表紙
市場調查報告書
商品編碼
1002638

熱界面材料2021-2031:技術,市場和機會

Thermal Interface Materials 2021-2031: Technologies, Markets and Opportunities

出版日期: | 出版商: IDTechEx Ltd. | 英文 383 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
熱界面材料2021-2031年:技術,市場和機遇
5G,電動汽車,數據中心,LED和消費類電子產品的材料需求,基準,市場趨勢和驅動因素]。

"到2031年,對TIM的新興需求將超過870,000噸。"

熱界面材料(TIM)是眾多電子和能量存儲設備中的關鍵組件。本質上,如果產生熱量並且需要將熱量轉移(例如,轉移到散熱器),則通常需要TIM。TIM的形式和組成在不同的應用和市場之間差異很大,大多數大型材料供應商也製造TIM。有幾個行業開始出現,並且/或者更多地關注熱管理和對TIM的需求,從而開闢了新的和巨大的潛在市場。

IDTechEx的這份新報告考慮了TIM的形式和組成,基準商業產品,並詳細介紹了新的先進材料。它還分析了新興市場中TIM的當前應用以及這些領域的關鍵驅動器和要求,例如電動汽車電池,數據中心,LED,4G和5G基礎設施,智能手機,平板電腦和筆記本電腦。此外,就應用領域和噸位而言□□,每個細分市場都給出了10年的細化市場預測。下面我們簡要討論下一個十年TIM的兩個最令人興奮的市場。

許多新興行業都需要TIM,並將影響需求格局。資料來源:熱界面材料2021-2031

電動汽車電池

毫無疑問,電動汽車(EV)是交通運輸的未來。儘管COVID-19對整個汽車行業產生了影響,但電動汽車市場在2020年仍繼續增長。電動汽車市場不僅將在未來10年內快速增長,而且在此範圍內,趨勢是朝著更高的能量密度,更快的充電,更長的使用壽命和防火安全性邁進,所有這些都需要有效的熱管理和材料來支持。 。對於具有多種電池格式,熱管理策略和電池組設計的電動汽車的電池設計,尚未達成共識,每一種都會影響TIM的數量和利用率。IDTechEx對電動汽車電池的設計進行了廣泛的研究,其綜合模型數據庫涵蓋了不同電池格式,能量密度等的市場份額。在這份報告中,我們將介紹在多個汽車細分市場(轎車,客車,卡車,麵包車和兩輪車)電動車電池,TIM的汽車拆解需求u tilisation,向特定TIM格式趨勢和驅動因素的分析。

有許多電動汽車細分市場,所有這些都在不斷增長,隨之而來的是對TIM的需求。資料來源:熱界面材料2021-2031。

5G基礎設施和智能手機

眾所周知,5G是接替4G/LTE的下一代電信網絡。5G承諾極低的延遲提供極高的下載和上傳速率。這些功能具有實現各種奇妙應用的潛力,例如自動駕駛汽車,虛擬/增強現實和其他物聯網技術。迄今為止,大多數5G網絡都在6 GHz以下頻段,但是mmWave網絡是有潛力實現上述成就的網絡。毫米波網絡也帶來了挑戰,信號傳播很差並且很容易被阻塞,這導致在密集網絡中使用許多小型小區來創建必要的覆蓋範圍。這些小型電池還更加緊湊,從而導致電子組件的密度更高,從而帶來了散熱難題。歷史悠久的空調不適用於這些緊湊且頻繁使用的毫米波天線,因此,對於高性能TIM的需求將不斷增加,以實現有效的被動熱管理。

智能手機也面臨著5G的挑戰;在如此緊湊的封裝中,新一代5G芯片和多5G天線的散熱問題面臨著巨大的挑戰,因為許多製造商提高了TIM的利用率,並將其與諸如蒸氣室之類的選件相結合。

5G基礎架構和智能手機中對TIM的需求不斷增加,加上龐大的部署和銷售數據,導致TIM的市場很大。本報告重點介紹並討論了圍繞5G基礎架構和智能手機的散熱挑戰,拆解或用例形式的當前設計解決方案以及未來的發展趨勢,以及對站點大小和頻率的精細市場預測以及智能手機。 >

除了上面討論的主題之外,IDTechEx的這份報告還涵蓋了數據中心,LED,4G基礎設施,平板電腦和筆記本電腦的TIM市場,並分析了挑戰,故障,驅動程序和粒狀市場預測。

來自IDTechEx的分析師訪問權限

所有報告購買都包括與專家分析師進行的長達30分鐘的電話時間,專家分析師將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。此NEE DS三個月購買的報告中使用。

目錄

1。執行摘要

  • 1.1。熱界面材料(TIM)簡介
  • 1.2。熱界面材料的性能
  • 1.3。TIM格式的熱導率比較
  • 1.4。TIM利用先進的碳材料
  • 1.5。EV電池TIM的商業基準
  • 1.6。電動汽車電池組TIM:按細分市場預測
  • 1.7。達姆中心的TIM預測
  • 1.8。4G/LTE基站的TIM預測
  • 1.9。5G站部署預測
  • 1.10。5G站的TIM預測
  • 1.11。智能手機導熱材料利用趨勢
  • 1.12。熱縮材料預測消費者E lectronics
  • 1.13。TIM預測總計:面積
  • 1.14。TIM預測總計:噸位
  • 1.15。公司簡介

