NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

新一代功率半導體:市場,材料,技術

Power Semiconductors: Markets, Materials and Technologies

出版商 Information Network 商品編碼 223488
出版日期 內容資訊 英文
商品交期: 2-3個工作天內
價格
新一代功率半導體:市場,材料,技術 Power Semiconductors: Markets, Materials and Technologies
出版日期: 2021年05月01日內容資訊: 英文
簡介

在矽基的既有功率半導體已接近其理論上的界限中,具有出色材料特性及大能隙的碳化矽(SiC)和氮化鎵(GaN)基功率半導體大大可望成為新一代功率半導體,其中IGBT和Power MOSFET更預測將成為市場成長原動力。功率半導體的市場規模預計從2011年的142億美元擴大到2013年的167億美元,這期間預測年平均成長率將為3.7%。此外新一代功率半導體市場由於大幅成長,預測將惠及加工設備業界,尤其是矽基板上的GaN磊晶成長流程相關的設備廠商和覆晶產業的設備廠商,預測皆能獲得佳績。

本報告涵蓋新一代功率半導體市場,提供您以再生能源和電動車為首的用途和半導體市場上的地位及今後成長領域等詳細分析,再加上SiC和GaN的下一代半導體的製造技術和今後的課題,主要企業簡介等資訊。

第1章 簡介

  • 差異化要素製造流程
  • 與傳統的MOS設備不同的層積結構設備
  • 超接面流程

第2章 功率半導體的用途

  • 再生能源領域的功率半導體
    • 太陽能光電發電
    • 風力發電
  • 混合動力汽車/電動車領域的功率半導體
    • 汽車產業的大流程
    • 能隙的大設備
  • LED照明領域的功率半導體
  • 產業用馬達驅動裝置領域的功率半導體
  • 智慧家庭市場功率半導體
  • GaN及SiC的最終用途市場預測

第3章 市場分析

  • 半導體市場上功率半導體的地位
  • IGBT和Power MOSFET的潛在成長性
  • 最終用途市場
  • 能隙大的功率半導體市場

第4章 新一代功率半導體

  • 對於克服矽限制的期待感
  • 對下一代基板的SiC和GaN的期待感
  • 能隙大的半導體優點
  • SiC和GaN比較
    • 材料特性
    • 材料品質
    • SiC橫型單元
    • SiC縱型單元
    • GaN橫(側)型單元
  • SiC設備的製造
    • SiC的散裝單結晶成長和磊晶成長
    • 表面處理
    • 蝕刻
    • 光刻
    • 離子布植
    • 表面穩定化
    • 金屬化
  • GaN設備的製造
    • GaN的課題
      • 價格
      • 可靠性
      • 零組件的包裝和耐熱性
      • 管理
      • 設備建模
    • 包裝

第5章 主要企業簡介

  • 功率半導體廠商
    • Infineon
    • 三菱電機
    • 東芝
    • STMicroelectronics
    • Vishay
    • International Rectifier
    • Fairchild
    • 富士電機
    • 瑞薩
    • Semikron
    • NXP Semiconductors
  • SiC晶圓相關的企業
  • GaN晶圓相關的企業
  • 推進新一代功率半導體開發的企業簡介
    • 三菱電機
    • 富士電機集團
    • 東芝
    • Rohm
    • Sankei電氣
    • 新電元工業
    • Infineon
    • Microsemi
    • Cree
    • GeneSiC Semiconductor
    • Semisouth Laboratories
    • United Silicon Carbide
    • MicroGaN
    • Powerex
    • Fairchild
    • International Rectifier
    • Nitronix

圖表

目錄

A power semiconductor device is used as a switch (controlling power on or off) or rectifier (converting AC to DC) in power electronics, for example, in frequency conversion home appliance, EVs, EV chargers, welding inverter, industrial robots, etc. As of 2019, Power semiconductors was a US$41bn global market, or c.10% of global semiconductor market size.

Power semiconductors could be divided into two parts: (1) Power discrete and (2) Power IC, with each parts roughly contributing 50% of the power semiconductors market size by revenue. When a power semiconductor device is in the form of integrated circuit, it is called Power IC, otherwise referred to as a power discrete.

