5.3.10. Player: Sunamp
  • 5.4. Heat Spreaders and Cooling Plates
    • 5.4.1. Heat Spreaders or Interspersed Cooling Plates
    • 5.4.2. Chevrolet Volt and Dana
    • 5.4.3. Advanced Cooling Plates
    • 5.4.4. Advanced Cooling Plates: Roll Bond Aluminium
    • 5.4.5. Graphite Heat Spreaders
  • 5.5. Other Interesting Developments
    • 5.5.1. Active Cell-to-cell Cooling Solutions: Cylindrical
    • 5.5.2. Printed Temperature Sensors and Heaters
    • 5.5.3. Is Tab Cooling a Solution?
    • 5.5.4. Thermoelectric Cooling
    • 5.5.5. Skin Cooling: Aptera Solar EV
  • 5.6. Thermal Management of EV Batteries: OEM Use-cases
    • 5.6.1. Audi e-tron
    • 5.6.2. Audi e-tron GT
    • 5.6.3. BMW i3
    • 5.6.4. BYD Blade
    • 5.6.5. Chevrolet Bolt
    • 5.6.6. Faraday Future FF 91
    • 5.6.7. Hyundai Kona
    • 5.6.8. Hyundai E-GMP
    • 5.6.9. Jaguar I-PACE
    • 5.6.10. MG ZS EV
    • 5.6.11. Rivian
    • 5.6.12. Romeo Power Thermal Management
    • 5.6.13. Tesla Model S P85D
    • 5.6.14. Tesla Model 3/Y
    • 5.6.15. Tesla Eliminating the Battery Module
    • 5.6.16. Toyota Prius PHEV
    • 5.6.17. Toyota RAV4 PHEV
    • 5.6.18. Voltabox
    • 5.6.19. Xerotech
  • 5.7. TIM for EV Battery Packs
    • 5.7.1. Introduction to Thermal Management for EVs
    • 5.7.2. TIM - Pack and Module Overview
    • 5.7.3. TIM Application - Pack and Modules
    • 5.7.4. TIM Application - Cell Format
    • 5.7.5. Dow Battery Pack Materials
    • 5.7.6. Henkel Battery Pack Materials
    • 5.7.7. DuPont Battery Pack Materials
    • 5.7.8. Key Properties for TIMs in EVs
    • 5.7.9. Gap Pads in EV Batteries
    • 5.7.10. Switching to Gap Fillers from Pads
    • 5.7.11. Dispensing TIMs Introduction
    • 5.7.12. Challenges for Dispensing TIM
    • 5.7.13. Material Options and Market Comparison
    • 5.7.14. The Silicone Dilemma for the Automotive Industry
    • 5.7.15. Silicone Alternatives
    • 5.7.16. Main Players and Considerations
    • 5.7.17. Main Players and Recent Announcements (1)
    • 5.7.18. Main Players and Recent Announcements (2)
    • 5.7.19. EV Use-case: Audi e-tron
    • 5.7.20. EV Use-case: Chevrolet Bolt
    • 5.7.21. EV Use-case: Fiat 500e
    • 5.7.22. EV Use-case: MG ZS EV
    • 5.7.23. EV Use-case: Nissan Leaf
    • 5.7.24. EV Use-case: Smart Fortwo (Mercedes)
    • 5.7.25. EV Use-case: Tesla Model 3/Y
    • 5.7.26. EV Use-cases: Tesla, Chevrolet, Hyundai
    • 5.7.27. Tesla Eliminating the Battery Module
