NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

純電動汽車 前往1000英里(1600公里)的路線, 2021-2041年

Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041

出版商 IDTechEx Ltd. 商品編碼 1009395
出版日期 內容資訊 英文 297 Slides
商品交期: 最快1-2個工作天內
價格
純電動汽車 前往1000英里(1600公里)的路線, 2021-2041年 Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041
出版日期: 2021年06月07日內容資訊: 英文 297 Slides
簡介

標題
2021-2041 年實現 1000 英里(1600 公里)純電動汽車的路線
材料機會,簡化,輕量化,3-5個光伏,
固態電池、零排放增程器、超級電容器、寬帶隙、
石墨烯、鋁、太陽追蹤、熱泵。

現在大家都在談論快速充電,但將範圍擴大一倍然後三倍是地震。世界通過消除基礎設施來解決問題。IDTechEx 的 285 頁報告 "通往 1000 英里(1600 公里)電池電動汽車的路線 2021-2041" 對此進行了詳細說明。

該報告回答了以下問題:

  • 為什麼範圍改進是一個持續的主要汽車戰場?
  • 製造續航里程為 1000 英里(1600 公里)且價格合理的汽車的最佳方法是什麼?何時實現?
  • 2021 年至 2041 年有多少汽車的最佳續航里程?
  • 每種技術的貢獻百分比是多少?誰領先?
  • 有關新興簡化、輕量化、太陽能車身、新組件、電池的詳細信息?
  • 在 2021-2041 年實現這些範圍的技術路線圖是什麼?
  • 目前以不同方式實現最佳範圍。我們如何將它們結合起來?
  • 研究管道中還會出現哪些其他選擇。什麼時候,從誰那裡?
  • 對固態電池的看法。批判性地比較和預測?
  • 十年來鋰離子電池格式、軟件、化學和成本的巨大改進。細節和時間?
  • 超級電容器、多功能複合材料、兩個零排放增程器選項怎麼樣?
  • 評估了 30 家汽車公司的 30 種不同方法的經驗教訓?

考慮到過度樂觀的歷史,IDTechEx 嚴重低估了許多承諾,但它預測對範圍的需求會增強,給出了很多原因,並在這方面取得了巨大進展。瞭解支持遠程的技術如何帶來其他樂趣。太陽能車身讓溫和的用戶無需使用充電站即可出行,並提供首個 "回家" 功能。如果您耗盡電池電量,您只需等待,車身就會為汽車充電,足以連接充電器。輕量化有助於加速和降低成本。沒有理由購買需要頻繁充電的汽車的日子即將到來。

由全球多語種博士級 IDTechEx 分析師研究,獨特的 285 頁 IDTechEx 報告 "通往 1000 英里(1600 公里)電池電動汽車 2021-2041 的路線" 以執行摘要和結論開頭。在這裡,您可以看到增加最大航程的眾多原因、現有和計劃中的使能技術。詳細的信息圖顯示了趨勢、成就、研究管道以及 2021-2041 年路線圖。看看什麼時候可以廣泛使用給定的長續航里程以及配備它們的汽車的百分比。量化是廣泛可用範圍的四個主要貢獻者,到 2031 年達到 760 英里,比今天增加了驚人的 2.4 倍。IDTechEx 計算因考慮到開發商和原始設備製造商過去的過度承諾以及對技術和規模化挑戰以及未來解決方案的深入分析而被打折扣。例如,與普遍的理解相反,未來十年主要不是關於固態電池,儘管他們在 2031-2041 年的預測和路線圖中提出了強有力的數據,以擴大範圍。

第 2 章介紹涉及永續汽車、相關智慧城市問題、地緣政治影響、引入增程技術的迭代方法。細節的一個合理起點是特斯拉,這是世界上最有價值的汽車公司,因為它主要是通過提供最長的續航里程和專注於純電動汽車來實現這一目標的。第 3 章 "特斯拉整體方法" 描述了它如何通過許多小東西實現續航里程,例如消除電纜、更高效的電機、低阻力係數、最好的電池。看看除了那些巨大的鋁壓鑄件之外,它將如何通過大規模簡化走得更遠。閱讀它關於如何設計電機的建議。

