表紙
市場調查報告書
商品編碼
1004300

電動汽車的鋰離子電池2021-2031年

Lithium-ion Batteries for Electric Vehicles 2021-2031

出版日期: | 出版商: IDTechEx Ltd. | 英文 325 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
2021-2031年電動汽車用鋰離子電池
鋰離子電池和電池組技術趨勢,先進的鋰離子電池開發,熱管理,模塊和電池組製造商,生產商分析,車輛細分,第二壽命和回收利用,需求預測。

現在很明顯,鋰離子電池已經贏得了許多電動汽車電動化的競爭,並且市場正在蓬勃發展。在過去的幾年中,對技術開發人員和電池製造商進行了大量投資,而電動汽車OEM廠商繼續宣佈其電氣化戰略。儘管Covid-19仍在持續受到干擾,但2020年電動汽車的強勁銷售市場進一步提振了市場。預計到2026年,電動汽車中鋰離子電池的市場規模將達到近700億美元,該報告將細分電動汽車,公共汽車,貨車和卡車的預測,並介紹這些市場的駕駛員和約束條件。

儘管如此,當前,電動汽車的銷售仍然受到政策和補貼的驅動,在歐洲和中國的主要市場,電動汽車的銷售正在加強,在拜登政府的領導下,美國的電動汽車銷售也有望得到加強。為了朝著消費者驅動,大眾市場普及的方向發展,需要對鋰離子電池技術作進一步的改進,這適用於許多汽車領域。關於鋰離子化學和電池設計的多種選擇可以使它們針對具有不同性能要求的應用進行量身定制,並且要瞭解這一點,電動汽車(包括汽車,公共汽車,卡車和船)的機會必須被評估。

該報告深入探討了鋰離子電池技術,涵蓋了諸如偏愛紅細胞形態因子和電池化學變化等方面。儘管有明顯的趨勢,例如從NMC 622到NMC 811,用於BEV的較高鎳層氧化物,但這些高鎳陰極將不能普遍適用。不同的應用將需要不同的性能特徵,例如更高的安全級別或更長的循環壽命。例如,LFP的使用已引起低成本車輛的關注,而中國的電動客車幾乎完全使用這種電池化學成分。針對不同的車輛細分評估了不同的陰極材料,並概述了OEM和包裝製造商的策略。到2031年,將提供陰極選擇和需求的前景。

電動汽車用鋰離子陰極的市場份額。報告中可用的預測數據。資料來源:IDTechEx

對鋰離子的威脅無法提供足夠的性能,或者還不夠成熟,無法提供可行的替代方案。因此,先進鋰離子電池和化學材料的開發和改進是性能更好的電池和電動汽車的最佳選擇。分析了這些進展,特別是,該報告對電動汽車中使用的固態/鋰金屬和矽陽極電池技術進行了評估。簡要介紹了該領域的一些關鍵角色,並提出了時間表,說明了鋰離子電池設計和化學研發的進展。

除電池外,提高電池組級能量密度也同樣重要。分析了各種電池組設計的趨勢,包括熱管理策略,模塊化和電池到電池組設計以及輕巧的材料。熱管理在維持鋰離子電池的安全運行中起著至關重要的作用。最近發生的大火以及中國政府呼籲提高電池組操作的安全性,尤其是在公共交通中,都強調了良好的熱管理的重要性。不同的參與者都在追求空氣,液體和製冷劑冷卻方法,每種方法各有優缺點。

一項針對電池組製造商的研究主要針對歐洲和美國的參與者,主要是不向重型卡車,公共汽車和物流車輛等n-car車輛細分市場提供電池組。提供了交鑰匙產品的外形,化學和性能方面的比較,並討論了包裝製造商如何使自己與眾不同。列出了主要目標市場和細分市場以及供應商,客戶和合作夥伴。

鋰離子電池組的比較。報告中提供了其他數據。資料來源:IDTechEx

最後,該報告對壽命終止的鋰離子電池所帶來的機遇進行了介紹,介紹了第二壽命電池以及鋰離子回收的現狀。鑑於電動汽車採用率的預期增長,必須對報廢鋰離子電池進行適當的管理,以避免出現不當處置和可能會產生巨大廢物管理問題的情況。令人鼓舞的是,許多原始設備製造商正在製定策略,以基於第二次生命週期的應用和回收利用來納入圓形性。

來自IDTechEx的分析師訪問權限

所有報告購買都包括與專家分析師進行的長達30分鐘的電話時間,專家分析師將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。需要在購買報告後的三個月內使用。

