NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

載人電動飛機:智慧城市和地區2021-2041

Manned Electric Aircraft: Smart City and Regional 2021-2041

出版商 IDTechEx Ltd. 商品編碼 1002639
出版日期 內容資訊 英文 386 Pages
商品交期: 最快1-2個工作天內
價格
載人電動飛機:智慧城市和地區2021-2041 Manned Electric Aircraft: Smart City and Regional 2021-2041
出版日期: 2021年04月27日內容資訊: 英文 386 Pages
簡介

標題
載人電動飛機:智慧城市和地區2021-2041
固定翼飛機,eVTOL(電子垂直起降),eCTOL(常規電動起降),空中出租車,太陽能飛機,BEV(電池電動車),燃料電池飛機,飛機電動機,電推進。

"零排放的飛機預計到2041年將達到304億美元,而今天幾乎沒有。"

該報告是第一個預測未來20年電動飛機的報告,同時反映了確定的300億美元的巨大新市場將如何構成的現實。首先,它涵蓋了多達100名乘客和同等貨機的飛機,探討了大型飛機的電氣化如何融合到2050年。例如,到2041年,零排放飛機市場價值的一半將來自固定翼常規起飛降落eCTOL,一半降落在eVTOL中,但都涉及通用航空和商業應用。在較重的一端,燃料電池和混合動力總成佔有一席之地,這在報告的內容中得到了反映。

報告中約有三分之一專門用於技術,三分之二專門用於項目和飛機。由於它們是2021-2041的關鍵,因此在技術領域特別關注電池,電動機,太陽能和VTOL空氣動力學。但是,您還可以學習動力總成,包括以微型電網和汽車為基準的電壓趨勢。方法是向包括新的智慧城市在內的社會揭示商業機會和收益。機會包括材料,設備和系統的機會。這不是學術性的。將數據與預測進行比較不是歷史以外的事情。

該報告獨特地具有基於IDTechEx博士水平的創新思想和批評,遍佈全球的多語種分析師以及20多年研究該主題和拜訪研究人員的方法,其中包括讓支持者在IDTechEx活動上發表演講。的確,只有IDTechEx可以在電動船和陸地車輛,印刷和柔性電子以及電池化學等相關方面正在發生或將要發生的事情中統統考慮。

只有IDTechEx才對所有這些方面進行深入分析,包括專門針對eVTOL飛機的方面。我們揭示了一項技術的過早部署將很可能導致嚴重事故,並且在未來二十年中,各種機身和動力總成在商業上取得成功的階段將有很大不同。我們發現投資的平衡並不能反映相對的市場機會,並且由於種種原因,人們還沒有完全認識到某些選擇比其他選擇安全得多。基準最佳實踐揭示了許多機會,可以在成本低廉,安全性,多功能性以及當地面支持不可用時提供 "回家" 功能。某些確定的項目一定會失敗。有些潛力遠超出投資者的想像。

執行摘要和結論充滿了容易掌握的新信息報,路線圖和預測。它解釋了通用航空/空中作業GA/AW和商用航空中的零排放飛機。瞭解兩個業務部門如何涉及垂直起降eVTOL飛機和常規固定翼常規起降eCTOL。兩者都涉及在智能城市,貨運和其他任務之間和之間旅行的出租車。將eVTOL多直升機與矢量推力進行比較。我們計算了eVTOL在城市內部和城市間旅行中的可行性,顯示了真正節省時間和成本的成功方法,以及部署後在地下和地下可用的替代方法。

根據飛機類型比較新的重要能量收集選項。請參閱IDTechEx和巨頭的六份路線圖,以及12 IDTechEx的預測第2021-2041條(數字,單位價值,市場價值以及按地理區域,飛機尺寸和動力總成類型進行的預測)。這是IDTechEx對通用航空2021-2041的預測,它根據歷史記錄來計算小型固定翼飛機的壓抑需求。這是對100個項目的射程,爬升,最大起飛重量和射程的分析,揭示了混合動力車在僅電池和eVTOL性能方面的表現。

第2章簡介介紹了稱為More Electric Air MEA和電池vs混合動力飛機的大型飛機的排放,認證,法規,電氣化。它解釋了計劃僅使用電池和長途燃料電池選件的100座支線飛機。請參閱2021-2041信息報,有關 "電推力的快速發展" 和 "實現與常規飛機的成本平價" 。總結了GE,霍尼韋爾,雷神,勞斯萊斯和SAFRAN等巨頭的工作,並解釋了 "分佈式推力" 和太陽能飛機機身的電氣獨特性,它們現在對於提高性能,成本和安全性都變得極為重要。將不同的eVTOL架構與直升機進行了比較。

第3章異常冗長且詳盡。它評估了43個電池式電動固定翼飛機項目,這些項目揭示了技術優勢和錯誤,利用超導性,風湍流和太陽等新技術選擇,兩棲或達到300mph的速度。第4章簡要介紹了eVTOL。第6章揭示了燃料電池飛行器固定翼和eVTOL的機遇與挑戰,並顯示了最新進展和商業案例,相較之下,好壞相提並論。第6章介紹混合動力電動飛機,主要是固定翼,其中包括特殊任務的想像形式。第7、8、9和10章將更詳細地介紹eVTOL技術選項和業務案例,因為它們具有最大的投資和風險,但瞭解卻最少。

報告以所有電動飛機的啟用技術結尾-第11章電池,第12章電動機和第13章Sol ar。

回答的問題包括:

  • 世界上所有電動飛機2021-2041的第一份詳細預測?
  • 與支持者到2041年相比的獨立新路線圖?
  • 鉻的技術和設計itical分析?
  • 在航空航天和其他領域以最佳實踐為基準?
  • 投資與相對機會的匹配程度如何?
  • 如何大大提高安全性,成本和性能?
  • 死胡同是什麼?
  • 哪些公司是好是壞?
  • 在某些方面可以進一步領先的其他行業的經驗教訓是什麼?
  • 什麼是研究渠道?