然後是關於新興技術的章節,其中包含許多新示例。第 4 章是關於簡化和輕量化以增加範圍。見具有集成電力電子的輪轂電機和電橋電機、升壓收縮電纜和電機、結構儲能、模內、3D、透明和可編輯的電子和電氣、合併組件、新的電池冷卻成果、多功能複合材料。這是包括Rivian、大眾集團和其他創新者在內的20年觀點。報告開頭的詳細行話和公司簡介對此提供了支持。

第 5 章涉及範圍增加的太陽能汽車。隨著現代、特斯拉、豐田、大眾集團和其他巨頭以及銷售太陽能汽車的初創公司的重大舉措,這種情況變得嚴重,而不僅僅是做夢。Sono Motors 是如何通過強調全太陽能獲得超過 13,000 個訂單的?薄膜包裝或承重等多種太陽能格式都經過嚴格評估,並比較了現在和未來的路線圖和優勢,甚至是展開式、太陽跟蹤和超高效版本。第 6 章通過許多實際例子深入瞭解化學,包括汽車上的單晶矽、CIGS 和 GaAs、比較圖表、可編輯、多結和其他選項,甚至超材料增強和從未插入的太陽能汽車的比較。

第 7 章的 26 頁深入研究了電池和超級電容器的增加範圍。這是結構電池、模塊消除、鋰離子電池的潛在破壞者量化和批評,質疑汽車 2024-6 承諾的固態汽車電池。查看未來通過化學提高能量密度的學術數據,然後查看 IDTechEx每年對商業可用能量密度的預測。第 8 章介紹了未來熱管理的範圍增加。第 9 章給出了 20 個公司簡介,每個簡介都附有 SWOT 分析。這側重於他們為擴大汽車續航里程所做的工作。

來自 IDTechEx 的分析師訪問

購買所有報告都包括與專家分析師最多 30 分鐘的電話時間,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。這需要在購買報告後的三個月內使用。

目錄

1. 執行摘要和結論

< ul>
  • 1.1. 本報告的目的
  • 1.2. 比賽開始了。為什麼?
  • 1.3. 主要結論:一般
  • 1.4. 主要結論:長期技術選擇
  • 1.5. 通過收集外部能量獲得更多能量/更遠距離的途徑
  • 1.6. 通過零排放範圍擴展器獲得更多能量/更長距離的路線
  • 1.7. 通過新組件獲得更多能量/更長距離的路線
  • 1.8. 通過車輛設計和材料獲得更多能量/更長距離的途徑
  • 1.9. 2021-2041 年長距離純電動汽車的市場預測和技術時間表
    • 1.9.1. 2021-2041 年廣泛採用的新範圍擴展技術選項
    • 1.9.2. 幾家廠商量產EPA/WLTP長續航BEV汽車時 2021-2041
    • 1.9.3. 可編輯電子產品的商業化時間表 2020-2041
    • 1.9.4. 鈣鈦礦光伏應用路線圖
  • 1.10. 包括特斯拉在內的長續航高檔純電動汽車的市場預測
    • 1.10.1. 2021年至2041年全球 500 英里和 1000 英里範圍內每年銷售的遠程車輛數量佔所有汽車的百分比
    • 1.10.2. 2041 年,包括汽車在內的所有市場的全球光伏技術份額為 10 億

    2. 簡介

    • 2.1. 永動機
    • 2.2. 應對炙手可熱的城市甜甜圈
    • 2.3. 主要地緣政治影響
    • 2.4. 全球差異
    • 2.5. 不 - 不是燃料電池
    • 2.6. 趨向於更大更耗電的汽車
    • 2.7. 現在進展
    • 2.8. 降低複雜性
    • 2.9. 增加範圍意味著限制零件的增加
    • 2.10. 迭代改進
    • 2.11. 太陽能非常強大
    • 2.12. 太陽能汽車專利
    • 2.13. 新電池材料增加續航里程