2。熱界面材料概述

  • 2.1。介紹
    • 2.1.1。熱界面材料(TIM)簡介
    • 2.1.2。系統級性能的關鍵因素
    • 2.1.3。導熱係數與熱阻
    • 2.1.4。物料清單和長壽的重要性
  • 2.2。TIM表格和材料概述
    • 2.2.1。TIM注意事項
    • 2.2.2。物理形式的熱界面材料
    • 2.2.3。液體產品的評估和考慮
    • 2.2.4。八種熱界面材料
    • 2.2.5。熱界面材料的性能
    • 2.2.6。1.間隙墊
    • 2.2.7。彈性墊的優缺點
    • 2.2.8。商業TIM墊的導熱係數
    • 2.2.9。2.導熱凝膠/間隙填充物
    • 2.2.10。導熱油脂與油脂的比較
    • 2.2.11。凝膠與灌封
    • 2.2.12。商業凝膠和糊劑的導熱係數
    • 2.2.13。3.導熱油脂
    • 2.2.14。導熱油脂的問題
    • 2.2.15。導熱油脂
    • 2.2.16。導熱油脂的粘度
    • 2.2.17。油脂的導熱係數
    • 2.2.18。導熱油脂的技術數據
    • 2.2.19。填充物和負載對熱導率的影響
    • 2.2.20。4.相變材料(PCM)
    • 2.2.21。相變材料(PCM)
    • 2.2.22。PCM類別和優缺點
    • 2.2.23。相變材料-概述
    • 2.2.24。商用PCM的工作溫度範圍
    • 2.2.25。5.膠帶
    • 2.2.26。商業膠帶的導熱係數
    • 2.2.27。6.灌封/密封劑
    • 2.2.28。商業密封膠的導熱係數
    • 2.2.29。7.液態金屬
    • 2.2.30。PC愛好者
    • 2.2.31。LM TIM:索尼PS5和華碩
    • 2.2.32。LM T IM:玩家
    • 2.2.33。熱橋-一種新方法
    • 2.2.34。8.焊料和導電膠
    • 2.2.35。連接材料的類型
    • 2.2.36。導電膠的結構
    • 2.2.37。ECA與焊料的SWOT分析
    • 2.2.38。ECA的常用材料選擇
    • 2.2.39。TIM格式的熱導率比較
    • 2.2.40。TIM格式的屬性比較
  • 2.3。先進材料
    • 2.3.1。TIM的高級材料:簡介
    • 2.3.2。實現平面對準
    • 2.3.3。TIM利用先進碳材料的摘要
    • 2.3.4。TIM的導熱係數比較
    • 2.3.5。TIM結合EMI屏蔽特性
    • 2.3.6。石墨
    • 2.3.7。石墨概述
    • 2.3.8。石墨板:貫穿平面的局限性
    • 2.3.9。石墨板:與熱源的連接和破壞對準
    • 2.3.10。松下:熱解針板(PGS)
    • 2.3.11。垂直石墨的發展
    • 2.3.12。含添加劑的垂直石墨
    • 2.3.13。石墨膏
    • 2.3.14。石墨TIMs的導熱係數比較
    • 2.3.15。碳纖維
    • 2.3.16 。碳纖維作為TIM:簡介
    • 2.3.17。碳纖維作為智能手機中的TIM
    • 2.3.18。碳纖維TIM的磁對準
    • 2.3.19。TIM中CF對齊的其他途徑
    • 2.3.20。碳纖維及其他導電添加劑
    • 2.3.21。碳納米管(CNT)
    • 2.3.22。碳納米管(CNT)簡介
    • 2.3.23。VACNT作為TIM面臨的挑戰
    • 2.3.24。傳輸VACNT陣列
    • 2.3.25。從商業的玩家值得關注的CNT TIM例子:汽車灰藍色
    • 2.3.26。商業參與者的著名CNT TIM示例:Fujitsu
    • 2.3.27。商業參與者的著名CNT TIM示例:Zeon
    • 2.3.28。商業參與者的著名CNT TIM示例:Hitachi Zosen
    • 2.3.29。石墨烯
    • 2.3.30。石墨烯在熱管理中的應用路線圖
    • 2.3.31。石墨烯散熱器:商業成功
    • 2.3.32。石墨烯散熱器:性能
    • 2.3.33。石墨烯散熱器:供應商成倍增加
    • 2.3.34。石墨烯作為導熱膏添加劑
    • 2.3.35。石墨烯作為熱界面墊的添加劑
    • 2.3.36。陶瓷進步
    • 2.3.37。陶瓷趨勢:球形變體
    • 2.3.38。化工業:功能性微粒的熱法力gement
    • 2.3.39。登卡
    • 2.3.40。昭和電工:從片狀到球形填充物的過渡
    • 2.3.41。氮化硼納米結構
    • 2.3.42。納米氮化硼簡介
    • 2.3.43。BNNT玩家和價格
    • 2.3.44。BNNT屬性變化
    • 2.3.45。TIM中的BN納米結構

3。TIM分配設備

  • 3.1。分配TIM簡介
  • 3.2。分配TIM的挑戰
  • 3.3。小批量點膠方法
  • 3.4。大批量點膠方法
  • 3.5。計量,混合,分配(MMD)系統的兼容性
  • 3.6。TIM點膠設備供應商

4。TIM公司的主要收購

  • 4.1。漢高收購Bergquist
  • 4.2。帕克r領主
  • 4.3。杜邦收購Laird

5。避免使用TIMS

  • 5.1。消除TIM
  • 5.2。為什麼要努力消除TIM?
  • 5.3。TIM是否已在任何電動汽車逆變器模塊中被淘汰?