來自IDTechEx的分析師訪問權限

所有報告購買都包括長達30分鐘的電話諮詢時間,該分析員將與專家分析師聯繫,以幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。需要在購買報告後的三個月內使用。

目錄

1。執行摘要

  • 1.1。本報告目的
  • 1.2。關鍵結論
  • 1.3。零排放空中出租車與出售2021-2041的支線飛機技術的比較
  • 1.4。太陽能選項
  • 1.5。能源獨立的智慧城市及其eCTOL和eVTOL載人飛機
  • 1.6。eVTOL詳細
      < li> 1.6.1。什麼是eVTOL飛機?
    • 1.6.2。eVTOL架構
    • 1.6.3。為什麼選擇eVTOL飛機?
    • 1.6.4。eVTOL起步
    • 1.6.5。關於節省空中出租車時間的結論
    • 1.6.6。在eVTOL上投資的龐大公司 < li> 1.6.7。令人興奮的初創企業吸引大量資金
    • 1.6.8。第一批eVTOL空中出租車何時啟動?
    • 1.6.9。eVTOL作為城市大眾流動性嗎?
    • 1.6.10。eVTOL空中出租車的優勢在哪裡?
    • 1.6.11。自主eVTOL fligh值□
  • 1.7。電池要求和改進
  • 1.8。鋰離子化學快照:2020,2025,2030
  • 1.9。電機/動力總成要求
  • 1.10。複合材料要求
  • 1.11。基礎設施要求
  • 1.12。俄勒ctric飛機路線圖
    • 1.12.1。IDTechEx詳細的載人電動飛機路線圖2021-2041
    • 1.12.2。波音和NASA電動飛機路線圖到2050年
    • 1.12.3。空中客車公司和聯合技術公司 "到2040年將推出更多電動飛機MEA計劃
    • 1.12.4。賽峰電動飛機到2050年的路線圖
    • 1.12.5。西門子電動飛機到2050年的路線圖
  • 1.13。IDTechEx預計的範圍和爬升
  • 1.14。IDTechEx MTOW與範圍預測
  • 1.15。市場預測2021-2041
    • 1.15.1。通用航空全球銷售部門2021-2041
    • 1.15.2。通用航空全球價值市場2021-2041
    • 1.15.3。20PAX編號2021-2041的固定翼CTOL零排放飛機
    • 1.15.4。20PAX單價下的固定翼C TOL零排放飛機2021-2041
    • 1.15.5。價值20億美元的固定翼CTOL零排放飛機20-20億美元市場2021-2041
    • 1.15.6。固定翼CTOL零排放飛機20-100PAX全球編號2021-2041
    • 1.15。7.固定翼CTOL零排放飛機20-100PAX全局單位值2021-2041
    • 1.15.8。固定翼CTOL零排放飛機20-100PAX價值市場2021-2041
    • 1.15.9。eVTOL預測摘要
    • 1.15.10。eVTOL空中出租車銷售預測其2018-2041年
    • 1.15.11。eVTOL航空出租車市場收入預測2018-2041年為十億美元
    • 1.15.12。零排放飛機銷售價值市場的區域份額2021-2041
  • 1.16。歷史統計
    • 1.16.1。GAMA通用航空飛機的銷售和市場規模
    • 1.16.2。通用航空全球市場的GAMA數據
    • 1.16.3。再見航空評估被壓抑的通用航空需求
    • 1.16.4。飛機類型排名前5的通用航空OEM
    • 1.16.5。EA SA eVTOL市場價值預測2035
    • 1.16.6。全球直升機機隊
    • 1.16.7。GAMA通用航空直升機銷售
    • 1.16.8。直升機原始設備製造商

2。簡介

  • 2.1。大型單通道飛機排放量最大
  • 2.2。來自兩端-小型純電動PEV(BEV)和大型電動MEA
  • 2.3。跑步才能走路?
  • 2.4。動力總成選項
  • 2.5。電推力2021-2041的突破
  • 2。6.實現成本平價-小事至上
  • 2.7。法規,法規,認證
  • 2.8。頂級航空製造商的參與
  • 2.9。收入排名前5位的航空航天系統供應商
    • 2.9.1。美國通用電氣
    • 2.9.2。霍尼韋爾
    • 2.9.3。勞斯萊斯英國
    • 2.9.4。美國雷神技術公司
    • 2.9.5。法國賽峰
  • 2.10。分佈式電力推進
  • 2.11。城市空氣流動的夢想
  • 2.12。先進的空氣流動性
  • 2.13。eVTOL應用
  • 2.14。擊敗目前的通用航空飛機
  • 2.15。為什麼直升機對UAM不利
  • 2.16。eVTOL的範圍和耐力極限
  • 2.17。是什麼使eVTOL成為可能?
  • 2.18。eVTOL啟動投資
  • 2.19。材料和能量收集整合
    • 2.19.1。複合材料面臨的主要挑戰
    • 2.19.2。飛機的能量收集選項:更多選擇
  • 2.20。翻新
  • 2.21。基礎架構和運輸集成