    3. 特斯拉整體方案

    • 3.1. Overvie w ^
    • 3.2. 特斯拉整體方法
    • 3.3. 特斯拉結構電池和下一個化學和工藝
    • 3.4. 定制的電池化學成分
    • 3.5. 大型壓鑄大大簡化了特斯拉 Model 3 和 Y
    • 3.6. 特斯拉自動駕駛簡化——無雷達或激光雷達
    • 3.7. 特斯拉電機設計 - 性能與範圍

    4. 簡化、高效、輕量化以增加範圍

    • 4.1. 概述
    • 4.2. 改進和集成電機以增加範圍
      • 4.2.1. eAxles 集成了許多組件
      • 4.2.2. 與電機集成的控制器
      • 4.2.3. 輪轂電機系統更換了許多零件
      • 4.2.4. 更少的電機冷卻增加了範圍
      • 4.2.5. 電壓增加可改善範圍
      • 4.3. 熱管理可以增加範圍
      • 4.4. 合併空調壓縮機和電機
      • 4.5。電力電纜減重:鋁石墨烯、高電壓、意圖、問題
      • 4.6. 用於簡化和輕量化的超材料和金屬圖案化
      • 4.7. 多功能複合材料
      • 4.8. 結構電子
      • 4.9. 自修復複合材料部件的途徑
      • 4.10. 3D 電子、電氣、光學、磁學
        • 4.10.1. 3D 打印、模內結構電子與貿易;
        • 4.10.2. 可編輯的電子和電氣智能材料
      • 4.11. 透明電子產品
        • 4.11.1. 概述
        • 4.11.2. 汽車中的透明和半透明材料如何增加續航里程等等
        • 4.11.3. RadarGlass□
        • 4.11.4. SmartMesh□ 透明加熱器包裹增加範圍 6%
        • 4.11.5. 結論
      • 4.12. 結構電池和超級電容器

      5. 增加續航里程的太陽能汽車

      • 5.1. 基本
        • 5.1.1. 定義和歷史
        • 5.1.2. 太陽能汽車車身增加的里程數
        • 5.1.3. 基準測試
      • 5.2. 特斯拉太陽能 Cyber□□truck 和替代品
      • 5.3. 主流太陽能汽車和汽車類車輛
        • 5.3.1. Aptera solar car
        • 5.3.2. Economia Pakistan
        • 5.3.3. Fisker USA
        • 5.3.4. Fraunhofer ISE Germany
        • 5.3.5. Hyundai-Kia Korea
        • 5.3.6. Karma USA no longer
        • 5.3.7. Lightyear Netherlands
        • 5.3.8. Manipal IT India
        • 5.3.9. Sono Motors Germany
        • 5.3.10. Toyota Japan
        • 5.3.11. Stella Lux, Stella Era, Stella Vie Netherlands
      • 5.4. 結論

      6. 光伏汽車技術

      • 6.1. 新的幾何形狀可以大大增加射程
      • 6.2. 化學的選擇
      • 6.3. 透明光伏電池的幾何形狀
      • 6.4. 效率和負擔能力
      • 6.5. 衛星上的東西後來出現在汽車上
      • 6.6. 矽以外的單結光伏選項
      • 6.7. 車輛上的 scSi 光伏
      • 6.8. 車輛上的 CIGS 光伏
      • 6.9. 太陽能賽車手展示未來 - 三重連接 III-V,側面太陽能
      • 6.10. 汽車上的砷化鎵光伏
      • 6.11. 領先的太陽能汽車規格:Sono、Lightyear 和 Toyota 的研究
      • 6.12. 汽車多結太陽能的潛力
      • 6.13. 光伏進步成為油漆
      • 6.14. 正在尋求的材料問題和機會
        • 6.14.1. 概述
        • 6.14.2. CIGS
        • 6.14.3. 鈣鈦礦光伏覆蓋層和透明薄膜
        • 6.14.4. III-V材料
        • 6.14.5. 超材料促進光伏冷卻並捕獲越來越大的範圍
        • 6.14.6. 汽車中的 EIEV 技術示例