Power semiconductors is a US$41bn market globally, and within this market, we are positive on IGBTs and MOSFETs, given the growing market driven by (1) rising energy efficiency requirement in multiple applications such as EV, industrial control, and home appliances, and (2) the rising demand for Chinese suppliers driven by a large domestic market and multiple Chinese brands in home appliances, automobiles and industrial look to diversify their supply chains amid growing trade tensions.

The global IGBT leaders usually cover a full range of applications from consumer electronics, automotive, and industrial controls, to power generation, infrastructure, and railway. Each of these sectors is analyzed in the report.

The global MOSFET leaders usually cover the full range of applications from consumer electronics, automotive, computing, motor driver, power supply, telecom network, EV charging, LED lighting, to medical. Each of these sectors is analyzed in the report.

The rapid growth of the power semiconductor market in recent years has been driven by the proliferation of computer and consumer electronics, such as desktop computers, notebooks, netbooks, smartphones, flat panel displays and portable media players that require sophisticated power management to improve power efficiency and extend battery life.

This report analyzes and forecasts the worldwide markets of power semiconductors by type, geographic region and application. The market by substrate type also focuses on new SiC and GaN materials and fabrication.

Table of Contents

Chapter 1. Introduction

  • 1.1. Manufacturing Processes Are Differentiation Factors
  • 1.2. Vertical Structure Devices Differ From Usual MOS Planar Structure
  • 1.3. Super Junction Processes
  • 1.4. GaN and SiC Semiconductors

Chapter 2. Applications of Power Semiconductors

  • 2.1. Power Semiconductors in Renewable Energy
    • 2.1.1. Solar
    • 2.1.2. Wind
  • 2.2. Power Semiconductors in Hybrid & Electric Vehicles
    • 2.2.1. Automotive Megatrends
    • 2.2.2. Wide Bandgap Devices for HEVs/EVs
  • 2.3. Power Semiconductors in LED Lighting
  • 2.4. Power Semiconductors in Industrial Motor Drives
  • 2.5. Power Semiconductors in Smart Home Market
  • 2.6. GaN and SiC Market Forecast For End Applications

Chapter 3. Market Analysis

  • 3.1. Position of Power Semiconductors in Semiconductor Market
  • 3.2. Growth Potential of IGBTs and Power MOSFETs
  • 3.3. IGBT Market
    • 3.3.1. IGBT Technology Trends
    • 3.3.2. IGBT TAM
    • 3.3.3. IGBT Market Growth By Applications
      • 3.3.3.1 Automotive
      • 3.3.3.2 Power Generation And Grid
      • 3.3.3.3 Consumer Electronics
      • 3.3.3.4 Industrial Controls
      • 3.3.3.5 Railway/Train
      • 3.3.3.6 EV Charging Systems
    • 3.3.4 IGBT Competitive Landscape
      • 3.3.4.1 Global And China Market Share
      • 3.3.4.2 IGBT Business Model
      • 3.3.4.3 Technology Gap Between China And Global Players
  • 3.4. MOSFET TAM
    • 3.4.1. MOSFET TAM Methodology
    • 3.4.2. MOSFET Market Growth By Applications
      • 3.4.2.1 Automotive
      • 3.4.2.2 EV Charging
      • 3.4.2.3 Industrial And Medical
      • 3.4.2.4 Consumer
      • 3.4.2.5 Telecom Network
      • 3.4.3.6 Computing
    • 3.4.4. MOSFET Competitive Landscape
      • 3.4.4.1 Global And China Market Share
      • 3.4.4.2 China Suppliers' Technology/Product Gaps Vs Global Peers
  • 3.5. Emerging End Application Markets
    • 3.5.1. Electric Vehicles
    • 3.5.2. 5G Infrastructure
  • 3.4. Wide Bandgap Power Semiconductor Market