3。電池電動固定翼飛機

  • 3.1。概述
  • 3.2。美國再見航空
  • 3.3。歐洲空中客車公司
  • 3.4。Ampaire Tailwind美國
  • 3.5。挪威赤道飛機
  • 3.6。Aura Aero法國
  • 3。7.以色列航空飛機
  • 3.8。H55瑞士
  • 3.9。瑞典心臟航空航天公司
  • 3.10。美國Luminati航空航天
  • 3.11。美國宇航局
    • 3.11.1。需求研究
    • 3.11.2。分佈推力:X57 Maxwell
    • 3.11.3。低溫氫燃料電池
  • 3.12。PC-Aero/Elektra Solar/SolarStratos德國瑞士
  • 3.13。Pipistrel斯洛文尼亞
  • 3.14。雷神聯合技術公司X-Plane USA
  • 3.15。勞斯萊斯(Rolls Royce),德南(Tecnam),懷德羅(Wideroe)-P Volt UK,挪威
  • 3.16。勞斯萊斯ACCEL和其他英國項目
  • 3.17。美國太陽能飛行
  • 3.18。美國萊特電氣
  • 3.19。其他

4。電池電動EVTOL飛機

  • 4.1。歐洲空中客車公司
  • 4.2。美國射手航空
  • 4.3。貝爾·泰瑟(Bell Textr)談美國
  • 4.4。美國BETA Technologies
  • 4.5。波音PAV中級固定翼/VTOL美國
  • 4.6。億航中國
  • 4.7。巴西航空工業公司:Eve(EmbraerX)巴西
  • 4.8。現代:S-A1韓國
  • 4.9。Jaunt航空出行:Journey Air Taxi USA
  • 4.10。美國喬比航空
  • 4.11。百合屬德國
  • 4.12。穆格:SureFly USA
  • 4.13。SkyDrive:SD-XX日本
  • 4.14。直升機德國

5。燃料電池電動飛機

  • 5.1。概述
  • 5.2。空中客車燃料電池艙
  • 5。3.過去的燃料電池項目
  • 5.4。質子交換膜PEM燃料電池
  • 5.5。ZeroAvia英國
  • 5.6。NASA低溫
  • 5.7。蘭格研究德國
  • 5.8。燃料電池eVTOL
  • 5.9。PEM eVTOL的結論

6。混合動力飛機

  • 6.1。概述
  • 6.2。勞斯萊斯混合動力總成英國
  • 6.3。混合動力飛機
    • 6.3.1。eSAT "德國靜音航空出租車
    • 6.3.2。Faradair BEHA英國
    • 6.3.3。法國VoltAero

7。行程使用情況和優化:EVTOL在哪裡有優勢

  • 7.1。eVTOL出租車會減少旅途時間嗎?
  • 7.2。eVTOL Multicopter vs Robotaxi:10公里路程
  • 7.3。eVTOL vs Robotaxi:示例10公里旅程
  • 7.4。eVTOL多直升機vs Robotaxi:40公里的旅程
  • 7.5。eVTOL vs Robotaxi:40公里旅程示例
  • 7.6。Multicopter eVTOL VS Robotaxi:100公里路程
  • 7.7。矢量推力eVTOL VS Robotaxi:100公里路程
  • 7.8。eVTOL vs Robotaxi:示例100公里旅程 7.9。航空出租車時間優勢的重要因素
  • 7.10。節省空中出租車時間的結論

8。IDTECHEX EVTOL成本分析

  • 8.1。TCO分析:eVTOL Taxi $/50km行程(基本案例)
  • 8.2。eVTOL vs直升機運營成本
  • 8.3。eVTOL飛機的前期成本
  • 8.4。節省eVTOL的運營燃料成本
  • 8.5。自主飛行的價值
  • 8.6。TCO vs直升機Uber Air $/英里
  • 8.7。對電池成本和性能的敏感性
  • 8.8。對前期/基礎設施成本的敏感性
  • 8.9。對平均行程長度的敏感性
  • 8.10。TCO分析:$/15公里旅程:多直升機eVTOL設計
  • 8.11。TCO $/15km自主行程:多直升機vs基本案例

9。EVTOL體系結構

  • 9.1。世界eVTOL飛機目錄
  • 9.2。eVTOL項目的地理分佈
  • 9.3。關鍵參與者:eVTOL空中出租車
  • 9.4。主要eVTOL架構
  • 9.5。eVTOL架構選擇
  • 9.6。eVTOL多旋翼/旋翼飛機
  • 9.7。多直升機:飛行模式
  • 9.8。多旋翼機/旋翼機:主要玩家規格
  • 9.9。多旋翼飛機的優點/缺點
  • 9.10。eVTOL升降機+巡航
  • 9.11。升降機+巡航:飛行模式
  • 9.12。升降機+巡航:主要參與者規格
  • 9.13。升降機+遊輪的好處/缺點
  • 9.14。矢量推力eVTOL
  • 9.15。矢量推力:飛行模式
  • 9.16。eVTOL矢量推力:傾斜翼
  • 9.17。Tiltwing:關鍵播放器規格
  • 9.18。傾斜翼的優點/缺點
  • 9.19。eVTOL矢量推力:傾轉器
  • 9.20。Tiltrotor:關鍵播放器規格
  • 9.21。傾轉器的優點/缺點
  • 9.22。第一批eVTOL空中出租車何時啟動?
  • 9.23。載人航空出租車eVTOL測試航班
  • 9.24。無人駕駛出租車eVTOL模型測試飛行
  • 9.25。航程和巡航速度:電動eVTOL設計
  • 9.26。懸停提升效率和圓盤加載
  • 9.27。eVTOL架構的懸停和巡航效率
  • 9.28。比較lexity,危害性及巡航性能
  • 9.29。eVTOL架構比較