6。電動車電池組的TIM

  • 6.1。電動汽車熱管理導論
  • 6.2。電池熱管理-冷熱
  • 6.3。主動冷卻與被動冷卻
  • 6.4。電池冷卻方法分析
  • 6.5。新興路線-浸入式冷卻
  • 6.6。新興路線-相變材料
  • 6.7。OEM冷卻方法的全球趨勢
  • 6.8。熱管理-包裝和模塊概述
  • 6.9。TIM應用程序-包和模塊
  • 6.10。TIM應用程序-單元格格式
  • 6.11。陶氏電池組材料
  • 6.12。漢高電池組材料
  • 6.13。杜邦電池組材料
  • 6.14。電動汽車TIM的關鍵屬性
  • 6.15。電動汽車電池的間隙墊
  • 6.16。從打擊墊切換到間隙填充物
  • 6.17。材料選擇和市場比較
  • 6.18。汽車行業的有機矽困境
  • 6.19。矽膠替代品
  • 6.20。主要參與者和注意事項
  • 6.21。主要參與者和近期公告
  • 6 .22。電動汽車用例:奧迪e-tron
  • 6.23。電動汽車用例:雪佛蘭螺栓
  • 6.24。電動汽車使用案例:菲亞特500e
  • 6.25。電動汽車用例:MG ZS EV
  • 6.26。電動汽車用例:日產聆風
  • 6.27。電動汽車用例:Smart Fortwo(奔馳)
  • 6.28。電動汽車用例:Tesla Model 3/Y
  • 6.29。電動汽車用例:特斯拉,雪佛蘭,現代
  • 6.30。特斯拉省去了電池模塊
  • 6.31。電動汽車用例摘要
  • 6.32。EV電池TIM的商業基準
  • 6.33。電池和TIM需求趨勢
  • 6.34。電動汽車電池組的TIM :按細分市場預測
  • 6.35。EV電池組的TIM:按TIM類型進行預測
  • 6.36。絕緣泡孔泡沫
  • 6.37。散熱器或散佈的冷卻板
  • 6.38。E V中TIM的摘要和結論

7。數據中心的TIM

  • 7.1。數據中心的熱界面材料:簡介
  • 7.2。數據中心設備簡介:服務器,交換機和管理程序
  • 7.3。在服務器中如何使用TIM
  • 7.4。硒rver板佈局
  • 7.5。英特爾vs AMD服務器組件
  • 7.6。估計服務器中的TIM區域
  • 7.7。確定數據中心設備的相對數量
  • 7.8。TIM如何在數據中心交換機中使用
  • 7.9。數據中心S巫婆玩家
  • 7.10。平均交換機端口號
  • 7.11。在數據中心管理器模塊中如何使用TIM
  • 7.12。估計數據中心中主管模塊的數量
  • 7.13。估計數據中心交換機和監控器中的TIM區域
  • 7.14。TIM在數據中心電源中的使用方式
  • 7.15。數據中心電源中的TIM消耗
  • 7.16。數據中心的TIM趨勢
  • 7.17。數據中心服務器單位預測
  • 7.18。開關和Supervisor模塊佛重鑄
  • 7.19。服務器,交換機,管理程序和電源預測
  • 7.20。TIM對數據中心的預測

8。TIM IN LEDs

  • 8.1。通用照明LED中的TIM
  • 8.2。TIM在汽車用LED中
  • 8.3。TIM在顯示屏LED中
  • 8.4。TIM對LED的總需求
  • 8.5。總LED TIM預測

9。在4G基站中的TIM

  • 9.1。基站的解剖
  • 9.2。基帶處理單元和遠程無線電頭
  • 9.3。從基帶單元到天線的路徑演化
  • 9.4。基帶處理單元的6個組成部分
  • 9.5。BBU第一部分:主控制板中的TIM區域
  • 9.6。BBU零件II和III:TIM地區基帶處理董事會及傳輸拓博ARD
  • 9.7。BBU第IV和V部分:無線電接口板和衛星卡板中的TIM區域
  • 9.8。BBU第六部分:電源板上的TIM區域
  • 9.9。遠程無線電頭(RRH)單元組件
  • 9.10。RRH零件:主板中的TIM區域
  • 9.11。RRU零件:PA板中的TIM區域
  • 9.12。BBU和RRH TIM摘要
  • 9.13。4G/LTE基站的BBU TIM預測
  • 9.14。4G/LTE基站中的RRH TIM預測
  • 9.15。4G/LTE基站的TIM總區域預測

10 。在5G基站中的TIM

  • 10.1。下一代蜂窩通信網絡
  • 10.2。移動通信的發展
  • 10.3。5G能提供什麼?高速,大規模連接和低延遲
  • 10.4。4G和5G之間的差異
  • 10.5。5G支持各種垂直應用
  • 10.6。5G的兩種類型:Sub-6 GHz和高頻
  • 10.7。6 GHz以下將成為大多數運營商的首選
  • 10.8。5G遍佈全球
  • 10.9。在5G TECHNOLO主要參與者吉斯
  • 10.10。5G的全球趨勢和新機遇
  • 10.11。5G的熱管理
  • 10.12。5G基站類型
  • 10.13。5G站點安裝量預測(2020-2031)按站點大小(宏,微型,微微和毫微微)
  • 10.14。大規模MIMO需要有源天線
  • 10.15。RFFE中組件的密度
  • 10.16。5G有源天線單元(AAU)的主要供應商
  • 10.17。案例研究:NEC 5G無線電單元
  • 10.18。案例研究:諾基亞AirScale mMIMO自適應天線
  • 10.19。案例研究:SK Telecom的三星5G接入解決方案
  • 10.20。TIM示例:三星5G接入點
  • 10.21。TIM示例:Samsung戶外CPE單元
  • 10.22。TIM示例:三星室內CPE單元
  • 10.23。5G天線的TIM預測
  • 10.24。適用於5G BBU的TIM
  • 10.25。5G的功耗
  • 10.26。電源的TIM預測
  • 10.27。5G基礎架構的TIM屬性和播放器
  • 10.28。TIM供應商瞄準5G應用
  • 10.29。總TIM預測5G為static附件

