NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

市場調查報告書

電子束晶圓檢查系統市場:全球行業趨勢,佔有率,規模,增長,機會,預測(2020-2025)

E-Beam Wafer Inspection System Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025

出版商 IMARC Services Private Limited 商品編碼 960423
出版日期 內容資訊 英文 108 Pages
商品交期: 2-3個工作天內
價格
電子束晶圓檢查系統市場:全球行業趨勢,佔有率,規模,增長,機會,預測(2020-2025) E-Beam Wafer Inspection System Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025
出版日期: 2020年09月03日內容資訊: 英文 108 Pages
簡介

從2014年到2019年,電子束晶圓檢查系統的全球市場以約18%的複合年增長率增長。電子束晶片檢查系統是基於集成電路(IC)組件或晶片的電子束掃瞄的半導體製造工具。它用於在最終包裝之前檢測晶片中的缺陷,非常適合掃瞄模具的小部分以識別難以檢測的系統性和隨機性缺陷。檢查系統掃瞄晶圓並將其與相鄰模具的圖像進行比較,以確定缺陷的坐標。此技術通常用於製造緊湊型小工具,智能手機,筆記本電腦和平板電腦。它還用於光刻認證,晶圓放置和標線片質量優化。

隨著工業化的快速發展,電子行業的顯著增長是創造市場前景的關鍵因素之一。半導體晶片廣泛用於特殊設備和家用電器的製造中,從而增加了對高效檢查系統的需求。此外,汽車的電氣化和自動化也推動了市場的增長。

各種類型的晶圓用於汽車部件,例如安全氣囊控制,全球定位系統(GPS),防抱死制動系統(ABS),導航和顯示系統,斷電和窗戶控制。它還用於改進自動操作技術和碰撞檢測技術,並且對晶片檢查系統的需求正在增加。此外,預計各種技術進步將進一步推動市場,包括開發更有效並最大程度減少批量生產所需的總時間的多束電子束檢查系統。預計未來五年全球電子束晶圓檢查系統市場將呈現強勁增長。

該報告調查了電子束晶圓檢查系統市場,並提供了市場概況,按分辨率,應用,最終應用,地區和進入市場的公司概況的趨勢。

目錄

第1章序言

第2章範圍和調查方法

第3章執行摘要

第4章簡介

第5章全球電子束晶圓檢查系統市場

  • 市場概況
  • 市場表現
  • COVID-19的影響

第6章按分辨率細分市場

  • 小於1 nm
  • 1 nm至10 nm
  • 10 nm以上

第7章按用途細分市場

  • 缺陷成像
  • 光刻認證
  • 裸晶片OQC/IQC
  • 晶圓排列
  • 光罩質量檢查
  • 檢查器配方優化

第8章按最終用途細分市場

  • 通信設備
  • 家用電子設備
  • 汽車配件
  • 其他

第9章按地區劃分的市場

  • 北美
    • 美國
    • 加拿大
  • 亞太地區
    • 中國
    • 日本
    • 印度
    • 韓國
    • 澳大利亞
    • 印度尼西亞
    • 其他
  • 歐洲
    • 德國
    • 法國
    • 英國
    • 意大利
    • 西班牙
    • 俄羅斯
    • 其他
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 其他
  • 中東和非洲
    • 國家細分市場

第10章SWOT分析

第11章價值鏈分析

第12章波特的五力分析

第13章價格分析

第14章競爭情況

  • 市場結構
  • 關鍵公司
  • 關鍵公司資料
    • Aerotech Inc.
    • Applied Materials Inc.
    • ASML Holding N.V.
    • Hitachi Ltd.
    • KLA Corporation
    • Lam Research Corporation
    • Nanotronics Imaging Inc.
    • NXP Semiconductors N.V. (Qualcomm Incorporated)
    • Renesas Electronics Corporation
    • Synopsys Inc.
    • Taiwan Semiconductor
    • Teledyne Technologies
目錄
Product Code: SR1019L68_Report

The global e-beam wafer inspection system market grew at a CAGR of around 18% during 2014-2019. E-beam wafer inspection system refers to a semiconductor fabrication tool based on electron beam scanning of integrated circuit (IC) components or wafers. It is used for detecting any defects in the wafers before final packaging and is ideal for scanning small sections of a die to identify specific hard-to-detect systematic and random defects. The inspection system scans the wafer and determines coordinates of the defects by comparing it to the image of the adjacent dies. This technique is commonly used while manufacturing compact gadgets, smartphones, laptops and tablets. It is also used for lithographic qualification, wafer dispositioning and reticle quality optimization.