目錄

1。執行摘要

  • 1.1。電動車條款
  • 1.2。主要電動汽車類別
  • 1.3。主要電動汽車類別
  • 1.4。電動汽車驅動器-中國
  • 1.5。電動汽車計劃
  • 1.6.Covid-19:具有彈性的電動汽車 1.7.LFP或NMC比較
  • 1.8.EV陰極化學的市場份額
  • 1.9。陰極化學展望
  • 1.10.Cell vs Pack能量密度-乘用車
  • 1.11。增加BEV電池的電池能量密度
  • 1.12。增加EV電池的單位能量
  • 1.13。汽車固態和矽的比較
  • 1.14。矽陽極與鋰金屬固態
  • 1.15。鋰離子能量密度的時間表和展望
  • 1.16.Turnkey電池設計選擇-細胞的外形和COO靈
  • 1.17。按形狀因子比較能量密度
  • 1.18。交鑰匙電池組的化學選擇
  • 1.19。包裝製造商的收入估算
  • 1.20。歐洲超級工廠公告的增長
  • 1.21。生產能力增長-歐洲,美國
  • 1.22。供需概覽
  • 1.23。電動汽車鋰離子需求量,GWh 1.li.1.24.EV鋰離子市場,十億美元
  • 1.25.EV陽極需求
  • 1.26。陰極需求預測

2。簡介

  • 2.1。電動車輛:基本原理
  • 2.2。電動車條款
  • 2.3。傳動系統規格
  • 2.4。並聯和串聯混合動力:解釋
  • 2.5。電動車輛:典型規格
  • 2.6。基於鋰的電池族樹
  • 2.7 。電動汽車的基本D河
  • 2.8。電動汽車的壁壘是什麼?
  • 2.9。電動汽車的壁壘是什麼?
  • 2.10。電動汽車的碳排放

3。鋰離子技術

  • 3.1。什麼是鋰離子電池?
  • 3.2。為什麼選擇鋰電?
  • 3.3。鋰離子供應鏈
  • 3.4。電池困境
  • 3.5。電池願望清單
  • 3.6。鋰離子供應鏈
  • 3.7。比較陰極-簡要概述
  • 3.8。比較陽極-概述
  • 3.9。陰極
    • 3.9.1。陰極概述
    • 3.9.2。陰極材料-LCO和LFP
    • 3.9.3。陰極材料-NMC,NCA和LMO
    • 3.9.4。NMC開發-從111到811
    • 3.9.5。大眾汽車日
    • 3.9.6。通過細胞化學降低成本
    • 3.9.7。高錳陰極
    • 3.9.8。高錳陰極-LMP,LMFP
    • 3.9.9。高壓LNMO
    • 3.9.10.Haldor Topsoe的LNMO
    • 3.9.11。高壓LNMO的發展
    • 3 .9.12。高級性能比較
    • 3.9.13。高級性能比較
    • 3.9.14。NMC的材料強度,富鋰錳,LNMO
    • 3.9.15。高錳含量有可能降低成本
    • 3.9.16。hh h錳陰極的總結
    • 3.9.17.LFP適用於Tesla Model 3
    • 3.9.18。特斯拉Model 3的LFP繼續
    • 3.9.19.LFP或NMC比較
    • 3.9.20。討論了LFP或NMC性能比較
    • 3.9.21.LFP或NMC
    • 3.9.22.IDTechEx能量密度計算-按陰極
    • 3.9.23。鋰離子電池材料成本估算
    • 3.9.24。LFP和NMC的汽車公告
    • 3.9.25。電動汽車的陰極選擇
    • 3.9.26。陰極適用性
    • 3.9.27。陰極-將使用哪種化學方法?1個
    • 3.9.28。陰極外觀-將使用哪種化學方法?2個
    • 3.9.29。陰極市場
    • 3.9.30.EV陰極化學市場份額
    • 3.9.31.EV陰極化學位移
    • 3.9.32.EV模型與NMC 811
    • 3.9.33。比較商業細胞化學
    • 3.9.34。陰極化學展望
    • 3.9.35。陰極需求預測
  • 3.10。陽極
    • 3.10.1。陽極材料
    • 3.10.2。石墨簡介 3.10.3。矽的承諾
    • 3.10.4。矽的現實
    • 3.10.5。矽能提高多少能量密度?
    • 3.10.6。鈦酸鋰氧化物(LTO)簡介
    • 3.10.7。LTO將在哪裡發揮作用?
    • 3.10.8。LTO的需求增加
    • 3.10.9.LTO for e-buss
    • 3.10.10.EV陽極需求
  • 3.11。單元格尺寸
    • 3.11.1。商用電池包裝技術
    • 3.11.2。汽車格式選擇
    • 3.11.3。單元格格式
    • 3.11.4。單元格格式
    • 3.11.5。商業單元格格式的比較
    • 3.11.6。選擇哪種單元格格式?
    • 3.11.7。乘用車市場
    • 3.11.8。增加BEV電池的電池能量密度
    • 3.11.9。增加EV電池的單位能量
    • 3.11.10。其他車輛類別