11。TIM在消費電子領域

  • 11.1。智能手機中的TIM
    • 11.1.1。熱管理材料應用領域概述
    • 11.1.2。用例:三星Galaxy 3
    • 11.1.3。用例:Apple iPhone 5
    • 11.1.4。用例:三星Galaxy S6
    • 11.1.5。用例:三星Galaxy S7
    • 11.1.6。用例:三星Galaxy S6和S7 TIM面積估算
    • 11.1.7。用例:Apple iPhone 7
    • 11.1.8。用例:Apple iPhone X
    • 11.1.9 。用例:三星Galaxy S9
    • 11.1.10。Galaxy Note 9碳水冷卻系統
    • 11.1.11。用例:Oppo R17
    • 11.1.12。用例:三星Galaxy S10和S10e
    • 11.1.13。用例:LG v50 ThinQ 5G
    • 11.1.14。用例:Samsun g Galaxy S10 5G
    • 11.1.15。用例:三星Galaxy Note 10+ 5G
    • 11.1.16。用例:LG v60 ThinQ 5G
    • 11.1.17。用例:Nubia Red Magic 5G
    • 11.1.18。用例:三星Galaxy S20 5G
    • 11.1.19。用例:三星Galaxy S21 5G
    • 11.1.20。用例:三星Galaxy Note 20 Ultra 5G
    • 11.1.21。用例:華為Mate 20 X 5G
    • 11.1.22。用例:Sony Xperia Pro
    • 11.1.23。智能手機散熱材料估算摘要
    • 11.1.24。智能手機熱材料利用的趨勢
    • 11.1.25。圖形散熱器
    • 11.1.26。新興的先進材料解決方案
    • 11.1.27。絕緣材料
  • 11.2。筆記本電腦中的TIM
    • 11.2.1。用例:華碩VivoBook K570
    • 11。2.2。用例:Clevo P641RE
    • 11.2.3。用例:聯想ThinkPad X1 Carbon
    • 11.2.4。用例:Dell XPS 13
    • 11.2.5。用例:MacBook Pro 2019
    • 11.2.6。用例:MacBook Pro(2020)
    • 11.2.7。用例:MacBook Air(2020) < li> 11.2.8。筆記本電腦散熱材料估算摘要
  • 11.3。平板電腦中的TIM
    • 11.3.1。用例:iPad Pro 2020
    • 11.3.2。用例:iPad Air 2020
    • 11.3.3。用例:Amazon Kindle Fire 7
    • 11.3.4。用例:Microso ft Surface Go 2
    • 11.3.5。用例:三星Galaxy Tab A7
    • 11.3.6。平板電腦散熱材料估算摘要
    • 11.3.7。消費電子產品銷售預測
    • 11.3.8。消費電子產品的熱材料預測

12。TIM預測總數

  • 12.1。TIM預測總計:面積
  • 12.2。TIM預測總計:噸位
  • 12.3。TIM:價格分析

13。預測摘要

  • 13.1。預測摘要
  • 13.2。電動汽車電池需求預測
  • 13.3。電動汽車電池組TIM:按細分市場預測
  • 13.4。EV電池組的TIM:按TIM類型進行預測
  • 13.5。數據中心服務器,交換機,監控器和電源預測
  • 13.6。TIM預測數據岑TER值
  • 13.7。LED TIM總預測:面積
  • 13.8。LED TIM總預測:噸位
  • 13.9。4G/LTE基站的TIM總區域預測
  • 13.10。按站點大小(宏,微型,Pico和Femto)進行的5G站點安裝量預測
  • 13.11。5G天線的T IM預測
  • 13.12。適用於5G BBU的TIM
  • 13.13。電源的TIM預測
  • 13.14。5G站的總TIM預測
  • 13.15。消費電子產品銷售預測
  • 13.16。熱縮材料預測消費電網卡
  • 13.17。TIM預測總計:面積
  • 13.18。TIM預測總計:噸位
目錄
Product Code: ISBN 9781913899448

Title:
Thermal Interface Materials 2021-2031: Technologies, Markets
and Opportunities

Material demands, benchmarking, market trends and drivers for emerging markets: 5G, electric vehicles, data centers, LEDs and consumer electronics].

"Emerging demands for TIM exceed 870,000 tonnes by 2031."

Thermal interface materials (TIMs) are a key component in a multitude of electronic and energy storage devices. Essentially, if heat is generated and needs to be transferred (e.g., to a heat sink) then a TIM is typically needed. The form and composition of TIMs varies greatly across applications and markets with most large material suppliers also manufacturing TIMs. There are several industries that are starting to emerge and/or focus more on thermal management and the requirement for TIMs, leading to new and extremely large potential markets.