10。支持EVTOL開發的計劃

  • 10.1。Uber Elevate-Joby Aviation
  • 10.2。推動空中出租車的發展:Uber提升
  • 10.3 。Uber Elevate:戰略性OEM車輛合作夥伴關係
  • 10.4。優步飛行器要求
  • 10.5。優步航空任務簡介
  • 10.6。美國空軍eVTOL支持-Agility Prime
  • 10.7。美國空軍-敏捷總理
  • 10.8。敏捷總理:先進的空氣流動性生態系統
  • 10.9。NASA:全國先進航空交通運動
  • 10.10。Groupe ADP eVTOL測試區域
  • 10.11。中國無人駕駛航空區
  • 10.12。英國的未來飛行挑戰
  • 10.13。Varon Vehicles:美國拉丁美洲的UAM

11。電動飛機電池

  • 11.1。概述
  • 11.2。什麼是鋰離子電池?
  • 11.3。電化學定義
  • 11.4。電池困境
  • 11.5。eVTOL的電池願望清單
  • 1 1.6。超過一種類型的鋰離子電池
  • 11.7。eVTOL電池要求
  • 11.8。空客最低電池要求
  • 11.9。eVTOL電池範圍計算
  • 11.10。航空電池組尺寸
  • 11.11。電池組能量密度的重要性
  • 11.12。eVTOL提升/拖動到範圍的重要性
  • 11.13。Uber Air建議的電池要求
  • 11.14。電池容量
  • 11.15。電池組:不僅僅是電池
  • 11.16。卸下電池模塊
  • 11.17。eVTO L電池:比能量與放電率
  • 11.18。電池500
  • 11.19。E-One Moli Energy Corp.
  • 11.20。電力系統(EPS):鋰離子電池
  • 11.21。電力系統(EPS)
  • 11.22。Amprius Inc:矽陽極
  • 11.23。勒克蘭奇能源密度目標
  • 11.24。從鋰離子繼續前進?
  • 11.25。鋰離子電池以外的鋰電池
  • 11.26。鋰離子化學快照:2020,2025,2030
  • 11.27。鋰硫電池(Li-S)
  • 11.28。LSB的優勢
  • 11.29。鋰硫能量密度
  • 11.30。OXIS Energy:鋰硫電池
  • 11.31。鋰金屬和固態電池(SSB)
  • 11.32。固體能源系統-固態電池
  • 11.33。Sion Power Corporation:鋰金屬電池
  • 11.34。Cuberg:鋰金屬電池
  • 11.35。eVTOL的電池化學比較
  • 11.36。電池快速充電
  • 11.37。電池交換
  • 11.38。分佈式電池模塊
  • 11.39。eVTOL電池成本
  • 11.40。eVTOL電池的開發重點

12。所需的電動機

  • 12.1。eVTOL電機/動力總成要求
  • 12.2。eVTOL飛機電機功率調整
  • 12.3。eVTOL功率要求:千瓦估算
  • 12.4。eVT OL功率要求
  • 12.5。eVTOL功率要求:千瓦估算
  • 12.6。電動機和分佈式電力推進
  • 12.7。eVTOL電動機數量
  • 12.8。電機定徑
  • 12.9。電動機設計
  • 12.10。比較電動機結構和案情阿里森
  • 12.11。無刷直流電動機(BLDC)
  • 12.12。BLDC電機:優勢與劣勢
  • 12.13。BLDC:基準化
  • 12.14。永磁同步電動機(PMSM)
  • 12.15。PMSM:優點,Disad的有利點
  • 12.16。PMSM:基準化
  • 12.17。軸向磁通電動機
  • 12.18。為什麼在eVTOL中使用軸向磁通電機?
  • 12.19。軛或無軛軸向通量
  • 12.20。軸向磁通電動機-有趣的玩家
  • 12.21。的軸向磁通電機球員名單小號
  • 12.22。亞薩
  • 12.23。勞斯萊斯/西門子
  • 12.24。埃瑪克斯
  • 12.25。電子推進
  • 12.26。H3X
  • 12.27。麥加
  • 12.28。馬格尼克斯
  • 12.29。美高梅
  • 12.30。賽峰
  • 12.31。實例探究

13。太陽能飛機的機會

  • 13.1。向太陽能無人機學習
  • 13.2。膠體量子點噴塗在太陽能上
  • 13.3。多模式能量收集
  • 13.4。現在和將來的航空器收割技術
  • 13.5。機械與電能無關的車輛
  • 13.6。電動汽車的系統
  • 13.7。節能正型大型車輛
  • 13.8。太陽能汽車取代柴油發電機組
目錄
Product Code: ISBN 9781913899431

Title:
Manned Electric Aircraft: Smart City and Regional 2021-2041
Fixed wing aircraft, eVTOL (electric vertical takeoff and landing), eCTOL (electric conventional take-off and landing), air taxis, solar planes, BEVs (battery electric vehicles), fuel cell aircraft, electric motors for aircraft, electric propulsion.