4。先進的鋰離子技術

  • 4.1。鋰離子的潛在破壞者
  • 4.2。細胞化學比較-定量
  • 4.3.Energy存儲技術compari兒子
  • 4.4。當前用於汽車的鋰離子技術
  • 4.5。什麼是固態電池?
  • 4.6。固態和矽驅動器
  • 4.7。固態電解質
  • 4.8。合作夥伴和投資者-固態和矽
  • 4.9。矽陽極與鋰金屬固態
  • 4.10。比較陽極-簡要概述
  • 4.11。矽陽極或鋰金屬固態
  • 4.12。矽陽極或鋰金屬固態
  • 4.13.Notable球員為固態EV電池TE chnology
  • 4.14。矽電動電池技術的著名參與者
  • 4.15。金屬鋰與液體電解質
  • 4.16。固態和矽時間線
  • 4.17。固態-Quantumscape
  • 4.18。固態-固態電源
  • 4.19。固態-Blue Solutions
  • 4.20。固態-Prologium
  • 4.21。矽陽極-令人羨慕
  • 4.22。重大進展-Sila Nano
  • 4.23。汽車固態和矽的比較
  • 4.24。汽車固態和矽的比較 4.25.Silicon陽極VS鋰-金屬固態
  • 4.26。矽和固態結論
  • 4.27。改善鋰離子的多種來源
  • 4.28。燃料電池起什麼作用?
  • 4.29。高能電池化學比較
  • 4.3 0.替代技術的問題
  • 4.31。鋰離子能量密度的時間表和展望
  • 4.32。結束語

5。鋰離子電池和包裝

  • 5.1。什麼構成電池組?
  • 5.2。鋰離子電池:從電池到電池
  • 5.3。包裝設計
  • 5.4。電動汽車的電池KPI
  • 5.5。漢高的電池組材料
  • 5.6。杜邦的電池組材料
  • 5.7。輕巧的電池盒
  • 5.8。輕巧-Voltabox發泡塑料泡沫 5.9.From鋼對鋁
  • 5.10。最新的複合電池外殼
  • 5.11。向複合外殼邁進嗎?
  • 5.12。大陸結構塑料-蜂窩技術
  • 5.13。電池盒材料摘要
  • 5.14。增加大小
  • 5.15。乘用車:電池能量密度趨勢
  • 5.16。乘用車:能量密度趨勢
  • 5.17。通用汽車的電池開發
  • 5.18.NCMA陰極
  • 5.19。單元格形狀因子
  • 5.20。模塊化包裝設計 < 5.21.Ultium BMS
  • 5.22。Ultium電池的主要發展
  • 5.23.BYD刀片電池
  • 5.24。比亞迪電池設計
  • 5.25。要打包的貓電池
  • 5.26。電池到包裝或模塊化?
  • 5.27。是否模塊化?
  • 5.28。高壓BEV
  • 5.29。增加BEV電壓
  • 5.30。鋰離子電池的熱管理
    • 5.30.1。鋰離子電池的熱管理
    • 5.30.2。熱失控的階段
    • 5.30.3。熱失控的原因
    • 5.30.4。防火
    • 5.30.5。主動冷卻與被動冷卻
    • 5.30.6。被動電池冷卻方法
    • 5.30.7。主動電池冷卻方法
    • 5.30.8。空氣冷卻-技術鑑定
    • 5.30.9。液體冷卻-技術鑑定
    • 5.30.10。液體冷卻-幾何形狀
    • 5.30.11。製冷劑冷卻-技術鑑定
    • 5.30.12。電池冷卻方法分析
    • 5.30.13。電池組內和電池組周圍的材料機會:概述
    • 5.30.14.Thermal management-打包d模塊概述
    • 5.30.15。熱界面材料(TIM)-封裝和模塊概述
  • 5.31.BMS
    • 5.31.1。電池管理系統
    • 5.31.2。電池管理系統簡介
    • 5.31.3。快速充電和降級
    • 5.31.4。快速充電的重要性
    • 5.31.5。LIB的操作限制
    • 5.31.6.BMS-STAFL系統
    • 5.31.7。脈衝充電
    • 5.31.8。電量平衡
    • 5.31.9。細胞失衡的後果
    • 5.31.10。主動或被動平衡?
    • 5.31.11。荷電狀態估算
    • 5.31.12。健康狀況和剩餘使用壽命估計
    • 5.31.13.Titan AES
    • 5.31.14。BMS的值

6。模塊和包裝製造商-BEYO ND CARS

  • 6.1。模塊和包裝製造過程
  • 6.2。模塊和包裝製造
  • 6.3。非車載電池組製造
  • 6.4。設計差異
  • 6.5。電池組製造商的作用
  • 6.6。比較包裝製造商的指標
  • 6.7。電池組製造商-歐洲
  • 6.8。電池組製造商
  • 6.9。電池組製造商-北美
  • 6.10。電池組製造商
  • 6.11。亞洲模塊和包裝製造商
  • 6.12。電池包比較
  • 6.13。電池模塊/電池組比較
  • 6.14。電池組/模塊比較
  • 6.15。電池設計選擇-電池外形和散熱
  • 6.16。按形狀因子比較能量密度
  • 6.17 。通過冷卻方法比較能量密度
  • 6.18。化學選擇
  • 6.19。交鑰匙解決方案的化學性質和形狀因數
  • 6.20。包裝製造商的收入估算
  • 6.21。價值鏈差異化
  • 6.22.Romeo Power
  • 6.23.Romeo電源熱manageme NT
  • 6.24.Forsee電源
  • 6.25.Forsee電源應用
  • 6.26。Xerotech
  • 6.27.Microvast
  • 6.28.Akasol
  • 6.29。商用電動汽車的Akasol能量密度路線圖
  • 6.30.Akasol的 "固態答案"
  • 6.31。Webasto擴大生產
  • 6.32.EnerDel:卡車電池組
  • 6.33.BMZ
  • 6.34。功率
  • 6.35.Proterra
  • 6.36.Electrovaya
  • 6.37。美國電池解決方案
  • 6.38。萊坎奇
  • 6.39。關於電池製造商的總結