This new report from IDTechEx considers the forms and compositions of TIMs, benchmarks commercial products, and details new advanced material. It also analyses current TIM applications in emerging markets as well as the key drivers and requirements in these areas, such as electric vehicle batteries, data centers, LEDs, 4G & 5G infrastructure, smartphones, tablets and laptops. In addition, 10-year granular market forecasts are given for each of these segments in terms of application area and tonnage. Below we briefly discuss a couple of the most exciting markets for TIMs in the next decade.

Many emerging industries require TIMs and will impact the landscape of demand. Source: Thermal Interface Materials 2021-2031

Electric Vehicle Batteries

It is without a doubt that electric vehicles (EVs) are the future of transportation. The EV market continued its growth in 2020 despite the impact of COVID-19 on the automotive industry as a whole. Not only is the EV market set to grow rapidly over the next 10 years, but within this, there is a trend towards higher energy density, faster charging, longer lifetimes and fire safety, all of which require effective thermal management and materials to support this. There is no consensus on battery design for electric vehicles with a variety of cell formats, thermal management strategies and pack designs, each of which influence the TIM quantity and utilisation. IDTechEx has extensive research into the design of EV batteries, with a comprehensive model database covering the market shares of different cell formats, energy densities, and much more. In this report, we cover the demand for EV batteries across multiple vehicle segments (cars, buses, trucks, vans & two-wheelers), automotive teardowns of TIM utilisation, analysis of trends and drivers towards specific TIM formats.

There are many EV segments, all of which are increasing and with it, the demand for TIMs. Source: Thermal Interface Materials 2021-2031.

5G Infrastructure and Smartphones

As most will be aware, 5G is the next generation of telecommunications network, taking over from 4G/LTE. 5G promises extreme download and upload rates with super-low latency. These features have the potential to enable various wonderous applications such as autonomous vehicles, virtual/ augmented reality and other internet of things technologies. The majority of the 5G network to date is in the sub-6 GHz frequency band, however the mmWave network is the one that has the potential to achieve the feats mentioned above. The mmWave network also presents the majority of the challenges, signal propagation is poor and can be easily blocked, which leads to the use of many small cells in a dense network to create the necessary coverage. These small cells are also much more compact leading to a greater density of electronic components and hence heat dissipation challenges. Historic air conditioning will not be suitable for these compact and frequent mmWave antennas, therefore there will be an increased requirement for high-performance TIMs to enable effective passive thermal management.

Smartphones are also seeing challenges with 5G; in such a compact package, dissipating heat from the new generation of 5G chips and the multiple 5G antenna presents a significant challenge with many manufacturers increasing their TIM utilisation and combining it with options like vapour chambers.

The increased requirements for TIMs in both 5G infrastructure and smartphones combined with the huge deployment and sales figures leads to a big market for TIMs. This report highlights and discusses the thermal challenges around 5G infrastructure and smartphones, the solutions from current designs in the form of teardowns or use-cases and progression for the future with granular market forecasts for station size and frequency, and smartphones.

In addition to the topics discussed above, this report from IDTechEx also covers the TIM markets for data centers, LEDs, 4G infrastructure, tablets and laptops with analysis of challenges, teardowns, drivers and granular market forecasts.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Introduction to Thermal Interface Materials (TIM)
  • 1.2. Properties of Thermal Interface Materials
  • 1.3. Thermal Conductivity Comparison of TIM Formats
  • 1.4. TIM Utilizing Advanced Carbon Materials
  • 1.5. Commercial Benchmark for EV Battery TIMs
  • 1.6. TIM for EV Battery Packs: Forecast by Vehicle Segment
  • 1.7. TIM Forecast for Data Centers
  • 1.8. TIM Forecast for 4G/LTE Base Stations
  • 1.9. 5G Station Deployment Forecast
  • 1.10. TIM Forecast for 5G Stations
  • 1.11. Trends in Smartphone Thermal Material Utilization
  • 1.12. Thermal Material Forecast for Consumer Electronics
  • 1.13. TIM Forecast Totals: Area
  • 1.14. TIM Forecast Totals: Tonnage
  • 1.15. Company Profiles