"Expect $30.4 billion 2041 for zero-emission aircraft from almost nothing today."

This report is the first to forecast electric aircraft for 20 years ahead, while reflecting the realities of how the huge new $30 billion market that is identified will be structured. Primarily, it covers aircraft up to 100 passengers and equivalent freighters, touching on how electrification of larger aircraft converges with these to 2050. For example, 2041 will see about half of the zero-emission aircraft market value being in fixed-wing conventional takeoff and landing eCTOL and half in eVTOL but both involving General Aviation and Commercial applications. At the heavier end, fuel cell and hybrid powertrains have a place and that is reflected in the coverage of the report.

About one third of the report is dedicated to the technology and two thirds to the projects and aircraft. Because they are key 2021-2041, particular attention is given to batteries, motors, solar and VTOL aerodynamics in the technology sections. However, you can also learn powertrains including voltage trends benchmarked against minigrids and cars. The approach is to reveal commercial opportunities and benefits to society including the new smart cities. The opportunities include those for materials, devices and systems. It is not academic. It is not historical beyond data to compare with forecasts.

Uniquely the report has creative ideas and criticism based on the IDTechEx PhD level, multilingual analysts worldwide and over 20 years of studying the subject and visiting the researchers, including having the proponents speak at IDTechEx events. Indeed, only IDTechEx can put it all in the context of what is happening and about to happen in relevant aspects like electric boats and land vehicles, printed and flexible electronics and battery chemistry generally.

Only IDTechEx has drill down reports on all these aspects including one specifically on eVTOL aircraft. We reveal how premature deployment of one technology will probably result in a serious accident and how the phasing of commercial success with the various airframes and powertrains will be very different over the coming twenty years. We find that the balance of investment does not reflect the relative market opportunities and it is not fully acknowledged how some options are far safer than others for a variety of reasons. Benchmarking best practice reveals many opportunities to improve cost, safety, multifunctionality and even provide get-you-home features when ground support is unavailable. Some identified projects are guaranteed to fail. Some have far greater potential than investors realise.

The Executive Summary and Conclusions is full of new infograms, roadmaps and forecasts, easily grasped. It explains zero-emission aircraft in general aviation/ aerial work GA/AW and in commercial aviation. See how both business sectors involve vertical takeoff and landing eVTOL aircraft and conventional fixed-wing conventional takeoff and landing eCTOL. Both involve air taxis travelling in and between smart cities, freight and other missions. eVTOL multicopters are compared with vectored thrust. We calculate the viability of eVTOL for inside cities and for city-to-city travel showing what will succeed in genuinely saving time and cost against what alternatives will be available on and underground when they deploy.

Newly important energy harvesting options are compared by type of aircraft. See six roadmaps from IDTechEx and the giants and 12 IDTechEx forecasts 2021-2041 (numbers, unit value, market value and forecasts by geographic area, aircraft size and powertrain type). Here is the IDTechEx forecast of general aviation 2021-2041, calculating pent-up demand for small fixed-wing aircraft based on historic graphs. Here is analysis of 100 projects in range vs climb and maximum takeoff weight vs range revealing what hybrids achieve vs battery-only and eVTOL performance.

Chapter 2 Introduction introduces emissions, certification, regulation, electrification of large aircraft called More Electric Aircraft MEA and battery vs hybrid aircraft. It explains planned 100 seat regional aircraft on batteries alone and long-distance fuel-cell options. See 2021-2041 infograms on "Radical advances in electric thrust" and "Achieving cost parity with conventional aircraft". Work at the giants GE, Honeywell, Raytheon, Rolls Royce and SAFRAN is summarized and the electric uniques of "distributed thrust" and solar airframes are explained, both now becoming extremely important for improving performance, cost and safety. Different eVTOL architectures are compared with helicopters.

Chapter 3 is exceptionally long and detailed. It appraises 43 battery-electric fixed-wing aircraft projects revealing technical excellence and mistakes, new technology options such as harnessing superconductivity, wind turbulence and sun, amphibious or achieving 300mph speed. Chapter 4 more briefly does the same for eVTOL. Chapter 6 reveals the opportunity and challenge for fuel cell aircraft fixed wing and eVTOL, showing latest progress and business cases, good compared to bad. Chapter 6 is on hybrid electric aircraft, mainly fixed-wing including imaginative forms for special tasks. Chapters 7,8,9 and 10 cover more detail on eVTOL technology options and business cases because these have the biggest investment and risk yet the least understanding.

The report ends with enabling technologies for all electric aircraft - Chapter 11 Batteries, Chapter 12 Motors and Chapter 13 Solar.

Questions answered include:

  • World's first detailed forecasts for all electric aircraft 2021-2041?
  • Independent new roadmaps compared to those from proponents to 2041?
  • Critical analysis of technologies and designs?
  • Benchmarking against best practice in aerospace and elsewhere?
  • How is the investment poorly matched against the relative opportunities?
  • How can safety, cost and performance be greatly improved?
  • What are the dead ends?
  • Which companies are good bad or indifferent?
  • What are the lessons from other industries that are further ahead in some respects?
  • What is the research pipeline?