7。電池製造和成本

  • 7.1。電池生產步驟
  • 7.2。LIB生產的電力需求
  • 7.3。建立超級工廠需要多長時間?
  • 7.4。公共和私人投資的增長-2021年第一季度
  • 7.5.European gigafactorie於2018年宣佈
  • 7.6。迄今為止已宣佈的歐洲大型工廠
  • 7.7。歐洲超級工廠公告的增長
  • 7.8。歐洲電池製造的增長
  • 7.9。生產能力的增長-歐洲,美國
  • 7.10。鋰離子電池和電池組的價格和成本
    • 7.10.1。鋰離子電池材料成本估算
    • 7.10.2。降低陰極成本的方案
    • 7.10.3。矽和高鎳NMC在成本方面的作用
    • 7.10.4。降低成本的策略
    • 7.10.5。成本降低概述
    • 7.10.6.BEV電池價格預測
    • 7.10.7。電動車鋰離子電池價格預測

8。鋰離子電池在電動汽車細分市場中的應用

  • 8.1。應用電池優先級
  • 8.2。包裝製造商的風險
  • 8.3.Panas onic和Tesla
  • 8.4。汽車格式選擇
  • 8.5。乘用車市場
  • 8.6。中國電動汽車電池價值鏈
  • 8.7。其他車輛類別
  • 8.8。公交車電氣化的驅動因素和時機
  • 8.9。全球和區域銷售趨勢快照
  • 8.10。電動公交車中鋰離子的區域需求預測
  • 8.11。電池組製造商的未來角色
  • 8.12。電動巴士:市場歷史
  • 8.13。電動公交車中使用的化學物質
  • 8.14。電動公交車中使用的化學物質
  • 8.15.E-bus電池供應商
  • 8.16。為什麼需要電動CAM車輛
  • 8.17。電動CAM示例
  • 8.18。內部物流轉向鋰離子
  • 8.19。內部物流鋰離子合作夥伴
  • 8.20。鋰離子內部物流化學
  • 8。21.為什麼要為海軍陸戰隊電氣化?
  • 8.22。海事部門摘要
  • 8.23。領先的海上電池供應商
  • 8.24。產品陣容
  • 8.25。電動和柴油LCV成本平價
  • 8.26。小型eVan收支平衡:購買贈款
  • 8.27。輕型商用車的區域鋰離子需求預測
  • 8.28。電動卡車:駕駛員和障礙
  • 8.29。零排放中型和重型卡車的範圍
  • 8.30。中型和重型卡車的區域鋰離子需求
  • 8.31。電動汽車鋰離子電池需求量(按地區)

9。SEC續航EV電池和回收利用

  • 9.1。報廢的電動汽車電池在回收之前可以具有第二壽命
  • 9.2。二次電池的電位值
  • 9.3。涉及電池二次使用的主要公司
  • 9.4.B電池的二次使用連接了電動汽車和電池回收價值鏈
  • 9.5。當電池從電動汽車退役時...
  • 9.6。重新定義電動汽車電池的壽命:您的壽命不止一次
  • 9.7 。電動汽車電池的 "第二壽命" 是什麼?
  • 9.8。二次電池的目標市場
  • 9.9。回收鋰離子電池的驅動器
  • 9.10.LIB回收過程概述
  • 9.11。回收技術比較
  • 9.12。回收還是第二生命?
  • 9.13。陰極化學回收值
  • 9.14.Northvolt的Revolt回收計劃
  • 9.15。大眾計劃淘汰電動汽車電池
  • 9.16。寶馬在電動汽車電池回收方面的戰略合作夥伴關係
  • 9.17。雷諾公司針對鋰離子電池的循環經濟努力
  • 9.18。大眾內部鋰離子電池回收工廠
  • 9.19.4R能源
  • 9.20。特斯拉的``圓形超級工廠''

10。預測

  • 10.1電動汽車鋰離子需求,GWh
  • 10。2,電動車鋰離子市場,十億美元
  • 10.3.EV陽極需求
  • 10.4。陰極需求預測
目錄
Product Code: ISBN 9781913899462

Title:
Lithium-ion Batteries for Electric Vehicles 2021-2031
Li-ion cell and pack technology trends, advanced Li-ion developments, thermal management, module and pack manufacturers, player analysis, vehicle segments, 2nd-life and recycling, demand forecasts.

