NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

量子磁力計全球市場:2020年∼2029年

Quantum Magnetometer Markets: 2020 to 2029

出版商 Inside Quantum Technology 商品編碼 934248
出版日期 內容資訊 英文 64 Pages
訂單完成後即時交付
價格
量子磁力計全球市場:2020年∼2029年 Quantum Magnetometer Markets: 2020 to 2029
出版日期: 2020年04月23日內容資訊: 英文 64 Pages
簡介

迄今,磁力計被使用於地球物理學研究、礦物探勘、地磁測量、危險檢測等方面,在醫學及軍事領域也逐漸被應用。量子磁力計相較光泵磁力計、陽子磁力計、Overhauser磁力計、SERF、NV-diamond vapor cell磁力計、SQUID等於傳統磁力計,其靈敏度更高,預估未來將進一步普及。隨著應用領域的擴大,預估量子磁力計市場規模於2025年將達7億美元。

本報告研究全球量子磁力計市場,彙整產品概要與演進、主要市場及應用領域分析、開發情況、未來10年預測等情報。

目錄

第1章 報告背景

  • 量子磁力計領域新興市場機會
  • 報告目的與範圍
  • 報告研究方法
  • 報告計畫

第2章 量子磁力計產品及其演進

  • SERF
  • SQUID與SERF
  • 量子磁力計市場NV中心感測器
  • 質子磁力計
  • Overhauser磁力計
  • 光泵磁力計
  • 晶片型原子磁力計 (Chip-scale Atomic Magnetometer)
  • 本章要點

第3章 磁力計市場與應用

  • 醫療保健:MEG、心臟學、其他市場
    • MEG作為SQUIDS「Killer App」的可信度
  • 量子磁力計的國防及航空航天應用
    • 鑒於美中對立之市場考察
  • 量子磁力計與全球定位與通信之擴大
    • GPS
    • 量子無線電
  • 量子磁力計地球物理學應用與市場
    • 礦物探勘
    • 地磁測量
    • 火山學與地震研究
    • 考古學
    • UXO檢測
    • 危險檢測
  • 科學研發市場
    • 天文學與天文物理學
    • 地質學與材料科學
  • 本章要點

第4章 量子磁力計:產品與開發

  • 研發活動
  • 歐洲量子磁力計發展
    • 感測器與測定之UK Quantum Technology Hub
    • European Flagship Project
    • Fraunhofer IAF-QMag計畫
    • Magnicon
    • Supracon
  • 美國及加拿大量子磁力計發展
    • NIST計畫概要
    • DARPA計畫概要
    • Lockheed Martin - Untraceable GPS
    • Tristan Technologies
    • Gem Systems
    • Geometrics
    • Marine Magnetics
    • Twinleaf
    • QuSpin
  • 中國科學院
  • 本章要點

第5章 量子磁力計10年預測

  • 預測調查手法
  • 醫療保健領域預測
  • 國防/航空航天領域預測
  • 全球定位/通信領域預測
  • 地球物理領域預測
  • 研發領域預測
  • 量子磁力計預測
目錄
Product Code: IQT-QMM-0420

This report is the first industry analysis report to analyze the market for quantum magnetometers. This is a market that Inside Quantum Technology believes will grow to well over $700 million by 2025 driven by compelling value propositions in medicine, the military, and geophysical applications.

This report examines both technical and market factors driving the market for quantum magnetometers:

  • Geophysical studies and exploration is by far the biggest market for magnetometers and this area has used classical magnetometers for half a century for applications such mineral explorations, magnetic survey and hazard detection. This report discusses how the use of quantum technology for magnetometers is expanding the market for geophysical studies.
  • While all quantum magnetometers offer users enhanced sensitivity compared with classical magnetometers, there is growing competition in the field between optically pumped magnetometers, proton magnetometers, Overhauser magnetometers, SERFs, NV-diamond vapor cell magnetometers and SQUIDs. In this report, we discuss how each of these magnetometer types fit the needs of key end-user industries.
  • While, quantum magnetometers have been shown to add value to some established markets, interesting - and potentially profitable - new applications for quantum magnetometers are also beginning to appear. For example, beyond medical imaging, the extreme sensitivity of SQUIDs makes them ideal for biological investigations of various kinds. And NV-diamond center magnetometers are being used in navigation systems where conventional GPS won't work. A detailed assessment of the commercial potential for such novel systems is also included in this report.
  • Quantum magnetometers have a large number of applications in the military. Both researchers in the US and China are working on such applications and this report discusses the impact that an era of Sino-American tensions may have on the quantum magnetometer business.
  • The report also examines new quantum technology developments in the magnetometer. In particular we take a look at chip-scale atomic magnetometers and we take a look at what these might mean in drones for aerial systems, the measurement of interplanetary magnetic fields or deployed close to the heart for magnetocardiography, among other applications.