2. OVERVIEW OF THERMAL INTERFACE MATERIALS

  • 2.1. Introduction
    • 2.1.1. Introduction to Thermal Interface Materials (TIM)
    • 2.1.2. Key Factors in System Level Performance
    • 2.1.3. Thermal Conductivity vs Thermal Resistance
    • 2.1.4. Bill of Materials and the Importance of Longevity
  • 2.2. TIM Form and Material Overview
    • 2.2.1. TIM Considerations
    • 2.2.2. Thermal Interface Material by Physical Form
    • 2.2.3. Assessment and Considerations of Liquid Products
    • 2.2.4. Eight Types of Thermal Interface Material
    • 2.2.5. Properties of Thermal Interface Materials
    • 2.2.6. 1. Gap Pads
    • 2.2.7. Advantages and Disadvantages of Elastomeric Pads
    • 2.2.8. Thermal Conductivity of Commercial TIM Pads
    • 2.2.9. 2. Thermal Gels/ Gap Fillers
    • 2.2.10. Comparison of Thermal Gels with Greases
    • 2.2.11. Gels vs Potting
    • 2.2.12. Thermal Conductivity of Commercial Gels and Pastes
    • 2.2.13. 3. Thermal Greases
    • 2.2.14. Problems with Thermal Greases
    • 2.2.15. Thermal Greases
    • 2.2.16. Viscosity of Thermal Greases
    • 2.2.17. Thermal Conductivity of Greases
    • 2.2.18. Technical Data on Thermal Greases
    • 2.2.19. The Effect of Filler and Loading on Thermal Conductivity
    • 2.2.20. 4. Phase Change Materials (PCMs)
    • 2.2.21. Phase Change Materials (PCMs)
    • 2.2.22. PCM Categories and Pros and Cons
    • 2.2.23. Phase Change Materials - Overview
    • 2.2.24. Operating Temperature Range of Commercial PCMs
    • 2.2.25. 5. Adhesive Tapes
    • 2.2.26. Thermal Conductivity of Commercial Tapes
    • 2.2.27. 6. Potting/ Encapsulants
    • 2.2.28. Thermal Conductivity of Commercial Encapsulants
    • 2.2.29. 7. Liquid Metals
    • 2.2.30. PC Enthusiasts
    • 2.2.31. LM TIM: Sony PS5 and ASUS
    • 2.2.32. LM TIM: Players
    • 2.2.33. Thermal Bridge - a New Approach
    • 2.2.34. 8. Solders and Electrically Conducive Adhesives
    • 2.2.35. Types of Joining Materials
    • 2.2.36. Structure of Electrically Conductive Adhesives
    • 2.2.37. SWOT Analysis of ECAs Compared to Solders
    • 2.2.38. Common Material Choices for ECAs
    • 2.2.39. Thermal Conductivity Comparison of TIM Formats
    • 2.2.40. Property Comparison of TIM Formats
  • 2.3. Advanced Materials
    • 2.3.1. Advanced Materials for TIM: Introduction
    • 2.3.2. Achieving Through-plane Alignment
    • 2.3.3. Summary of TIM Utilizing Advanced Carbon Materials
    • 2.3.4. Thermal Conductivity Comparison of TIMs
    • 2.3.5. TIM Combined with EMI Shielding Properties
    • 2.3.6. Graphite
    • 2.3.7. Graphite Overview
    • 2.3.8. Graphite Sheets: Through-plane Limitations
    • 2.3.9. Graphite Sheets: Interfacing with Heat Source and Disrupting Alignment
    • 2.3.10. Panasonic: Pyrolytic Graphite Sheet (PGS)
    • 2.3.11. Progressions in Vertical Graphite
    • 2.3.12. Vertical Graphite with Additives
    • 2.3.13. Graphite Pastes
    • 2.3.14. Thermal Conductivity Comparison of Graphite TIMs
    • 2.3.15. Carbon Fiber
    • 2.3.16. Carbon Fiber as a TIM: Introduction
    • 2.3.17. Carbon Fiber as a TIM in Smartphones
    • 2.3.18. Magnetic Alignment of Carbon Fiber TIMs
    • 2.3.19. Other Routes to CF Alignment in a TIM
    • 2.3.20. Carbon Fiber with Other Conductive Additives
    • 2.3.21. Carbon Nanotubes (CNT)
    • 2.3.22. Introduction to Carbon Nanotubes (CNT)
    • 2.3.23. Challenges with VACNT as TIM
    • 2.3.24. Transferring VACNT Arrays
    • 2.3.25. Notable CNT TIM Examples from Commercial Players: Carbice
    • 2.3.26. Notable CNT TIM Examples from Commercial Players: Fujitsu
    • 2.3.27. Notable CNT TIM Examples from Commercial Players: Zeon
    • 2.3.28. Notable CNT TIM Examples from Commercial Players: Hitachi Zosen
    • 2.3.29. Graphene
    • 2.3.30. Graphene in Thermal Management: Application Roadmap
    • 2.3.31. Graphene Heat Spreaders: Commercial Success
    • 2.3.32. Graphene Heat Spreaders: Performance
    • 2.3.33. Graphene Heat Spreaders: Suppliers Multiply
    • 2.3.34. Graphene as a Thermal Paste Additive
    • 2.3.35. Graphene as an Additive to Thermal Interface Pads
    • 2.3.36. Ceramic Advancements
    • 2.3.37. Ceramic Trends: Spherical Variants
    • 2.3.38. Denka: Functional Fine Particles for Thermal Management
    • 2.3.39. Denka
    • 2.3.40. Showa Denko: Transition from Flake to Spherical Type Filler
    • 2.3.41. Boron Nitride Nanostructures
    • 2.3.42. Introduction to Nano Boron Nitride
    • 2.3.43. BNNT Players and Prices
    • 2.3.44. BNNT Property Variations
    • 2.3.45. BN Nanostructures in TIMs

3. TIM DISPENSING EQUIPMENT

  • 3.1. Dispensing TIMs Introduction
  • 3.2. Challenges for Dispensing TIM
  • 3.3. Low-volume Dispensing Methods
  • 3.4. High-volume Dispensing Methods
  • 3.5. Compatibility of Meter, Mix, Dispense (MMD) System
  • 3.6. TIM Dispensing Equipment Suppliers

4. MAJOR TIM COMPANY ACQUISITIONS

  • 4.1. Henkel Acquires Bergquist
  • 4.2. Parker Acquires Lord
  • 4.3. DuPont Acquires Laird

5. AVOIDING THE USE OF TIMS

  • 5.1. Eliminating the TIM
  • 5.2. Why the Drive to Eliminate the TIM?
  • 5.3. Has TIM Been Eliminated in any EV Inverter Modules?