It is now clear that Li-ion batteries have won the race to electrify many forms of electric vehicles and the market is booming. There has been a flurry of investment in technology developers and battery manufacturers over the past few years and electric vehicle OEMs continue to announce their electrification strategies. The market has been further buoyed by resilient electric vehicle sales during 2020, despite the ongoing disruption of Covid-19. The market for Li-ion battery cells in electric vehicles is forecast to be worth nearly $70 billion by 2026 and the report will break down forecasts for electric cars, buses, vans and trucks along with an introduction to the drivers and restraints for these markets.

Nevertheless, currently, EV sales remain driven by policies and subsidies, which are being strengthened in the key markets of Europe and China and look set be strengthened in the US under the Biden administration. In order to move toward consumer driven, mass-market adoption, further improvements to Li-ion battery technology are desirable and this applies to many vehicle segments. The variety of choices that can be made with regard to Li-ion chemistry and battery design allows them to be tailored to applications with differing performance requirements and to understand this, the opportunities for electric vehicles including cars, buses, trucks, and boats must be appraised.

The report provides a deep dive into Li-ion cell technology, covering aspects such as preferred cell form factors and changing cell chemistries. While there is a clear trend in moving toward higher nickel layered oxides for BEVs, such as from NMC 622 to NMC 811, these high nickel cathodes will not be universally suitable. Different applications will require different performance characteristics such as greater levels of safety or higher cycle lives. For example, the use of LFP has gained attention for low-cost vehicles and Chinese e-buses almost exclusively use this cell chemistry. Different cathode materials are appraised for different vehicle segments and the strategies of OEMs and pack manufacturers are outlined. An outlook on cathode choices and demand is provided through to 2031.

Market share of Li-ion cathodes for electric vehicles. Forecast data available in the report. Source: IDTechEx

Threats to Li-ion do not offer sufficient performance or are not yet mature enough to offer a viable alternative. Developments and improvements to advanced Li-ion cells and chemistries are therefore the best for better performing batteries and electric vehicles. These developments are analysed, in particular, the report provides an appraisal of solid-state/Li-metal and silicon anode cell technology for use in electric vehicles. Some of the key players in this space are profiled and a timeline presented as to the improvements that can be expected from developments to Li-ion cell design and chemistry.

Beyond the cell, improvements to pack-level energy density are just as important. Trends to various battery pack designs are analysed, including on thermal management strategies, modular and cell-to-pack designs, and material light-weighting. Thermal management plays a critical role in maintaining the safe operation of Li-ion batteries. The importance of good thermal management has been highlighted by recent fires and the call from the Chinese government to improve the safety of battery pack operation, especially in public transport. Different players are pursuing air, liquid and refrigerant-cooled methods, each with their own benefits and weaknesses.

A study of battery pack manufacturers, primarily supplying packs to non-car vehicle segments, such as heavy duty-trucks, buses and logistics vehicles, is provided with a focus on the European and US players. Comparisons in the form factors, chemistries and performance of turnkey products is provided, along with a discussion of how pack manufacturers are differentiating themselves. The key markets and segments being targeted and suppliers, customers and partnerships are outlined.

Comparison of Li-ion battery packs. Additional data available in the report. Source: IDTechEx

Finally, the report gives an introduction into the opportunities that end-of-life Li-ion batteries represent, providing an introduction to 2nd life batteries and the current state of Li-ion recycling. Given the expected growth in electric vehicle adoption, suitable management of end-of-life Li-ion batteries is imperative to avoiding inappropriate disposal and a the build-up of a potentially huge waste management problem. Encouragingly, many OEMs are building strategies to incorporate circularity based on both 2nd-life applications and recycling.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1.Electric Vehicle Terms
  • 1.2.Major EV categories
  • 1.3.Major EV categories
  • 1.4.Drivers for electric vehicles - China
  • 1.5.Automotive EV plans
  • 1.6.Covid-19: Electric Cars Resilient
  • 1.7.LFP or NMC comparison
  • 1.8.EV cathode chemistry market share
  • 1.9.Cathode chemistry outlook
  • 1.10.Cell vs Pack Energy Density - passenger cars
  • 1.11.Increasing BEV battery cell energy density
  • 1.12.Increasing EV battery cell specific energy
  • 1.13.Automotive solid-state and silicon comparison
  • 1.14.Silicon anodes vs lithium-metal solid-state
  • 1.15.Timeline and outlook for Li-ion energy densities
  • 1.16.Turnkey battery design choices - cell form factor and cooling
  • 1.17.Energy density comparison by form factor
  • 1.18.Chemistry choice of turnkey battery packs
  • 1.19.Pack manufacturer revenue estimates
  • 1.20.Growth in European gigafactory announcements
  • 1.21.Growth in manufacturing capacity - Europe, US
  • 1.22.Supply and demand overview
  • 1.23.Electric vehicle Li-ion demand, GWh
  • 1.24.EV Li-ion market, $ billion
  • 1.25.EV anode demand
  • 1.26.Cathode Demand Forecast