Significant growth in the electronics industry, along with rapid industrialization, is one of the key factors creating a positive outlook for the market. Semiconductor wafers are widely used for manufacturing specialized devices and consumer electronics, thereby increasing the demand for efficient inspection systems. Furthermore, the electrification and automation in automobiles is also driving the market growth. Numerous kinds of wafers are used in automobile components, such as airbag controls, global positioning systems (GPS), anti-lock braking systems (ABS), navigation and display systems and power down and window controls. They are also used for improving automated driving and collision detection technologies, which, in turn, have increased the demand for wafer inspection systems. Moreover, various technological advancements, such as the development of multi-beam e-beam inspection systems that are more efficient and minimize the overall time required for mass production, are projected to drive the market further. Looking forward, IMARC Group expects the global e-beam wafer inspection system market to exhibit strong growth during the next five years.

Breakup by Resolution:

  • Less than 1 nm

1 nm to 10 nm

  • More than 10 nm

Breakup by Application:

  • Defect Imaging
  • Lithographic Qualification
  • Bare Wafer OQC/IQC
  • Wafer Dispositioning
  • Reticle Quality Inspection
  • Inspector Recipe Optimization

Breakup by End Use:

  • Communication Devices
  • Consumer Electronic Equipments
  • Automotive Parts
  • Others

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

Competitive Landscape:

  • The report has also analysed the competitive landscape of the market with some of the key players being Aerotech Inc., Applied Materials Inc., ASML Holding N.V., Hitachi Ltd., KLA-Tener Corporation, Lam Research Corporation, Nanotronics Imaging Inc., NXP Semiconductors N.V. (Qualcomm Incorporated), Renesas Electronics Corporation, Synopsys Inc., Taiwan Semiconductor and Teledyne Technologies.

Key Questions Answered in This Report:

  • How has the global E-beam wafer inspection system market performed so far and how will it perform in the coming years?
  • What has been the impact of COVID-19 on the global E-beam wafer inspection system market?
  • What are the key regional markets?
  • What is the breakup of the market based on the resolution?
  • What is the breakup of the market based on the application?
  • What is the breakup of the market based on the end use?
  • What are the various stages in the value chain of the industry?
  • What are the key driving factors and challenges in the industry?
  • What is the structure of the global E-beam wafer inspection system market and who are the key players?
  • What is the degree of competition in the industry?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global E-Beam Wafer Inspection System Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Resolution

  • 6.1 Less than 1 nm
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 1 nm to 10 nm
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 More than 10 nm
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast

7 Market Breakup by Application

  • 7.1 Defect Imaging
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Lithographic Qualification
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Bare Wafer OQC/IQC
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Wafer Dispositioning
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Reticle Quality Inspection
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast
  • 7.6 Inspector Recipe Optimization
    • 7.6.1 Market Trends
    • 7.6.2 Market Forecast

8 Market Breakup by End Use

  • 8.1 Communication Devices
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Consumer Electronic Equipments
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Automotive Parts
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Others
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 Aerotech Inc.
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
    • 14.3.2 Applied Materials Inc.
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
      • 14.3.2.3 Financials
      • 14.3.2.4 SWOT Analysis
    • 14.3.3 ASML Holding N.V.
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
      • 14.3.3.3 Financials
      • 14.3.3.4 SWOT Analysis
    • 14.3.4 Hitachi Ltd.
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
      • 14.3.4.3 Financials
      • 14.3.4.4 SWOT Analysis
    • 14.3.5 KLA Corporation
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
      • 14.3.5.3 Financials
      • 14.3.5.4 SWOT Analysis
    • 14.3.6 Lam Research Corporation
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
      • 14.3.6.3 Financials
      • 14.3.6.4 SWOT Analysis
    • 14.3.7 Nanotronics Imaging Inc.
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
    • 14.3.8 NXP Semiconductors N.V. (Qualcomm Incorporated)
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
      • 14.3.8.3 Financials
      • 14.3.8.4 SWOT Analysis
    • 14.3.9 Renesas Electronics Corporation
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
      • 14.3.9.3 Financials
      • 14.3.9.4 SWOT Analysis
    • 14.3.10 Synopsys Inc.
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
      • 14.3.10.3 Financials
      • 14.3.10.4 SWOT Analysis
    • 14.3.11 Taiwan Semiconductor
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
      • 14.3.11.3 Financials
      • 14.3.11.4 SWOT Analysis
    • 14.3.12 Teledyne Technologies
      • 14.3.12.1 Company Overview
      • 14.3.12.2 Product Portfolio
      • 14.3.12.3 Financials
      • 14.3.12.4 SWOT Analysis