6. TIM FOR EV BATTERY PACKS

  • 6.1. Introduction to Thermal Management for EVs
  • 6.2. Battery Thermal Management - Hot and Cold
  • 6.3. Active vs Passive Cooling
  • 6.4. Analysis of Battery Cooling Methods
  • 6.5. Emerging Routes - Immersion cooling
  • 6.6. Emerging Routes - Phase Change Materials
  • 6.7. Global Trends in OEM Cooling Methodologies
  • 6.8. Thermal Management - Pack and Module Overview
  • 6.9. TIM Application - Pack and Modules
  • 6.10. TIM Application - Cell Format
  • 6.11. Dow Battery Pack Materials
  • 6.12. Henkel Battery Pack Materials
  • 6.13. DuPont Battery Pack Materials
  • 6.14. Key Properties for TIMs in EVs
  • 6.15. Gap Pads in EV Batteries
  • 6.16. Switching to Gap Fillers from Pads
  • 6.17. Material Options and Market Comparison
  • 6.18. The Silicone Dilemma for the Automotive Industry
  • 6.19. Silicone Alternatives
  • 6.20. Main Players and Considerations
  • 6.21. Main Players and Recent Announcements
  • 6.22. EV Use-case: Audi e-tron
  • 6.23. EV Use-case: Chevrolet Bolt
  • 6.24. EV Use-case: Fiat 500e
  • 6.25. EV Use-case: MG ZS EV
  • 6.26. EV Use-case: Nissan Leaf
  • 6.27. EV Use-case: Smart Fortwo (Mercedes)
  • 6.28. EV Use-case: Tesla Model 3/Y
  • 6.29. EV Use-cases: Tesla, Chevrolet, Hyundai
  • 6.30. Tesla Eliminating the Battery Module
  • 6.31. EV Use-case Summary
  • 6.32. Commercial Benchmark for EV Battery TIMs
  • 6.33. Battery and TIM Demand Trends
  • 6.34. TIM for EV Battery Packs: Forecast by Vehicle Segment
  • 6.35. TIM for EV Battery Packs: Forecast by TIM Type
  • 6.36. Insulating Cell-to-Cell Foams
  • 6.37. Heat Spreaders or Interspersed Cooling Plates
  • 6.38. Summary and Conclusions for TIMs in EV

7. TIM FOR DATA CENTERS

  • 7.1. Thermal Interface Materials in Data Centers: Introduction
  • 7.2. Introduction to Data Center Equipment: Servers, Switches and Supervisors
  • 7.3. How TIMs Are Used in Servers
  • 7.4. Server Board Layout
  • 7.5. Intel vs AMD for Server Components
  • 7.6. Estimating the TIM Area in Servers
  • 7.7. Determining the Relative Numbers of Data Center Equipment
  • 7.8. How TIMs are Used in Data Center Switches
  • 7.9. Data Center Switch Players
  • 7.10. Average Switch Port Numbers
  • 7.11. How TIMs are Used in Data Center Supervisor Modules
  • 7.12. Estimating the Number of Supervisor Modules in Data Centers
  • 7.13. Estimating the TIM Area in Data Center Switches and Supervisors
  • 7.14. How TIMs are Used in Data Center Power Supplies
  • 7.15. TIM Consumption in Data Center Power Supplies
  • 7.16. TIM Trends in Data Centers
  • 7.17. Data Center Server Unit Forecast
  • 7.18. Switch and Supervisor Modules Forecast
  • 7.19. Server, Switch, Supervisor and Power Supply Forecast
  • 7.20. TIM Forecast for Data Centers

8. TIM IN LEDS

  • 8.1. TIM in LEDs for General Lighting
  • 8.2. TIM in LEDs for Automotive
  • 8.3. TIM in LED for Displays
  • 8.4. Total TIM Demand for LEDs
  • 8.5. Total LED TIM Forecasts

9. TIM IN 4G BASE STATIONS

  • 9.1. The Anatomy of a Base Station
  • 9.2. Baseband Processing Unit and Remote Radio Head
  • 9.3. Path Evolution from Baseband Unit to Antenna
  • 9.4. The 6 Components of a Baseband Processing Unit
  • 9.5. BBU Part I: TIM Area in the Main Control Board
  • 9.6. BBU Parts II & III: TIM Area in the Baseband Processing Board & the Transmission Extension Board
  • 9.7. BBU Parts IV & V: TIM Area in Radio Interface Board & Satellite-card Board
  • 9.8. BBU Part VI: TIM Area in the Power Supply Board
  • 9.9. Remote Radio Head (RRH) Unit Components
  • 9.10. RRH Parts: TIM Area in the Main Board
  • 9.11. RRU Parts: TIM Area in PA Board
  • 9.12. BBU and RRH TIM Summary
  • 9.13. BBU TIM Forecasts in 4G/LTE Base Stations
  • 9.14. RRH TIM Forecast in 4G/LTE Base Stations
  • 9.15. Total TIM Area Forecast for 4G/LTE Base Stations