The report also includes a country-by-country analysis of both R&D and commercial development of quantum magnetometer systems. This includes strategic profiles of the leading firms manufacturing and marketing quantum magnetometer. In addition, there are detailed ten-year forecasts with breakouts by type of magnetometer and application.

Table of Contents

Chapter One: Background to this Report

  • 1. Emerging Market Opportunities in the Quantum Magnetometer Space
  • 2. Objective and Scope of this Report
  • 3. Methodology of this Report
  • 4. Plan of this Report

Chapter Two: Quantum Magnetometer Products and their Evolution

  • 2.1. SERFs: Powerful but Flawed
  • 2.2. SQUIDs versus SERF Competition
  • 2.3. NV-centers Sensors for the Quantum Magnetometer Market
  • 2.4. Proton Magnetometers: Rough but Cheap
  • 2.5. Overhauser Magnetometers: What's Next After Proton Magnetometers
  • 2.6. Optically Pumped Magnetometers: Cesium, Potassium, and Others.
  • 2.7. Chip-scale Atomic Magnetometers: Market Potential and Technical Evolution
  • 2.8. Key points from this Chapter

Chapter Three: Magnetometer Markets and Applications

  • 3.1. Healthcare and Medicine: MEG, Cardiology, and Other Markets
    • 3.1.1. How Credible is MEG as a “Killer App” for SQUIDS
  • 3.2. Defense and Aerospace Uses for Quantum Magnetometers
    • 3.2.1. Quantum Magnetometer Market Reconsidered in the Light of US-China Rivalry
  • 3.3. Quantum Magnetometers and the Expansion of Global Positioning and Communications
    • 3.3.1. GPS
    • 3.3.2. Quantum Radio
  • 3.3. Geophysical Applications and Markets for Quantum Magnetometers
    • 3.3.1. Mineral Exploration
    • 3.3.2. Magnetic Surveys
    • 3.3.3. Volcanology and Earthquake Research
    • 3.3.4. Archeology
    • 3.3.5. UXO Detection
    • 3.3.6. Hazard Detection
  • 3.4. Scientific Research and R&D Markets
    • 3.4.1. Astronomy and Astrophysics
    • 3.4.2. Geology and Material Science
  • 3.5. Key Points from This Chapter

Chapter Four: Quantum Magnetometers: Products and Development

  • 4.1. R&D Activity
  • 4.2. Quantum Magnetometer Development in Europe
    • 4.2.1. UK Quantum Technology Hub for Sensors and Metrology
    • 4.2.2. European Flagship Project
    • 4.2.3. Fraunhofer IAF - the QMag Initiative
    • 4.2.5. Magnicon
    • 4.2.6. Supracon
  • 4.3. Quantum Magnetometer Development in the US and Canada
    • 4.3.1. Review of Projects at NIST
    • 4.3.2. Review of Projects at DARPA
    • 4.3.3. Lockheed Martin - Untraceable GPS
    • 4.3.4. Tristan Technologies
    • 4.3.5. Gem Systems
    • 4.3.6. Geometrics
    • 4.3.7. Marine Magnetics
    • 4.3.8. Twinleaf
    • 4.3.9. QuSpin
  • 4.4. Chinese Academy of Sciences
  • 4.3. Key Points from This Chapter

Chapter Five: Ten-Year Forecasts of Quantum Magnetometers

  • 5.1. Forecasting Methodology
  • 5.2. Forecast of Quantum Magnetometers in Healthcare by Type of Magnetometer
  • 5.3. Forecast of Quantum Magnetometers in Defense/ Aerospace by Type of Magnetometer
  • 5.4. Forecast of Quantum Magnetometers in Global Positioning/Communications by Type of Magnetometer
  • 5.5. Forecast of Quantum Magnetometers in Geophysical Applications by Type of Magnetometer
  • 5.6. Forecast of Quantum Magnetometers in R&D by Type of Magnetometer
  • 5.7. Forecast of Quantum Magnetometers