2. INTRODUCTION

  • 2.1.Electric Vehicles: Basic Principle
  • 2.2.Electric Vehicle Terms
  • 2.3.Drivetrain Specifications
  • 2.4.Parallel and Series Hybrids: Explained
  • 2.5.Electric Vehicles: Typical Specs
  • 2.6.Lithium-based Battery Family Tree
  • 2.7.Underlying Drivers for Electric Vehicles
  • 2.8.What are the Barriers for Electric Vehicles?
  • 2.9.What are the Barriers for Electric Vehicles?
  • 2.10.Carbon emissions from electric vehicles

3. LI-ION TECHNOLOGY

  • 3.1.What is a Li-ion Battery?
  • 3.2.Why Lithium?
  • 3.3.The Li-ion Supply Chain
  • 3.4.The Battery Trilemma
  • 3.5.Battery wish list
  • 3.6.The Li-ion supply chain
  • 3.7.Comparing cathodes - a high-level overview
  • 3.8.Comparing anodes - a high-level overview
  • 3.9.Cathodes
    • 3.9.1.Cathode recap
    • 3.9.2.Cathode materials - LCO and LFP
    • 3.9.3.Cathode materials - NMC, NCA and LMO
    • 3.9.4.NMC development - from 111 to 811
    • 3.9.5.Volkswagen Power Day
    • 3.9.6.Cost reduction from cell chemistry
    • 3.9.7.High manganese cathodes
    • 3.9.8.High manganese cathodes - LMP, LMFP
    • 3.9.9.High-voltage LNMO
    • 3.9.10.Haldor Topsoe's LNMO
    • 3.9.11.Developments for high-voltage LNMO
    • 3.9.12.High-level performance comparison
    • 3.9.13.High-level performance comparison
    • 3.9.14.Material intensity of NMC, Li-Mn-rich, LNMO
    • 3.9.15.Potential cost reduction from high manganese content
    • 3.9.16.Concluding remarks on high manganese cathodes
    • 3.9.17.LFP for Tesla Model 3
    • 3.9.18.LFP for Tesla Model 3 continued
    • 3.9.19.LFP or NMC comparison
    • 3.9.20.LFP or NMC performance comparison discussed
    • 3.9.21.LFP or NMC
    • 3.9.22.IDTechEx energy density calculations - by cathode
    • 3.9.23.Li-ion cell material cost estimate
    • 3.9.24.Automotive announcements for LFP and NMC
    • 3.9.25.Cathode choice for electric vehicles
    • 3.9.26.Cathode suitability
    • 3.9.27.Cathode outlook - which chemistries will be used? 1
    • 3.9.28.Cathode outlook - which chemistries will be used? 2
    • 3.9.29.Cathode market
    • 3.9.30.EV cathode chemistry market share
    • 3.9.31.EV cathode chemistry shifts
    • 3.9.32.EV Models with NMC 811
    • 3.9.33.Comparing commercial cell chemistries
    • 3.9.34.Cathode chemistry outlook
    • 3.9.35.Cathode Demand Forecast
  • 3.10.Anodes
    • 3.10.1.Anode materials
    • 3.10.2.Introduction to graphite
    • 3.10.3.The promise of silicon
    • 3.10.4.The reality of silicon
    • 3.10.5.How much can silicon improve energy density?
    • 3.10.6.Introduction to lithium titanate oxide (LTO)
    • 3.10.7.Where will LTO play a role?
    • 3.10.8.Increased demand for LTO
    • 3.10.9.LTO for e-buses
    • 3.10.10.EV anode demand
  • 3.11.Cell form factors
    • 3.11.1.Commercial battery packaging technologies
    • 3.11.2.Automotive format choices
    • 3.11.3.Cell formats
    • 3.11.4.Cell formats
    • 3.11.5.Comparison of commercial cell formats
    • 3.11.6.Which cell format to choose?
    • 3.11.7.Passenger Car Market
    • 3.11.8.Increasing BEV battery cell energy density
    • 3.11.9.Increasing EV battery cell specific energy
    • 3.11.10.Other Vehicle Categories