      7. 電池和超級電容器提高範圍

      • 7.1. 新幾何形狀可以大大增加射程
      • 7.2. 電池芯改進路線圖
      • 7.3. 鋰離子電池的潛在破壞者
      • 7.4. 提高能量密度的學術數據
      • 7.5. 提高 BEV 電池能量密度
      • 7.6. 提高電動汽車電池比能量
      • 7.7. 推斷能量密度和比能的改進
      • 7.8. 提高細胞能量密度和比能量
      • 7.9. 原型和有針對性的改進電池能量密度和比能量
      • 7.10. 關於提高細胞能量密度的評論
      • 7.11. 示例:哈佛大學聲稱在 2021 年取得突破
      • 7.12. IDTe chEx 計算
      • 7.13. IDTechEx 能量密度計算 - 按陰極
      • 7.14. 矽的能量密度改進
      • 7.15. 下一代陰極
      • 7.16. 提高能量密度的電池設計
      • 7.17. 使用 "傳統" 電極可以達到多高?
      • 7.18. 下一代材料能走多遠?
      • 7.19. 鋰離子能量密度提升前景探討
      • 7.20. 鋰離子能量密度的時間表和展望
      • 7.21. 許多聲稱的進步 -三星和 KIST 的例子
      • 7.22. 結束語

      8. 溫度和熱管理對範圍的影響

      • 8.1. 範圍計算
      • 8.2. 環境溫度和氣候控制的影響
      • 8.3. 環境溫度和氣候控制的影響
      • 8.4. 與環境溫度的模型比較
      • 8.5. 與氣候控制的模型比較
      • 8.6. 概括
      • 8.7. 整體車輛熱管理
      • 8.8. 技術時間表
      • 8.9. PTC 與熱泵
      • 8.10. 最近的帶熱泵的電動汽車
      • 8.11. BEV 熱泵預測
      • 8.12. 進一步創新
      • 8.13. 精密熱管理的優勢
      • 8.14. 熱管理高級控制:關鍵參與者和技術

      9. 20 份具有 SWOT 分析的公司簡介

      • 9.1. Applied Electric Vehicles Australia
      • 9.2. Dezhou China
      • 9.3. Evovelo Spain
      • 9.4. Estrema Italy
      • 9.5. I-FEVS Italy
      • 9.6. Jiangte Joylong Automobile China
      • 9.7. Lightyear Netherlands
      • 9.8. LimCar ElettraCity-2 Italy
      • 9.9. Mahle Germany
      • 9.10. Midsummer Sweden
      • 9.11. Nidec Japan
      • 9.12. Nio China
      • 9.13. Schaeffler Germany
      • 9.14. Sono Motors Germany
      • 9.15. Squad Mobility Netherlands
      • 9.16. Sunnyclist Greece
      • 9.17. Swift Solar USA
      • 9.18. Teijin Japan
      • 9.19. Visedo Finland
      • 9.20. Zoop Turkey
  • 目錄
    Product Code: ISBN 9781913899509

    Title:
    Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041
    Materials opportunities, simplification, lightweighting, 3-5 photovoltaics,
    solid state batteries, zero-emission range extenders, supercapacitors, wide bandgap,
    graphene, aluminium, sun-tracking, heat pumps.

    Fast charging is all the talk now but doubling then trebling the range is seismic. The world solves its problems by eliminating infrastructure. The 285 page IDTechEx report, "Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041" spells it out.

    The report answers such questions as:

    • Why is range improvement an ongoing, primary car battleground?
    • What are the best ways of making affordable cars with 1000mile (1600km) range and when will it happen?
    • What percentage of cars will have what best range 2021-2041?
    • What percentage contributions from each technology and who leads?
    • Detail on emerging simplification, lightweighting, solar bodywork, new components, batteries?
    • What is the technology roadmap by year to achieving these ranges 2021-2041?
    • Best ranges are currently achieved in different ways. How can we combine them?
    • What other options will emerge from the research pipeline. When, from whom?
    • What to believe about solid state batteries. Critically compare and predict?
    • Decade of huge improvement in lithium-ion battery format, software, chemistry, cost. Detail and timing?
    • What about supercapacitors, multifunctional composites, the two zero-emission range-extender options?
    • Lessons from 30 different approaches from 30 vehicle companies appraised?