10. TIM IN 5G BASE STATIONS

  • 10.1. Next Generation Cellular Communications Network
  • 10.2. Evolution of Mobile Communications
  • 10.3. What Can 5G offer? High Speed, Massive Connection and Low Latency
  • 10.4. Differences Between 4G and 5G
  • 10.5. 5G Enables Various Vertical Applications
  • 10.6. Two Types of 5G: Sub-6 GHz and High Frequency
  • 10.7. Sub-6 GHz Will be the First Option for Most Operators
  • 10.8. 5G is Live Globally
  • 10.9. Key Players in 5G Technologies
  • 10.10. Global Trends and New Opportunities in 5G
  • 10.11. Thermal Management for 5G
  • 10.12. 5G Base Station Types
  • 10.13. 5G Station Instalment Forecast (2020-2031) by Station Size (Macro, Micro, Pico & Femto)
  • 10.14. Massive MIMO Requires Active Antennas
  • 10.15. Density of Components in RFFE
  • 10.16. Main Suppliers of 5G Active Antenna Units (AAU)
  • 10.17. Case Study: NEC 5G Radio Unit
  • 10.18. Case Study: Nokia AirScale mMIMO Adaptive Antenna
  • 10.19. Case study: Samsung 5G Access Solution for SK Telecom
  • 10.20. TIM Example: Samsung 5G Access Point
  • 10.21. TIM Example: Samsung Outdoor CPE Unit
  • 10.22. TIM Example: Samsung Indoor CPE Unit
  • 10.23. TIM Forecast for 5G Antenna
  • 10.24. TIM for 5G BBU
  • 10.25. Power Consumption in 5G
  • 10.26. TIM Forecast for Power Supplies
  • 10.27. TIM Properties and Players for 5G Infrastructure
  • 10.28. TIM Suppliers Targeting 5G Applications
  • 10.29. Total TIM Forecast for 5G Stations

11. TIM IN CONSUMER ELECTRONICS

  • 11.1. TIM in Smartphones
    • 11.1.1. Overview of Thermal Management Materials Application Areas
    • 11.1.2. Use-case: Samsung Galaxy 3
    • 11.1.3. Use-case: Apple iPhone 5
    • 11.1.4. Use-case: Samsung Galaxy S6
    • 11.1.5. Use-case: Samsung Galaxy S7
    • 11.1.6. Use-case: Samsung Galaxy S6 and S7 TIM Area Estimates
    • 11.1.7. Use-case: Apple iPhone 7
    • 11.1.8. Use-case: Apple iPhone X
    • 11.1.9. Use-case: Samsung Galaxy S9
    • 11.1.10. Galaxy Note 9 Carbon Water Cooling System
    • 11.1.11. Use-case: Oppo R17
    • 11.1.12. Use-case: Samsung Galaxy S10 and S10e
    • 11.1.13. Use-case: LG v50 ThinQ 5G
    • 11.1.14. Use-case: Samsung Galaxy S10 5G
    • 11.1.15. Use-case: Samsung Galaxy Note 10+ 5G
    • 11.1.16. Use-case: LG v60 ThinQ 5G
    • 11.1.17. Use-case: Nubia Red Magic 5G
    • 11.1.18. Use-case: Samsung Galaxy S20 5G
    • 11.1.19. Use-case: Samsung Galaxy S21 5G
    • 11.1.20. Use-case: Samsung Galaxy Note 20 Ultra 5G
    • 11.1.21. Use-case: Huawei Mate 20 X 5G
    • 11.1.22. Use-case: Sony Xperia Pro
    • 11.1.23. Smartphone Thermal Material Estimate Summary
    • 11.1.24. Trends in Smartphone Thermal Material Utilization
    • 11.1.25. Graphitic Heat Spreaders
    • 11.1.26. Emerging Advanced Material Solutions
    • 11.1.27. Insulation Material
  • 11.2. TIM in Laptops
    • 11.2.1. Use-case: ASUS VivoBook K570
    • 11.2.2. Use-case: Clevo P641RE
    • 11.2.3. Use-case: Lenovo ThinkPad X1 Carbon
    • 11.2.4. Use-case: Dell XPS 13
    • 11.2.5. Use-case: MacBook Pro 2019
    • 11.2.6. Use-case: MacBook Pro (2020)
    • 11.2.7. Use-case: MacBook Air (2020)
    • 11.2.8. Laptop Thermal Material Estimate Summary
  • 11.3. TIM in Tablets
    • 11.3.1. Use-case: iPad Pro 2020
    • 11.3.2. Use-case: iPad Air 2020
    • 11.3.3. Use-case: Amazon Kindle Fire 7
    • 11.3.4. Use-case: Microsoft Surface Go 2
    • 11.3.5. Use-case: Samsung Galaxy Tab A7
    • 11.3.6. Tablet Thermal Material Estimate Summary
    • 11.3.7. Consumer Electronics Sales Forecast
    • 11.3.8. Thermal Material Forecast for Consumer Electronics

12. TIM FORECAST TOTALS

  • 12.1. TIM Forecast Totals: Area
  • 12.2. TIM Forecast Totals: Tonnage
  • 12.3. TIM: Price Analysis

13. SUMMARY OF FORECASTS

  • 13.1. Summary of Forecasts
  • 13.2. EV Battery Demand Forecast
  • 13.3. TIM for EV Battery Packs: Forecast by Vehicle Segment
  • 13.4. TIM for EV Battery Packs: Forecast by TIM Type
  • 13.5. Data Center Server, Switch, Supervisor and Power Supply Forecast
  • 13.6. TIM Forecast for Data Centers
  • 13.7. Total LED TIM Forecasts: Area
  • 13.8. Total LED TIM Forecasts: Tonnage
  • 13.9. Total TIM Area Forecast for 4G/LTE Base Stations
  • 13.10. 5G Station Instalment Forecast by Station Size (Macro, Micro, Pico & Femto)
  • 13.11. TIM Forecast for 5G Antenna
  • 13.12. TIM for 5G BBU
  • 13.13. TIM Forecast for Power Supplies
  • 13.14. Total TIM Forecast for 5G Stations
  • 13.15. Consumer Electronics Sales Forecast
  • 13.16. Thermal Material Forecast for Consumer Electronics
  • 13.17. TIM Forecast Totals: Area
  • 13.18. TIM Forecast Totals: Tonnage