4. ADVANCED LI-ION TECHNOLOGY

  • 4.1.Potential disruptors to Li-ion
  • 4.2.Cell chemistry comparison - quantitative
  • 4.3.Energy storage technology comparison
  • 4.4.Current Li-ion technology for automotive
  • 4.5.What is a solid-state battery?
  • 4.6.Drivers for solid-state and silicon
  • 4.7.Solid-state electrolytes
  • 4.8.Partnerships and investors - solid-state and silicon
  • 4.9.Silicon anodes vs lithium-metal solid-state
  • 4.10.Comparing anodes - a high-level overview
  • 4.11.Silicon anodes or lithium-metal solid-state
  • 4.12.Silicon anodes or lithium-metal solid-state
  • 4.13.Notable players for solid-state EV battery technology
  • 4.14.Notable players for silicon EV battery technology
  • 4.15.Lithium metal with liquid electrolytes
  • 4.16.Solid-state and silicon timeline
  • 4.17.Solid-state - Quantumscape
  • 4.18.Solid-state - Solid Power
  • 4.19.Solid-state - Blue Solutions
  • 4.20.Solid-state - Prologium
  • 4.21.Silicon anodes - Enevate
  • 4.22.Notable developments - Sila Nano
  • 4.23.Automotive solid-state and silicon comparison
  • 4.24.Automotive solid-state and silicon comparison
  • 4.25.Silicon anodes vs lithium-metal solid-state
  • 4.26.Silicon and solid-state concluding remarks
  • 4.27.Multiple sources of improvement to Li-ion
  • 4.28.What role for fuel cells?
  • 4.29.High energy battery chemistry comparison
  • 4.30.The problem with alternative technologies
  • 4.31.Timeline and outlook for Li-ion energy densities
  • 4.32.Concluding remarks

5. LI-ION MODULES AND PACKS

  • 5.1.What makes a battery pack?
  • 5.2.Li-ion Batteries: From Cell to Pack
  • 5.3.Pack design
  • 5.4.Battery KPIs for EVs
  • 5.5.Henkel's Battery Pack Materials
  • 5.6.DuPont's Battery Pack Materials
  • 5.7.Lightweighting Battery Enclosures
  • 5.8.Lightweighting - Voltabox expanded plastic foam
  • 5.9.From Steel to Aluminium
  • 5.10.Latest Composite Battery Enclosures
  • 5.11.Towards Composite Enclosures?
  • 5.12.Continental Structural Plastics - Honeycomb Technology
  • 5.13.Battery Enclosure Materials Summary
  • 5.14.Increasing cell sizes
  • 5.15.Passenger Cars: Cell Energy Density Trends
  • 5.16.Passenger Cars: Pack Energy Density Trends
  • 5.17.General Motors' cell development
  • 5.18.NCMA cathode
  • 5.19.Ultium cell form factors
  • 5.20.Modular pack designs
  • 5.21.Ultium BMS
  • 5.22.Key developments from the Ultium battery
  • 5.23.BYD Blade battery
  • 5.24.BYD battery design
  • 5.25.CATL Cell to Pack
  • 5.26.Cell-to-pack or modular?
  • 5.27.Modular or not?
  • 5.28.High voltage BEVs
  • 5.29.Increasing BEV voltage
  • 5.30.Thermal management of Li-ion batteries
    • 5.30.1.Thermal management for Li-ion batteries
    • 5.30.2.Stages of thermal runaway
    • 5.30.3.Causes of thermal runaway
    • 5.30.4.Fire protection
    • 5.30.5.Active vs passive Cooling
    • 5.30.6.Passive battery cooling methods
    • 5.30.7.Active battery cooling methods
    • 5.30.8.Air cooling - technology appraisal
    • 5.30.9.Liquid cooling - technology appraisal
    • 5.30.10.Liquid cooling - geometries
    • 5.30.11.Refrigerant cooling - technology appraisal
    • 5.30.12.Analysis of battery cooling methods
    • 5.30.13.Material opportunities in and around a battery pack: overview
    • 5.30.14.Thermal management - pack and module overview
    • 5.30.15.Thermal Interface Material (TIM) - pack and module overview
  • 5.31.BMS
    • 5.31.1.Battery management system
    • 5.31.2.Introduction to battery management systems
    • 5.31.3.Fast charging and degradation
    • 5.31.4.Importance of fast charging
    • 5.31.5.Operational limits of LIBs
    • 5.31.6.BMS - STAFL systems
    • 5.31.7.Pulse charging
    • 5.31.8.Cell balancing
    • 5.31.9.Consequences of cell imbalance
    • 5.31.10.Active or passive balancing?
    • 5.31.11.State-of-charge estimation
    • 5.31.12.State-of-health and remaining-useful-life estimation
    • 5.31.13.Titan AES
    • 5.31.14.Value of BMS