    IDTechEx heavily discounts many promises, given the history of over-optimism, but it predicts strengthening demand for range, giving the many reasons why, and huge progress towards it. Learn how the technologies enabling long range bring other delights. Solar bodywork gives gentle users travel without ever using a charging station and the first get-you-home feature. If you drain the battery, you just wait and the body charges the car enough to get to a charger. Lightweighting aids acceleration and cost. The day is coming when there is no reason to buy a car that needs frequent charging.

    Researched by multilingual PhD level IDTechEx analysts worldwide, the unique 285 page IDTechEx report, "Routes to 1000Mile (1600km) Battery Electric Cars 2021-2041" starts with an Executive Summary and Conclusions. Here you see the many reasons for increasing maximum range, the existing and the planned enabling technologies. Detailed infograms show trends, achievements, research pipeline with roadmaps 2021-2041. See when there will be wide availability of given long ranges and the percentage of cars with them. Quantified are the four primary contributors to widely-available range being 760 miles in 2031, up a startling 2.4 times on today. IDTechEx calculations are discounted by factoring in past over-promising by developers and OEMs and by deep analysis of technical and scaleup challenges and solutions ahead. For example, contrary to popular understanding, the next decade is not primarily about solid state batteries though they figure strongly in 2031-2041 forecasts and roadmaps presented for range extension.

    Chapter 2 Introduction concerns perpetual cars, relevant smart city issues, geopolitical implications, iterative methodology for introducing range-extending technologies. A sensible starting point for the detail is Tesla, the world's most valuable auto company, because it got there largely by offering longest range and being exclusively focussed on battery-electric vehicles. Chapter 3 "Tesla Holistic Approach" describes how it has achieved range by many small things such as cable elimination, more efficient motors, low drag factor, best batteries. See how it will go much further with massive simplification beyond those giant aluminium diecastings. Read its advice on how to design motors.

    Then come chapters on the technologies emerging with many new examples. Chapter 4 is on simplification and lightweighting to increase range. See in-wheel and eAxle motors with integrated power electronics, voltage increase shrinking cables and motors, structural energy storage, in-mold, 3D, transparent and edit-able electronics and electrics, merging components, new battery-cooling achievements, multi-functional composites. This is a 20 year view including Rivian, VW Group and other innovators. It is supported by a detailed jargon buster at the start of the report and by company profiles.

    Chapter 5 concerns solar cars with increased range. This just got serious with major moves by Hyundai, Tesla, Toyota, VW Group and other giants plus startups selling solar vehicles, not just dreaming. How did Sono Motors get over 13,000 orders by emphasising all-over solar? The many solar formats such as film-wrap or load-bearing are critically appraised and the roadmaps and benefits are compared now and in future, even unfolding, sun tracking and super-efficient versions. Chapter 6 dives into the chemistries with many actual examples of single crystal silicon, CIGS and GaAs on cars, comparison charts, edit-able, multijunction and other options even metamaterial-boosting and comparison of solar cars that never plug in.

    The 26 pages of chapter 7 deeply examine batteries and supercapacitors increasing range. Here is the structural battery, module elimination, potential disruptors to lithium-ion quantified and criticised, questioning trumpeted solid-state car batteries promised in cars 2024-6. See academic figures for energy density improvement by chemistry into the future then IDTechEx prediction of commercially available energy density by year. Chapter 8 presents range increases from future thermal management. Chapter 9 gives 20 company profiles each accompanied by SWOT analysis. This focuses on what they are doing to extend car ranges.