Chapter 4. Next-Generation Power Semiconductors

  • 4.1. Expectations for Overcoming Silicon's Limitations
  • 4.2. Expectations Of SiC and GaN as Next-Generation Substrates
  • 4.3. Benefits of Wide Band Gap Semiconductors
  • 4.4. SiC versus GaN
    • 4.4.1. Material Properties
    • 4.4.2. Material Quality
    • 4.4.3. SiC Lateral Devices:
    • 4.4.4. SiC Vertical Devices
    • 4.4.5. GaN Lateral Devices
  • 4.5. Fabrication of SiC devices
    • 4.5.1. Bulk and Epitaxial Growth of SiC
      • 4.5.1.1 Bulk Growth
      • 4.5.1.2 Epitaxial Growth
      • 4.5.1.3 Defects
    • 4.5.2. Surface Preparation
    • 4.5.3. Etching
    • 4.5.4. Lithography
    • 4.5.5. Ion Implantation
    • 4.5.6. Surface Passivation
    • 4.5.7. Metallization
  • 4.6. Fabrication of GaN devices
    • 4.6.1. GaN Challenges
      • 4.6.1.1 Costs
      • 4.6.1.2 Reliability
      • 4.6.1.3 Component Packaging and Thermal Reliability
      • 4.6.1.4 Control
      • 4.6.1.5 Device Modeling
  • 4.7. Packaging

Chapter 5. Company Profiles

  • 5.1. Power Semiconductor Companies
    • 5.1.1. Infineon
    • 5.1.2. Mitsubishi
    • 5.1.3. Toshiba
    • 5.1.4. STMicroelectronics
    • 5.1.5. Vishay
    • 5.1.6. Fuji Electric
    • 5.1.7. Renesas
    • 5.1.8. Semikron
    • 5.1.9. NXP Semiconductors
    • 5.1.10. Hitachi Power Semiconductor Device
    • 5.1.11. X-Rel Semiconductor
    • 5.1.12. Advanced Linear Devices
    • 5.1.13 Nexperia
    • 5.1.14. Rohm
    • 5.1.15. Sanken Electric
    • 5.1.16. Shindengen Electric
    • 5.1.17. Microchip Technology
    • 5.1.18. GeneSiC Semiconductor
    • 5.1.19. Semisouth Laboratories
    • 5.1.20. United Silicon Carbide
    • 5.1.21. MicroGaN
    • 5.1.22. Powerex
    • 5.1.23. Nitronix
    • 5.1.24. Transform
    • 5.1.25. Allegro Microsystems
    • 5.1.26. GaN Systems
    • 5.1.27 Navitas Semiconductor
    • 5.1.28. Alpha and Omega Semiconductor
    • 5.1.29. ON Semiconductor
    • 5.1.30. Jilin Sino-Microelectronics
    • 5.1.31. BYD Microelectronics
    • 5.1.32. Yangzhou Yangjie Electronic Technology
    • 5.1.33. StarPower
    • 5.1.34. Sino Micro
    • 5.1.35. Yangjie
    • 5.1.36. Jiejie
    • 5.1.37. GoodArk
    • 5.1.38. NCE Power
  • 5.2. SiC Wafer-Related Companies
  • 5.3. GaN Wafer-Related Companies