6. MODULE AND PACK MANUFACTURERS - BEYOND CARS

  • 6.1.Module and pack manufacturing process
  • 6.2.Module and pack manufacturing
  • 6.3.Non-car battery pack manufacturing
  • 6.4.Differences in design
  • 6.5.Role of battery pack manufacturers
  • 6.6.Metrics to compare pack manufacturers
  • 6.7.Battery pack manufacturers - Europe
  • 6.8.Battery pack manufacturers
  • 6.9.Battery pack manufacturers - North America
  • 6.10.Battery pack manufacturers
  • 6.11.Asian module and pack manufacturers
  • 6.12.Battery pack comparison
  • 6.13.Battery module/pack comparison
  • 6.14.Battery pack/module comparison
  • 6.15.Battery design choices -cell form factor and cooling
  • 6.16.Energy density comparison by form factor
  • 6.17.Energy density comparison by cooling method
  • 6.18.Chemistry choice
  • 6.19.Chemistry and form factors of turnkey solutions
  • 6.20.Pack manufacturer revenue estimates
  • 6.21.Value chain differentiation
  • 6.22.Romeo Power
  • 6.23.Romeo Power thermal management
  • 6.24.Forsee Power
  • 6.25.Forsee Power applications
  • 6.26.Xerotech
  • 6.27.Microvast
  • 6.28.Akasol
  • 6.29.Akasol Energy Density Road Map for Commercial EVs
  • 6.30.Akasol's 'Answer to Solid State'
  • 6.31.Webasto Expanding Production
  • 6.32.EnerDel: battery packs for trucks
  • 6.33.BMZ
  • 6.34.Kore Power
  • 6.35.Proterra
  • 6.36.Electrovaya
  • 6.37.American Battery Solutions
  • 6.38.Leclanche
  • 6.39.Concluding remarks on battery manufacturers

7. CELL MANUFACTURING AND COSTS

  • 7.1.Cell production steps
  • 7.2.Power demand of LIB production
  • 7.3.How Long to Build a Gigafactory?
  • 7.4.Growing public and private investment - Q1 2021
  • 7.5.European gigafactories announced by 2018
  • 7.6.European gigafactories announced to date
  • 7.7.Growth in European gigafactory announcements
  • 7.8.Growth in European cell manufacturing
  • 7.9.Growth in manufacturing capacity - Europe, US
  • 7.10.Li-ion cell and pack price and cost
    • 7.10.1.Li-ion cell material cost estimate
    • 7.10.2.Cathode cost reduction scenarios
    • 7.10.3.Role of silicon and high nickel NMC on cost
    • 7.10.4.Cost reduction strategies
    • 7.10.5.Cost reduction overview
    • 7.10.6.BEV Cell Price Forecast
    • 7.10.7.Electric vehicle Li-ion price forecast

8. LI-ION IN EV SEGMENTS

  • 8.1.Application battery priorities
  • 8.2.Risks for pack manufacturers
  • 8.3.Panasonic and Tesla
  • 8.4.Automotive Format Choices
  • 8.5.Passenger Car Market
  • 8.6.Chinese EV Battery Value Chain
  • 8.7.Other Vehicle Categories
  • 8.8.Drivers and timing of bus electrification
  • 8.9.Snapshot of Global and Regional Sales Trends
  • 8.10.Regional demand forecast for Li-ion in e-buses
  • 8.11.Future role for battery pack manufacturers
  • 8.12.Electric Buses: Market History
  • 8.13.Chemistries used in electric buses
  • 8.14.Chemistries used in electric buses
  • 8.15.E-bus battery suppliers
  • 8.16.Why we need electric CAM vehicles
  • 8.17.Electric CAM examples
  • 8.18.Intralogistics shifting to Li-ion
  • 8.19.Intralogistics Li-ion partnerships
  • 8.20.Li-ion intralogistics chemistries
  • 8.21.Why Electrify Marine?
  • 8.22.Summary of Maritime Sectors
  • 8.23.Leading Maritime Battery Vendor
  • 8.24.Product Line-up
  • 8.25.Electric and Diesel LCV Cost Parity
  • 8.26.Small eVan Break-Even: Purchase Grant
  • 8.27.Regional Li-ion demand forecast for LCVs
  • 8.28.Electric Trucks: Drivers and Barriers
  • 8.29.Range of zero emission medium and heavy trucks
  • 8.30.Regional Li-ion demand for medium and heavy duty trucks
  • 8.31.EV Li-ion demand by region

9. SECOND LIFE EV BATTERIES AND RECYCLING

  • 9.1.Retired electric vehicle batteries can have a second-life before being recycled
  • 9.2.Potential value of second-life batteries
  • 9.3.Main companies involved in battery second use
  • 9.4.Battery second use connects the electric vehicle and battery recycling value chains
  • 9.5.When batteries retire from electric vehicles...
  • 9.6.Redefining the 'end-of-life' of electric vehicle batteries: you live more than once
  • 9.7.What is the 'second-life' of electric vehicle batteries?
  • 9.8.Target markets for second-life batteries
  • 9.9.Drivers for recycling Li-ion batteries
  • 9.10.LIB recycling process overview
  • 9.11.Recycling techniques compared
  • 9.12.Recycling or second life?
  • 9.13.Recycling value by cathode chemistry
  • 9.14.Northvolt's Revolt recycling program
  • 9.15.Volkswagen plans for retired EV batteries
  • 9.16.BMW's strategic partnerships for EV battery recycling
  • 9.17.Renault's circular economy efforts for Li-ion batteries
  • 9.18.Volkswagen's in-house Li-ion battery recycling plant
  • 9.19.4R Energy
  • 9.20.Tesla's 'circular Gigafactory'

10. FORECASTS

  • 10.1.Electric vehicle Li-ion demand, GWh
  • 10.2.EV Li-ion market, $ billion
  • 10.3.EV anode demand
  • 10.4.Cathode Demand Forecast