    • 5.7.28. EV Use-case Summary
    • 5.7.29. Commercial Benchmark for EV Battery TIMs
    • 5.7.30. Battery and TIM Demand Trends
    • 5.7.31. TIM for EV Battery Packs: Forecast by Vehicle Segment
    • 5.7.32. TIM for EV Battery Packs: Forecast by TIM Type
    • 5.7.33. Other Applications for TIM
  • 5.8. Thermal Runaway Importance, Detection and Prevention
    • 5.8.1. Thermal Runaway and Fires in EVs
    • 5.8.2. Battery Fires and Related Recalls in 2020
    • 5.8.3. Battery Fires in South Korea
    • 5.8.4. Causes of Battery Fires
    • 5.8.5. EV Fires Compared to ICE
    • 5.8.6. Causes of Failure
    • 5.8.7. The Nail Penetration Test
    • 5.8.8. Stages of Thermal Runaway
    • 5.8.9. Cell Chemistry and Stability
    • 5.8.10. Thermal Runaway Propagation
    • 5.8.11. Many Considerations to Safety
    • 5.8.12. Prevention of Battery Shorting: Soteria
    • 5.8.13. Regulation Changes
    • 5.8.14. What Level of Prevention?
    • 5.8.15. Detecting Thermal Runaway in a Battery Pack
    • 5.8.16. Gas Generation / detection
    • 5.8.17. Opportunities for Sensors
    • 5.8.18. Commercial Gas Sensing for Thermal Runaway Detection
  • 5.9. Fire Protection Materials
    • 5.9.1. Module and Pack Thermal Insulation Materials
    • 5.9.2. Pack Level Prevention Materials
    • 5.9.3. Emerging Fire Safety Solutions
    • 5.9.4. Aerogels in EV battery packs
    • 5.9.5. Aspen Aerogels US OEM Contract
    • 5.9.6. Fire Resistant Coatings
    • 5.9.7. Thermal Runaway Prevention: Cylindrical Cell-to-cell
    • 5.9.8. 3M - Insulation Materials
    • 5.9.9. ADA Technologies - Thermal Runaway Propagation Prevention Materials
    • 5.9.10. Dow Silicone Solutions
    • 5.9.11. DuPont
    • 5.9.12. ITW Formex
    • 5.9.13. Covestro Polycarbonates
    • 5.9.14. Elkem Silicone Solutions
    • 5.9.15. HeetShield - Ultra-Thin Insulations
    • 5.9.16. H.B. Fuller
    • 5.9.17. Fire Retardant Battery Materials Benchmark
    • 5.9.18. Fire Retardant Battery Materials Outlook
    • 5.9.19. Fire Protection Materials Forecast
  • 5.10. Battery Enclosures
    • 5.10.1. Lightweighting Battery Enclosures
    • 5.10.2. Composite Battery Enclosures
    • 5.10.3. Alternatives to Phenolic Resins
    • 5.10.4. Composite Parts at a Scale to Drive Sustainable Transportation - TRB Lightweight Structures
    • 5.10.5. Are Polymers Suitable Housings?
    • 5.10.6. Towards Composite Enclosures?
    • 5.10.7. Continental Structural Plastics - Honeycomb Technology

