高科技產業中的稀土:中國禁運中的市場分析與預測
市場調查報告書
商品編碼
1266889

高科技產業中的稀土:中國禁運中的市場分析與預測

Rare Earths Elements In High-Tech Industries: Market Analysis And Forecasts Amid China's Trade Embargo

出版日期: | 出版商: Information Network | 英文 | 商品交期: 2-3個工作天內

價格
簡介目錄

本報告探討了稀土應用和市場,提供了特別關注高科技行業的分析,例如半導體、HDD、LCD、消費品和綠色技術。

內容

第一章介紹

第二章稀土產業

  • 中國稀土產業
    • 在中國製作
    • 中國稀土生產結構
    • 中國稀土消費結構
    • 中國稀土出口
    • 中國稀土行業近期活動
  • 其他地區的稀土產業
    • 美國
    • 加拿大
    • 南非
    • 澳大利亞
    • 格陵蘭島
    • 阿根廷
    • 印度
    • 俄羅斯
  • 礦業公司簡介

第三章:稀土市場分析

  • 概覽
  • 稀土市場
    • 國內生產和消費
    • 中國的生產和消費
  • 全球稀土市場分析

第四章對高科技應用的影響

  • 概覽
  • 半導體
    • 技術的影響
    • 使用的稀土材料
    • 受影響的半導體器件/材料的市場預測
  • 硬盤驅動器 (HDD)
    • 技術的影響
    • 使用的稀土材料
    • 受影響的 HDD 設備/材料的市場預測
  • 移動設備、移動互聯網設備
    • 技術的影響
    • 使用的稀土材料
    • 受影響的移動設備/材料的市場預測
  • 固態照明 - LED/CFL
    • 技術的影響
    • 使用的稀土材料
    • 受影響的 LED 設備/材料的市場預測
  • 綠色技術
    • 技術的影響
    • 使用的稀土材料
    • 受影響的綠色設備/材料的市場預測
    • 其他綠色技術

第五章美國戰略金屬展望

  • 稀土金屬在國防中的應用
  • 稀土資源和生產潛力
  • 供應鏈問題
  • 第115屆國會通過稀土法

第 6 章歐洲戰略金屬展望

  • 重要性評級
    • 地質和技術可用性
    • 關鍵術語和定義
    • 地質可用性
    • 技術開發
    • 地緣政治和經濟可用性
  • 結果和關鍵成分列表
    • 經濟重要性和供應風險
    • 原材料需求的未來展望 - 技術變革的影響
    • 新技術和原材料

第 7 章重建美國供應鏈

  • 材料供應鏈的挑戰和機遇
  • 價格上漲的影響:按應用分類
簡介目錄

Rare earth elements (REE) are a group of 15-17 elements comprising the lanthanides (atomic numbers 57-71) plus yttrium and scandium. Rare earths have a number of specific optical, magnetic and catalytic properties which drive demand across a wide range of applications. However, by volume, permanent magnets and catalysts account for more than half of global demand. The weighting towards permanent magnets is even higher when looked at on a value perspective, with some estimates that the application accounted for over 90% of rare earth demand in 2020. As such, it is the key driver of the market.

The structural shift to the green economy is a significant driver of our bullish outlook on rare earth prices. In particular, an increasing shift to electric vehicles (EV) is expected to drive a significant increase in demand for rare earths, particularly neodymium. Adding 2kg of REE in the form of a rare earth electric vehicle drive results in motor efficiency 2-5% higher than alternatives, saving energy over its lifetime. Being more efficient, the target range for an EV is achieved with a smaller, lighter and cheaper battery, which is critical given the battery represents around 50% of the cost of an EV.

The RE supply chain encompasses everything from mining and separation through to alloying, metal making and eventual manufacturing in catalysts, magnets etc. While mining is relatively straightforward, separation of concentrate to oxide is not, reflecting both the financial and technical hurdles of separation, plus its environmental impacts. As a result, the vast majority of LREE separation is done in China, with the notable exception of Lynas' Malaysian facility and soon-to-be commissioned MP Material's facility. All HREE separation is done in China. This monopoly on separation has led to China's domination of downstream metal, alloy and magnet making, and while countries like the U.S might like to change that, China's status reflects over two decades of investment and an undeniable market leader position in terms of rare earth reserves. In the next section, we cover global reserves, mine supply, key producers and projects, plus some of the key magnet makers.