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Purpose of this report
  • 1.2. Key conclusions
  • 1.3. Comparison of zero-emission air taxis and regional aircraft technologies selling 2021-2041
  • 1.4. The solar option
  • 1.5. Energy independent smart cities and their eCTOL and eVTOL manned aircraft
  • 1.6. eVTOL in detail
    • 1.6.1. What is an eVTOL aircraft?
    • 1.6.2. eVTOL Architectures
    • 1.6.3. Why eVTOL Aircraft?
    • 1.6.4. eVTOL getting off the ground
    • 1.6.5. Conclusions on air taxi time saving
    • 1.6.6. Huge companies investing in eVTOL
    • 1.6.7. Exciting start-ups attracting large funding
    • 1.6.8. When will the first eVTOL air taxis launch?
    • 1.6.9. eVTOL as urban mass mobility?
    • 1.6.10. Where is eVTOL air taxi advantage?
    • 1.6.11. Value of autonomous eVTOL flight
  • 1.7. Battery requirements and improvement
  • 1.8. Li-ion Chemistry Snapshot: 2020, 2025, 2030
  • 1.9. Motor / powertrain requirements
  • 1.10. Composite material requirements
  • 1.11. Infrastructure requirements
  • 1.12. Electric aircraft roadmaps
    • 1.12.1. IDTechEx detailed manned electric aircraft roadmap 2021-2041
    • 1.12.2. Boeing and NASA electric aircraft roadmaps to 2050
    • 1.12.3. Airbus and United Technologies "More Electric Aircraft MEA roadmap to 2040
    • 1.12.4. Safran electric aircraft roadmap to 2050
    • 1.12.5. Siemens electric aircraft roadmap to 2050
  • 1.13. IDTechEx projected range and climb
  • 1.14. IDTechEx MTOW vs range projection
  • 1.15. Market forecasts 2021-2041
    • 1.15.1. General aviation global sales units 2021-2041
    • 1.15.2. General aviation global value market 2021-2041
    • 1.15.3. Fixed-wing CTOL zero-emission aircraft under 20PAX number 2021-2041
    • 1.15.4. Fixed-wing CTOL zero-emission aircraft under 20PAX unit price 2021-2041
    • 1.15.5. Fixed-wing CTOL zero-emission aircraft under 20PAX $bn value market 2021-2041
    • 1.15.6. Fixed wing CTOL zero-emission aircraft 20-100PAX global number 2021-2041
    • 1.15.7. Fixed wing CTOL zero-emission aircraft 20-100PAX global unit value 2021-2041
    • 1.15.8. Fixed wing CTOL zero emission aircraft 20-100PAX value market 2021-2041
    • 1.15.9. eVTOL Forecast Summary
    • 1.15.10. eVTOL air taxi sales forecast units 2018-2041
    • 1.15.11. eVTOL air taxi market revenue forecast $ billion 2018-2041
    • 1.15.12. Regional share of zero emission aircraft sales value market 2021-2041
  • 1.16. Historical statistics
    • 1.16.1. GAMA General Aviation aircraft sales and market Size
    • 1.16.2. GAMA data for General Aviation global market
    • 1.16.3. Bye Aerospace appraisal of pent-up general aviation demand
    • 1.16.4. Top 5 General Aviation OEMs By Airplane Type
    • 1.16.5. EASA eVTOL market value estimates 2035
    • 1.16.6. Worldwide helicopter fleet
    • 1.16.7. GAMA General Aviation helicopter sales
    • 1.16.8. Helicopter OEMs

2. INTRODUCTION

  • 2.1. Large single aisle aircraft offer the largest emission gains
  • 2.2. Coming from both ends - small pure electric PEV (BEV) and large more-electric MEA
  • 2.3. Run before you can walk?
  • 2.4. Powertrain options
  • 2.5. Radical advances in electric thrust 2021-2041
  • 2.6. Achieving cost parity - small comes first
  • 2.7. Regulation, legislation, certification
  • 2.8. Involvement of top aerospace manufacturers
  • 2.9. Top 5 aerospace system suppliers by revenue
    • 2.9.1. General Electric USA
    • 2.9.2. Honeywell
    • 2.9.3. Rolls-Royce UK
    • 2.9.4. Raytheon Technologies Corp. USA
    • 2.9.5. SAFRAN France
  • 2.10. Distributed Electric Propulsion
  • 2.11. The Dream of Urban Air Mobility
  • 2.12. Advanced Air Mobility
  • 2.13. eVTOL Applications
  • 2.14. Beating current general aviation aircraft
  • 2.15. Why helicopters are poor for UAM
  • 2.16. Range and Endurance Limitations of eVTOL
  • 2.17. What is making eVTOL possible?
  • 2.18. eVTOL Start-Up Investment
  • 2.19. Materials and energy harvesting integration
    • 2.19.1. Key Challenges for Composites
    • 2.19.2. Energy harvesting options for aircraft: widening choice
  • 2.20. Retrofit
  • 2.21. Infrastructure and transport integration

3. BATTERY ELECTRIC FIXED WING AIRCRAFT

  • 3.1. Overview
  • 3.2. Bye Aerospace USA
  • 3.3. Airbus Europe
  • 3.4. Ampaire Tailwind USA
  • 3.5. Equator Aircraft Norway
  • 3.6. Aura Aero France
  • 3.7. Eviation Aircraft Israel
  • 3.8. H55 Switzerland
  • 3.9. Heart Aerospace Sweden
  • 3.10. Luminati Aerospace USA
  • 3.11. NASA
    • 3.11.1. Requirement study
    • 3.11.2. Distributed thrust: X57 Maxwell
    • 3.11.3. Cryogenic hydrogen fuel cell
  • 3.12. PC-Aero / Elektra Solar/ SolarStratos Germany Switzerland
  • 3.13. Pipistrel Slovenia
  • 3.14. Raytheon United Technologies X-Plane USA
  • 3.15. Rolls Royce, Tecnam, Wideroe - P Volt UK, Norway
  • 3.16. Rolls Royce ACCEL and other projects UK
  • 3.17. Solar Flight USA
  • 3.18. Wright Electric USA
  • 3.19. Others