6. THERMAL MANAGEMENT IN ELECTRIC VEHICLE CHARGING STATIONS

  • 6.1. Basics of electric vehicle charging mechanisms
  • 6.2. Conductive Charging Types
  • 6.3. How long does it take to charge an electric vehicle?
  • 6.4. The trend towards DC fast charging
  • 6.5. Fast Charging Gains - 300 kW Needed for Cars?
  • 6.6. Thermal Considerations for Fast Charging
  • 6.7. Liquid Cooled Charging Stations
  • 6.8. Tritium - DC Charging Solution Provider
  • 6.9. Cable Cooling to Achieve High Power Charging
  • 6.10. Tesla Adopts Liquid Cooled Cable for its Supercharger
  • 6.11. Tesla: Liquid Cooled Connector for Ultra Fast Charging
  • 6.12. ITT Cannon Liquid Cooled Charging
  • 6.13. Brugg eConnect Liquid Cooled Cables
  • 6.14. Immersion Cooled Charging Stations

7. THERMAL MANAGEMENT OF ELECTRIC MOTORS

  • 7.1. Motor Cooling Strategies
    • 7.1.1. Electric Traction Motors: Types
    • 7.1.2. Electric Motors: Permanent Magnet vs Alternatives
    • 7.1.3. Electric Motor Unit Forecast
    • 7.1.4. Cooling Electric Motors
    • 7.1.5. Current OEM Strategies: Air Cooling
    • 7.1.6. Current OEM Strategies: Oil Cooling
    • 7.1.7. Ricardo's New Motor
    • 7.1.8. Current OEM Strategies: Water-glycol Cooling
    • 7.1.9. Electric Motor Thermal Management Overview
    • 7.1.10. Cooling Technology: OEM Strategies
    • 7.1.11. Motor Cooling Technology Outlook
    • 7.1.12. Recent Advancements in Liquid Cooling
    • 7.1.13. Emerging Technologies: Immersion Cooling
    • 7.1.14. Emerging Technologies: Refrigerant Cooling
    • 7.1.15. Emerging Technologies: Phase Change Materials
    • 7.1.16. Potting & Encapsulation
    • 7.1.17. Potting & Encapsulation: Players
  • 7.2. Emerging Motor Developments
    • 7.2.1. Radial Flux vs Axial Flux Motors
    • 7.2.2. Axial Flux Motors: Interesting Players
    • 7.2.3. List of Axial Flux Motor Players
    • 7.2.4. In-Wheel Motors
    • 7.2.5. DHX Ultra High-torque Motors
    • 7.2.6. Equipmake: Spoke Geometry for PM Motors
    • 7.2.7. Diabatix: Rapid Design of Cooling Components
    • 7.2.8. Integrated Stator Housings
    • 7.2.9. Integration with Vehicle Thermal Management
  • 7.3. Thermal Management of EV Motors: OEM Use-cases
    • 7.3.1. Audi e-tron
    • 7.3.2. BMW i3
    • 7.3.3. Chevrolet Bolt
    • 7.3.4. Hyundai E-GMP
    • 7.3.5. Jaguar I-PACE
    • 7.3.6. Nissan Leaf
    • 7.3.7. Tesla Model S
    • 7.3.8. Tesla Model 3
    • 7.3.9. Toyota Prius