This report analyzes applications and markets for rare earth materials, with particular emphasis on high-tech industries such as semiconductors, HDDs, LCDs, consumer products, and green technology.

Table of Contents

Chapter 1. Introduction

  • 1.1. Rare Earth Element Characteristics
  • 1.2. Rare Earth Element Resources
  • 1.3. Overview of Rare Earth Element Applications

Chapter 2. Rare Earth Industry

  • 2.1. China' Rare Earth Industry
    • 2.1.1. China's Production
    • 2.1.2. China Rare Earth Production Structure
    • 2.1.3. China Rare Earth Consumption Structure
    • 2.1.4. China Export of Rare Earths
    • 2.1.5. Recent Activities Of China's Rare Earth Industry
      • 2.1.5.1 Consolidation Of China's Rare Earth Industry
      • 2.1.5.2 Export Quotas
  • 2.2. Rest Of World's Rare Earth Industry
    • 2.2.1. UNITED STATES
      • 2.2.1.1 Mountain Pass
      • 2.2.1.2 Utah Rare Earth Project
      • 2.2.1.3 Bear Lodge Rare-Earth Project
      • 2.2.1.4 Elk Creek
      • 2.2.1.5 Bokan-Dotson Ridge
      • 2.2.1.6 Diamond Creek
      • 2.2.1.7 Lemhi Pass
    • 2.2.2. CANADA
      • 2.2.2.1 MacLeod Lake Project
      • 2.2.2.2 Hoidas Lake
      • 2.2.2.3 Benjamin River Project
      • 2.2.2.4 Douglas River Project
      • 2.2.2.5 Nechalacho Rare Earth Element Project
      • 2.2.2.6 Archie Lake
      • 2.2.2.7 Bulstrode Rare Earth Property
      • 2.2.2.8 Mount Copeland
      • 2.2.2.9 Cross Hills Newfoundland
      • 2.2.2.10 Kipawa
      • 2.2.2.11 Strange Lake
      • 2.2.2.12 Ytterby
      • 2.2.2.13 Grevet REE
      • 2.2.2.14 Turner Falls
    • 2.2.3. SOUTH AFRICA
      • 2.2.3.1 Steenkampskraal Mine South Africa
    • 2.2.4. AUSTRALIA
      • 2.2.4.1 Nolans Bore
      • 2.2.4.2 Mount Weld
      • 2.2.4.3 Jungle Well/ Laverton
    • 2.2.5. GREENLAND
      • 2.2.5.1 Kvanefjeld Project
    • 2.2.6. ARGENTINA
      • 2.2.6.1 Cueva del Chacho
      • 2.2.6.2 Susques Property - Jujuy Province
      • 2.2.6.3 John Galt Project
    • 2.2.7. INDIA
      • 2.2.7.1 Indian Rare Earth
    • 2.2.8. RUSSIA
      • 2.2.8.1 Kutessay II
  • 2.3. Profiles of Mining Corporations

Chapter 3. Rare Earth Market Analysis

  • 3.1. Overview
  • 3.2. Rare Earth Market
    • 3.2.1. Domestic Production and Consumption
    • 3.2.2. China Production and Consumption
  • 3.3. Global Rare Earth Market Analysis

Chapter 4. Impact on Hi-Tech Applications

  • 4.1. Overview
  • 4.2. Semiconductors
    • 4.2.1. Technology Impacted
      • 4.2.1.1 High-k Dielectrics
      • 4.2.1.2 Polishing Powders
    • 4.2.2. Rare Earth Material Used
    • 4.2.3. Market Forecast of Impacted Semiconductor Devices/Materials
  • 4.3. Hard Disk Drives (HDDs)
    • 4.3.1. Technology Impacted
      • 4.3.1.1 Neo Magnets for HDDs
      • 4.3.1.2 High Strength Glass Substrates
      • 4.3.1.3 Polishing Materials
    • 4.3.2. Rare Earth Material Used
    • 4.3.3. Market Forecast of Impacted HDD Devices/Materials
  • 4.4. Mobile and Mobile Internet Devices
    • 4.4.1. Technology Impacted
    • 4.4.2. Rare Earth Material Used
    • 4.4.3. Market Forecast of Impacted Mobile Devices/Materials
  • 4.5. Solid State Lighting - LED/CFL
    • 4.5.1. Technology Impacted
      • 4.5.1.1 Phosphors for Light Emitting Diodes (LEDs)
      • 4.5.1.2 Phosphors for Compact Fluorescent Lamps (CFL)
    • 4.5.2. Rare Earth Material Used
    • 4.5.3. Market Forecast of Impacted LED Devices/Materials
  • 4.6. Green Technology
    • 4.6.1. Technology Impacted
      • 4.6.1.1 Magnets for Hybrid Vehicle Electric Motors and Brakes
      • 4.6.1.2 Neo Magnets for Wind Turbines
      • 4.6.1.3 Cerium for Catalytic Converters for Automobiles
    • 4.6.2. Rare Earth Material Used
    • 4.6.3. Market Forecast of Impacted Green Devices/Materials
    • 4.6.4. Other Green Technologies