4. BATTERY ELECTRIC EVTOL AIRCRAFT

  • 4.1. Airbus Europe
  • 4.2. Archer Aviation USA
  • 4.3. Bell Textron USA
  • 4.4. BETA Technologies USA
  • 4.5. Boeing PAV intermediate fixed wing/ VTOL USA
  • 4.6. EHang China
  • 4.7. Embraer: Eve (EmbraerX) Brazil
  • 4.8. Hyundai: S-A1 Korea
  • 4.9. Jaunt Air Mobility: Journey Air Taxi USA
  • 4.10. Joby Aviation USA
  • 4.11. Lilium Germany
  • 4.12. Moog: SureFly USA
  • 4.13. SkyDrive: SD-XX Japan
  • 4.14. Volocopter Germany

5. FUEL CELL ELECTRIC AIRCRAFT

  • 5.1. Overview
  • 5.2. Airbus fuel cell pods
  • 5.3. Fuel cell projects of the past
  • 5.4. Proton Exchange Membrane PEM fuel cells
  • 5.5. ZeroAvia UK
  • 5.6. NASA cryogenic
  • 5.7. Lange Research Germany
  • 5.8. Fuel Cell eVTOL
  • 5.9. Conclusions for PEM eVTOL

6. HYBRID ELECTRIC AIRCRAFT

  • 6.1. Overview
  • 6.2. Rolls Royce hybrid powertrains UK
  • 6.3. Hybrid aircraft
    • 6.3.1. eSAT "Silent Air Taxi Germany
    • 6.3.2. Faradair BEHA UK
    • 6.3.3. VoltAero France

7. JOURNEY USE-CASES & OPTIMIZATION: WHERE EVTOL HAS AN ADVANTAGE

  • 7.1. Will eVTOL Taxis Reduce Journey Time?
  • 7.2. eVTOL Multicopter vs Robotaxi: 10km Journey
  • 7.3. eVTOL vs Robotaxi: Example 10km Journey
  • 7.4. eVTOL Multicopter vs Robotaxi: 40km Journey
  • 7.5. eVTOL vs Robotaxi: Example 40km Journey
  • 7.6. Multicopter eVTOL vs Robotaxi: 100km Journey
  • 7.7. Vectored Thrust eVTOL vs Robotaxi: 100km Journey
  • 7.8. eVTOL vs Robotaxi: Example 100km Journey
  • 7.9. Important Factors for an Air Taxi Time Advantage
  • 7.10. Conclusions on Air Taxi Time Saving

8. IDTECHEX EVTOL COST ANALYSIS

  • 8.1. TCO Analysis: eVTOL Taxi $/50km Trip (Base Case)
  • 8.2. eVTOL vs Helicopter Operating Cost
  • 8.3. eVTOL Aircraft Upfront Cost
  • 8.4. eVTOL Operational Fuel Cost Savings
  • 8.5. The Value of Autonomous Flight
  • 8.6. TCO vs Helicopters Uber Air $/mile
  • 8.7. Sensitivity to Battery Cost and Performance
  • 8.8. Sensitivity to Upfront / Infrastructure Cost
  • 8.9. Sensitivity to Average Trip Length
  • 8.10. TCO Analysis: $/15km Trip: Multicopter eVTOL Design
  • 8.11. TCO $/15km Autonomous Trip: Multicopter vs Base case

9. EVTOL ARCHITECTURES

  • 9.1. World eVTOL Aircraft Directory
  • 9.2. Geographical Distribution of eVTOL Projects
  • 9.3. Key Players: eVTOL Air Taxi
  • 9.4. Main eVTOL Architectures
  • 9.5. eVTOL Architecture Choice
  • 9.6. eVTOL Multicopter / Rotorcraft
  • 9.7. Multicopter: Flight Modes
  • 9.8. Multicopter / Rotorcraft: Key Players Specifications
  • 9.9. Benefits / Drawbacks of Multicopters
  • 9.10. eVTOL Lift + Cruise
  • 9.11. Lift + Cruise: Flight Modes
  • 9.12. Lift + Cruise: Key Players Specifications
  • 9.13. Benefits / Drawbacks of Lift + Cruise
  • 9.14. Vectored Thrust eVTOL
  • 9.15. Vectored Thrust: Flight Modes
  • 9.16. eVTOL Vectored Thrust: Tiltwing
  • 9.17. Tiltwing: Key Player Specifications
  • 9.18. Benefits / Drawbacks of Tiltwing
  • 9.19. eVTOL Vectored Thrust: Tiltrotor
  • 9.20. Tiltrotor: Key Player Specifications
  • 9.21. Benefits / Drawbacks of Tiltrotor
  • 9.22. When will the First eVTOL Air Taxis Launch?
  • 9.23. Manned Air Taxi eVTOL Test Flights
  • 9.24. Unmanned Air Taxi eVTOL Model Test Flights
  • 9.25. Range and Cruise Speed: Electric eVTOL Designs
  • 9.26. Hover Lift Efficiency and Disc Loading
  • 9.27. Hover and Cruise Efficiency by eVTOL Architecture
  • 9.28. Complexity, Criticality & Cruise Performance
  • 9.29. Comparison of eVTOL Architectures