LIST OF FIGURES

  • 1.1. Evolution Of IGBT Chip Structure
  • 1.2. Effects Of Miniaturization Of IGBT Chip
  • 1.3. SiC Trench-Type MOSFET And Resistance Reduction As Compared With DMOSFET
  • 1.4. Planar And Vertical (Trench) MOSFET
  • 1.5. Schematic Of A FinFET
  • 1.6. Schematic Of A MOSFET And Super Junction MOSFET
  • 1.7. SiC U MOSFET
  • 2.1. Forecast Of Solar Power
  • 2.2. Full Bridge IGBT Topology
  • 2.3. Block Diagram Of Microcontroller-Based Inverter
  • 2.4. Worldwide Wind Turbine Shipments
  • 2.5. Top Wind Power Capacity by Country
  • 2.6. Bill Of Materials For A Typical 30-50kw Inverter
  • 2.7. A Simple Diagram Of A HEV Traction Drive System.
  • 2.8. A More Complex Diagram Of PEEM In A Plug-In Hybrid Electric Vehicle (PHEV)
  • 2.9. Conducting And Switching Loses For Inverter
  • 2.10. Unit Pricing Trends In Power Semiconductors
  • 2.11. System And Component Costs For Wide Bandgap Semiconductors
  • 2.12. Vertical And Lateral HEMT
  • 2.13. GaN Lateral And GaN Vertical HEMTs In EVs
  • 2.14. Market Drivers For LED Biz And Applications
  • 2.15. SSL Vs. Classical Technologies
  • 2.16. LED Performance Vs. Traditional Light Sources
  • 2.17. Energy Production And Use Comparison
  • 2.18. Typical LED Drive Circuit
  • 2.19. Integration Of LED And LED Driver Using TSV
  • 2.20. Simple Power MOSFET Motor Controller
  • 2.21. Basic Operating Principle Of Inverter
  • 2.22. System Block Diagram Of An Air Conditioner
  • 3.1. Mitsubishi's IGBT (Insulated Gate Bipolar Transistor) Generations
  • 3.2. Infineon's MOSFET Generations
  • 3.3. Intel's FinFET Design
  • 3.4. Fuji's MOSFET versus Super Junction MOSFET
  • 3.5. NEC's GaN-on-Si Power Transistor
  • 3.6. Fujitsu's GaN-on-SiC HEMT Transistor
  • 3.7. Power Semiconductor Market Forecast
  • 3.8. Power Semiconductor Market Shares
  • 3.9. Market Forecast For Super Junction MOSFET
  • 3.10. SJ MOSFETs as an Interim Solution
  • 3.11. Global IGBT Shares By Application
  • 3.12. China IGBT Shares By Application
  • 3.13. Global And China Automotive IGBT Forecast
  • 3.14. Global And China Power Generation IGBT Forecast
  • 3.15. Global And China Consumer IGBT Forecast
  • 3.16. Global And China Industrial IGBT Forecast
  • 3.17. Global And China Industrial IGBT Forecast
  • 3.18. Global And China EV Charging IGBT Forecast
  • 3.19. Global IGBT Module Market Shares
  • 3.20. Global IGBT Discrete Market Shares
  • 3.21. Global MOSFET Shares By Application
  • 3.22. China MOSFET Shares By Application
  • 3.23. Global And China Automotive MOSFET Forecast
  • 3.24. Global And China EV Charging MOSFET Forecast
  • 3.25. Global And China Industrial MOSFET Forecast
  • 3.26. Global And China Consumer MOSFET Forecast
  • 3.27. Global And China Telecom MOSFET Forecast
  • 3.28. Global And China Telecom MOSFET Forecast
  • 3.29. MOSFET Market Shares
  • 3.30. Power Demands For ICE And EV
  • 3.31. 5G Demand for Power Semiconductors
  • 3.32. Forecast of Wide Bandgap Semiconductor Market
  • 4.1. Silicon-Based Devices Reaching Maturity
  • 4.2. Enhancement Mode GaN On Si Transistor
  • 4.3. AlGaN/GaN HEMT, GaN MOSFET, MOS-HEMT
  • 4.4. GaN HEMT Material Structure On Si Substrate
  • 4.5. Power Package Integration Roadmap

LIST OF TABLES

  • 2.1. Product Families And The Principal End Uses Of Power Products
  • 2.2. Forecast Of On-Grid Inverters By Type
  • 2.3. EV Shipment Forecast
  • 2.4. Advantages And Disadvantages Of GaN Lateral HEMTs
  • 2.5. Light Source Comparison
  • 2.6. Forecast Of GaN And SiC Power Devices By End Applications
  • 3.1. Power Semiconductor Forecast for Electric Vehicles
  • 3.2. 5G Semiconductor Total Available Market Forecast
  • 4.1. Physical Properties Of Select Semiconductor Materials
  • 4.2. Wide Bandgap Material Properties
  • 4.3. Lattice Constant And CTE Of Semiconductor Starting Material
  • 4.4. GaN FET Vs Si MOSFET Characteristics
  • 4.5. Standard Chemical Solution For Surface Preparation Of SiC Substrates
  • 4.6. Interface Trap Densities For 4H-SiC Under Different Process Conditions