    Analyst access from IDTechEx

    All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

    TABLE OF CONTENTS

    1. EXECUTIVE SUMMARY AND CONCLUSIONS

    • 1.1. Purpose of this report
    • 1.2. The race is on. Why?
    • 1.3. Primary conclusions: general
    • 1.4. Primary conclusions: long-range technology options
    • 1.5. Routes to more energy/ longer range by harvesting external energy
    • 1.6. Routes to more energy/ longer range by zero-emission range extenders
    • 1.7. Routes to more energy/ longer range by new components
    • 1.8. Routes to more energy/ longer range by vehicle design and materials
    • 1.9. Market forecasts and technology timelines for long range BEVs 2021-2041
      • 1.9.1. New range-extending technology options widely adopted 2021-2041
      • 1.9.2. When several manufacturers mass produce EPA/WLTP long range BEV cars 2021-2041
      • 1.9.3. Commercialisation timeline for edit-able electronics 2020-2041
      • 1.9.4. Application roadmap of perovskite photovoltaics
    • 1.10. Market forecast for long range premium BEV cars including Tesla
      • 1.10.1. Number of long range units sold globally by year as % of all cars 500 mile and 1000 mile range 2021-2041
      • 1.10.2. Global photovoltaic technology share $bn 2041 for all markets including cars

    2. INTRODUCTION

    • 2.1. Perpetual cars
    • 2.2. Coping with the red-hot city donut
    • 2.3. Major geopolitical implications
    • 2.4. Global differences
    • 2.5. No - not fuel cells
    • 2.6. Trend to larger more power-hungry cars
    • 2.7. Progress now
    • 2.8. Complexity reduced
    • 2.9. Increased range means limit the increase in parts
    • 2.10. Iterative improvement
    • 2.11. Solar is very powerful
    • 2.12. Solar car patents
    • 2.13. New battery materials increase range

    3. TESLA HOLISTIC APPROACH

    • 3.1. Overview
    • 3.2. Tesla holistic approach
    • 3.3. Tesla structural battery and next chemistries and processes
    • 3.4. Tailored battery chemistries
    • 3.5. Tesla Model 3 and Y greatly simplified by large diecasting
    • 3.6. Tesla autonomy simplification - no radar or lidar
    • 3.7. Tesla motor designs - performance with range

    4. SIMPLIFICATION, EFFICIENCY, LIGHTWEIGHTING TO INCREASE RANGE

    • 4.1. Overview
    • 4.2. Improving and integrating motors to increase range
      • 4.2.1. eAxles integrate many components
      • 4.2.2. Controls integrated with motors
      • 4.2.3. In-wheel motor systems replace many parts
      • 4.2.4. Less motor cooling increases range
      • 4.2.5. Voltage increase improves range
    • 4.3. Thermal management can increase range
    • 4.4. Merging aircon compressor and motor
    • 4.5. Power cable weight reduction: Aluminium graphene, high voltage, intentions, issues
    • 4.6. Metamaterials and metal patterning for simplification and lightweighting
    • 4.7. Multifunctional composites
    • 4.8. Structural electronics
    • 4.9. Routes to self-healing composite parts
    • 4.10. 3D electronics, electrics, optics, magnetics
      • 4.10.1. 3D printing, In-Mold Structural Electronics™
      • 4.10.2. Edit-able electronic and electric smart materials
    • 4.11. Transparent electronics and electrics
      • 4.11.1. Overview
      • 4.11.2. How transparent and translucent materials in cars increase range and more
      • 4.11.3. RadarGlass™
      • 4.11.4. SmartMesh™ transparent heater wrap increasing range 6%
      • 4.11.5. Conclusions
    • 4.12. Structural batteries and supercapacitors

    5. SOLAR CARS WITH INCREASED RANGE

    • 5.1. Basics
      • 5.1.1. Definitions and history
      • 5.1.2. Amount of range increase by solar car bodywork
      • 5.1.3. Benchmarking
    • 5.2. Tesla solar Cybertruck and alternatives
    • 5.3. Mainstream solar cars and car-like vehicles
      • 5.3.1. Aptera solar car
      • 5.3.2. Economia Pakistan
      • 5.3.3. Fisker USA
      • 5.3.4. Fraunhofer ISE Germany
      • 5.3.5. Hyundai-Kia Korea
      • 5.3.6. Karma USA no longer
      • 5.3.7. Lightyear Netherlands
      • 5.3.8. Manipal IT India
      • 5.3.9. Sono Motors Germany
      • 5.3.10. Toyota Japan
      • 5.3.11. Stella Lux, Stella Era, Stella Vie Netherlands
    • 5.4. Conclusions