10. PROGRAMS SUPPORTING EVTOL DEVELOPMENT

  • 10.1. Uber Elevate - Joby Aviation
  • 10.2. Driving Air Taxi Progress: Uber Elevate
  • 10.3. Uber Elevate: Strategic OEM Vehicle Partnerships
  • 10.4. Uber Air Vehicle Requirements
  • 10.5. Uber Air Mission Profile
  • 10.6. U.S. Airforce eVTOL Support - Agility Prime
  • 10.7. US Airforce - Agility Prime
  • 10.8. Agility Prime: Advance Air Mobility Ecosystem
  • 10.9. NASA: Advanced Air Mobility National Campaign
  • 10.10. Groupe ADP eVTOL Test Area
  • 10.11. China's Unmanned Civil Aviation Zones
  • 10.12. UK's Future Flight Challenge
  • 10.13. Varon Vehicles: UAM in Latin America

11. BATTERIES FOR ELECTRIC AIRCRAFT

  • 11.1. Overview
  • 11.2. What is a Li-ion Battery?
  • 11.3. Electrochemistry Definitions
  • 11.4. The Battery Trilemma
  • 11.5. Battery Wish List for an eVTOL
  • 11.6. More Than One Type of Li-ion Battery
  • 11.7. eVTOL Battery Requirements
  • 11.8. Airbus Minimum Battery Requirement
  • 11.9. eVTOL Battery Range Calculation
  • 11.10. Aerospace Battery Pack Sizing
  • 11.11. Importance of Battery Pack Energy Density
  • 11.12. Importance of eVTOL Lift/Drag to Range
  • 11.13. Uber Air Proposed Battery Requirements
  • 11.14. Battery Size
  • 11.15. Batteries Packs: More than Just Cells
  • 11.16. Eliminating the Battery Module
  • 11.17. eVTOL Batteries: Specific Energy Vs Discharge Rates
  • 11.18. Battery500
  • 11.19. E-One Moli Energy Corp.
  • 11.20. Electric Power Systems (EPS): Li-ion Batteries
  • 11.21. Electric Power Systems (EPS)
  • 11.22. Amprius Inc: Silicon Anode
  • 11.23. Leclanche Energy Density Targets
  • 11.24. Moving on from Li-ion?
  • 11.25. Lithium-based Batteries Beyond Li-ion
  • 11.26. Li-ion Chemistry Snapshot: 2020, 2025, 2030
  • 11.27. Lithium-Sulfur Batteries (Li-S)
  • 11.28. Advantages of LSBs
  • 11.29. Li-sulfur energy density
  • 11.30. OXIS Energy: Lithium-Sulfur Batteries
  • 11.31. Lithium-Metal and Solid-State Batteries (SSB)
  • 11.32. Solid Energy Systems - Solid State Batteries
  • 11.33. Sion Power Corporation: Lithium-Metal Battery
  • 11.34. Cuberg: Lithium-Metal Batteries
  • 11.35. Battery Chemistry Comparison for eVTOL
  • 11.36. Battery Fast Charging
  • 11.37. Battery Swapping
  • 11.38. Distributed Battery Modules
  • 11.39. eVTOL Battery Cost
  • 11.40. Development Focus for eVTOL Batteries

12. ELECTRIC MOTORS NEEDED

  • 12.1. eVTOL Motor / Powertrain Requirements
  • 12.2. eVTOL Aircraft Motor Power Sizing
  • 12.3. eVTOL Power Requirement: kW Estimate
  • 12.4. eVTOL Power Requirement
  • 12.5. eVTOL Power Requirement: kW Estimate
  • 12.6. Electric Motors and Distributed Electric Propulsion
  • 12.7. eVTOL Number of Electric Motors
  • 12.8. Motor Sizing
  • 12.9. Electric Motors Designs
  • 12.10. Comparison of Motor Construction and Merits
  • 12.11. Brushless DC Motors (BLDC)
  • 12.12. BLDC Motors: Advantages, Disadvantages
  • 12.13. BLDC: Benchmarking
  • 12.14. Permanent Magnet Synchronous Motors (PMSM)
  • 12.15. PMSM: Advantages, Disadvantages
  • 12.16. PMSM: Benchmarking
  • 12.17. Axial Flux Motors
  • 12.18. Why Axial Flux Motors in eVTOL?
  • 12.19. Yoked or Yokeless Axial Flux
  • 12.20. Axial Flux Motors - Interesting Players
  • 12.21. List of Axial Flux Motor Players
  • 12.22. YASA
  • 12.23. Rolls-Royce / Siemens
  • 12.24. EMRAX
  • 12.25. ePropelled
  • 12.26. H3X
  • 12.27. MAGicALL
  • 12.28. Magnix
  • 12.29. MGM COMPRO
  • 12.30. SAFRAN
  • 12.31. Case-studies

13. SOLAR MANNED AIRCRAFT OPPORTUNITY

  • 13.1. Learning from solar drones
  • 13.2. Colloidal quantum dot spray on solar
  • 13.3. Multi-mode energy harvesting
  • 13.4. Harvesting technologies now and in future for air vehicles
  • 13.5. Mechanical with electrical energy independent vehicles
  • 13.6. Systems for EIEVs
  • 13.7. Energy positive large vehicles
  • 13.8. Solar vehicles replace diesel gensets