8. THERMAL MANAGEMENT IN ELECTRIC VEHICLE POWER ELECTRONICS

  • 8.1. Introduction
    • 8.1.1. What is Power Electronics?
    • 8.1.2. Power Electronics in Electric Vehicles
    • 8.1.3. Power Electronics Device Ranges
    • 8.1.4. Power Switches (Transistors)
    • 8.1.5. Power Switch History
    • 8.1.6. Wide-bandgap Semiconductors
    • 8.1.7. Benchmarking Silicon, Silicon Carbide & Gallium Nitride
    • 8.1.8. Applications for Silicon Carbide & Gallium Nitride
    • 8.1.9. Inverter Power Modules
    • 8.1.10. Inverter Package Designs
    • 8.1.11. Power Module Packaging Over the Generations
    • 8.1.12. Traditional Power Module Packaging
    • 8.1.13. Inverter Benchmarking
    • 8.1.14. Module Packaging Material Dimensions
    • 8.1.15. Power Electronics Cooling
    • 8.1.16. Double-sided Cooling
    • 8.1.17. Baseplate, Heat Sink, Encapsulation Materials
    • 8.1.18. Automotive Power Module Leaders
    • 8.1.19. Power Module Supply Chain & Innovations
    • 8.1.20. The Transition to SiC
    • 8.1.21. Power Electronics Inverter Forecast
  • 8.2. Beyond Wire Bonds
    • 8.2.1. Wire Bonds
    • 8.2.2. Al Wire Bonds: A Common Failure Point
    • 8.2.3. Advanced Wire Bonding Techniques
    • 8.2.4. Tesla's Novel Bonding Technique
    • 8.2.5. Direct Lead Bonding (Mitsubishi)
    • 8.2.6. Technology Evolution Beyond Al Wire Bonding
  • 8.3. Beyond Solder
    • 8.3.1. Die and Substrate Attach are Common Failure Modes
    • 8.3.2. The Choice of Solder Technology
    • 8.3.3. Technology Evolution: Ag Sintering
    • 8.3.4. Sintering: Die-to-substrate, Substrate-baseplate or Heat sink, Die Pad to Interconnect, etc.)
    • 8.3.5. Evolution of Tesla's Power Electronics
    • 8.3.6. Die Attach Technology Trends
  • 8.4. Advanced Substrates
    • 8.4.1. The Choice of Ceramic Substrate Technology
    • 8.4.2. AlN: Overcoming its Mechanical Weakness
    • 8.4.3. Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation
    • 8.4.4. Direct Plated Copper (DPC): Pros and Cons
    • 8.4.5. Double Bonded Copper (DBC): Pros and Cons
    • 8.4.6. Active Metal Brazing (AMB): Pros and Cons
    • 8.4.7. Ceramics: CTE Mismatch
  • 8.5. Eliminating Thermal Interface Materials
    • 8.5.1. Why use TIM in Power Modules?
    • 8.5.2. Why the Drive to Eliminate the TIM?
    • 8.5.3. Thermal Grease: Other Shortcomings
    • 8.5.4. Has TIM Been Eliminated in any EV Inverter Modules?
  • 8.6. Power Electronics Packages: EV Use-cases
    • 8.6.1. Toyota Prius 2004-2010
    • 8.6.2. 2008 Lexus
    • 8.6.3. Toyota Prius 2010-2015
    • 8.6.4. Nissan Leaf 2012
    • 8.6.5. Renault Zoe 2013 (Continental)
    • 8.6.6. Honda Accord 2014
    • 8.6.7. Honda Fit (by Mitsubishi)
    • 8.6.8. Toyota Prius 2016 onwards
    • 8.6.9. Chevrolet Volt 2016 (by Delphi)
    • 8.6.10. Cadillac 2016 (by Hitachi)
    • 8.6.11. Audi e-tron 2018
    • 8.6.12. BWM i3 (by Infineon)
    • 8.6.13. Infineon's HybridPACK is used by Multiple Manufacturers
    • 8.6.14. Infineon
    • 8.6.15. Delphi, Cree, Oak Ridge National Laboratory and Volvo
    • 8.6.16. Tesla's SiC Package
    • 8.6.17. What Does This Mean for the MOSFET Package?
    • 8.6.18. Tesla Model 3 2018 Liquid Cooling
    • 8.6.19. Continental / Jaguar Land Rover Inverter
    • 8.6.20. Jaguar I-PACE 2019 (Continental) Liquid Cooling
    • 8.6.21. Nissan Leaf Custom Inverter Design
    • 8.6.22. Nissan Leaf Liquid Cooling
    • 8.6.23. Chevy Bolt Power Module (by LG Electronics / Infineon)
    • 8.6.24. Hyundai E-GMP (Infineon)

9. SUMMARY OF FORECASTS

  • 9.1.1. Heat Pumps for BEVs Forecast
  • 9.1.2. Future Global Trends in OEM Cooling Methodologies
  • 9.1.3. Adoption of Cooling Methodologies Forecast
  • 9.1.4. Immersion Market Adoption Forecast
  • 9.1.5. Immersion Fluid Volume Forecast
  • 9.1.6. Battery and TIM Demand Trends
  • 9.1.7. TIM for EV Battery Packs: Forecast by Vehicle Segment
  • 9.1.8. TIM for EV Battery Packs: Forecast by TIM Type
  • 9.1.9. Fire Protection Materials Forecast
  • 9.1.10. Electric Motor Unit Forecast
  • 9.1.11. Power Electronics Inverter Forecast

10. COMPANY PROFILES