    6. PHOTOVOLTAIC VEHICLE TECHNOLOGIES

    • 6.1. New geometry can greatly increase range
    • 6.2. Choice of chemistry
    • 6.3. Cell geometries of transparent photovoltaics
    • 6.4. Efficiency and affordability
    • 6.5. What is fitted on satellites appears on cars later
    • 6.6. Single junction PV options beyond silicon
    • 6.7. scSi PV on vehicles
    • 6.8. CIGS PV on vehicles
    • 6.9. Solar racers show the future - triple junction lll-V, solar on sides
    • 6.10. GaAs PV on vehicles
    • 6.11. Leading solar car specifications: Sono, Lightyear and research by Toyota
    • 6.12. Potential for multi-junction solar on cars
    • 6.13. Photovoltaics progresses to become paint
    • 6.14. Materials problems and opportunities being pursued
      • 6.14.1. Overview
      • 6.14.2. CIGS
      • 6.14.3. Perovskite photovoltaics overlayers and transparent film
      • 6.14.4. lll-V materials
      • 6.14.5. Metamaterial boosts photovoltaic cooling and capture increasing range
      • 6.14.6. Examples of EIEV technologies in cars

    7. BATTERIES AND SUPERCAPACITORS IMPROVING RANGE

    • 7.1. New geometry can greatly increase range
    • 7.2. Battery cell improvement roadmap
    • 7.3. Potential disruptors to Li-ion
    • 7.4. Academic figures on energy density improvement
    • 7.5. Increasing BEV battery cell energy density
    • 7.6. Increasing EV battery cell specific energy
    • 7.7. Extrapolating improvements to energy density and specific energy
    • 7.8. Improvements to cell energy density and specific energy
    • 7.9. Prototype and targeted improvements to cell energy density and specific energy
    • 7.10. Commentary on improving cell energy densities
    • 7.11. Example: Harvard University claim breakthrough in 2021
    • 7.12. IDTechEx calculations
    • 7.13. IDTechEx energy density calculations - by cathode
    • 7.14. Energy density improvements from silicon
    • 7.15. Next generation cathodes
    • 7.16. Cell design to increase energy densities
    • 7.17. How high can you go with 'conventional' electrodes?
    • 7.18. How high can you go with next gen materials?
    • 7.19. Discussion of outlook for Li-ion energy density improvement
    • 7.20. Timeline and outlook for Li-ion energy densities
    • 7.21. Many claimed advances - Samsung and KIST examples
    • 7.22. Concluding remarks

    8. IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE

    • 8.1. Range Calculations
    • 8.2. Impact of Ambient Temperature and Climate Control
    • 8.3. Impact of Ambient Temperature and Climate Control
    • 8.4. Model Comparison with Ambient Temperature
    • 8.5. Model Comparison with Climate Control
    • 8.6. Summary
    • 8.7. Holistic Vehicle Thermal Management
    • 8.8. Technology Timeline
    • 8.9. PTC vs Heat Pump
    • 8.10. Recent EVs with Heat Pumps
    • 8.11. Heat Pumps for BEVs Forecast
    • 8.12. Further Innovations
    • 8.13. Advantages of Sophisticated Thermal Management
    • 8.14. Thermal Management Advanced Control: Key Players and Technologies

    9. 20 COMPANY PROFILES WITH SWOT ANALYSIS

    • 9.1. Applied Electric Vehicles Australia
    • 9.2. Dezhou China
    • 9.3. Evovelo Spain
    • 9.4. Estrema Italy
    • 9.5. I-FEVS Italy
    • 9.6. Jiangte Joylong Automobile China
    • 9.7. Lightyear Netherlands
    • 9.8. LimCar ElettraCity-2 Italy
    • 9.9. Mahle Germany
    • 9.10. Midsummer Sweden
    • 9.11. Nidec Japan
    • 9.12. Nio China
    • 9.13. Schaeffler Germany
    • 9.14. Sono Motors Germany
    • 9.15. Squad Mobility Netherlands
    • 9.16. Sunnyclist Greece
    • 9.17. Swift Solar USA
    • 9.18. Teijin Japan
    • 9.19. Visedo Finland
    • 9.20. Zoop Turkey