Chapter 5. U.S Strategic Metal Perspective

  • 5.1. The Application of Rare Earth Metals in National Defense
  • 5.2. Rare Earth Resources and Production Potential
  • 5.3. Supply Chain Issues
  • 5.4. Rare Earth Legislation in the 115th Congress

Chapter 6. European Strategic Metal Perspective

  • 6.1. Assessing Criticality
    • 6.1.1. Geological And Technical Availability
    • 6.1.2. Key Terms And Definitions
    • 6.1.3. Geological Availability
    • 6.1.4. Technological Development
    • 6.1.5. Geopolitical-Economic Availability
  • 6.2. Results And List Of Critical Raw Materials
    • 6.2.1. Economic Importance And Supply Risks
    • 6.2.2. Future Perspectives On Raw Material Demand - Implications Of Technological Change.
    • 6.2.3. Emerging technologies and raw materials

Chapter 7. Rebuilding a U.S. Supply Chain

  • 7.1. Materials Supply Chain Challenges And Opportunities
  • 7.2. Impact of Price Hikes by Application

TABLES

  • 1.1. Selected Rare Earth Element Bearing Products
  • 1.2. Rare Earths Elements And Some Of Their End Uses
  • 2.1. World Mine Production and Reserves
  • 2.2. Global Rare Earth Supply/Demand
  • 2.3. China's Rare Earth Export Volume And Export Amount
  • 3.1. U.S. Rare Earth Statistics
  • 3.2. China FOB Export Prices
  • 3.3. Rare Earth Elements: World Production And Reserves
  • 3.4. Rare Earth Oxide Demand-Supply
  • 3.5. Rare Earth Composition By End Use
  • 4.1. Battery Market Forecast
  • 4.2. Forecast of CMP Slurry
  • 4.3. Market Forecast for Hard Disk Drives
  • 4.4. Neodymium Consumption For Hard Disk Drives
  • 4.5. Market Forecast For Ceria Slurry For Glass Disks
  • 4.6. Shipment Forecast Of Smartphones
  • 4.7. Neodymium Consumption For Smartphones
  • 4.8. Demand of Rare Earths in CFLs/LEDs
  • 4.9. Market forecast of Backlight LEDs by Application
  • 4.10. Shipment Forecast Of Electric Vehicles
  • 4.11. Neodymium Consumption For Electric Vehicles
  • 4-12. Shipment Forecast Of Internal Combustion Engine Vehicles
  • 4-13. Ceria Consumption For Catalytic Converters
  • 4-14. Shipment Forecast Of Wind Turbines
  • 4-15. Neodymium Consumption For Wind Turbines
  • 6.1. Rare Earth Applications
  • 6.2. Global Metal Production
  • 7.1. NdFeB Permanent Magnet Supply Chain Steps

FIGURES

  • 1.1. Periodic Table Of Rare Earth Elements
  • 1.2. Abundance Of The Rare Earth Elements
  • 1.3. Rare Earth Production Since
  • 1.4. China's Rare Earth Dominance
  • 2.1. Rare Earth Proportion And Distribution In China
  • 2.2. Production Of Rare Earth Concentrates Since
  • 2.3. Production Of Rare Earth Oxides Since
  • 2.4. China Mining Quota By Company - 2018
  • 2.5. China Rare Earth Oxide Exports By Destination - 2018
  • 2.6. China Rare Earth Metal Exports By Destination - 2018
  • 2.7. China's Rare-Earth Exports
  • 2.8. Rare Earth Prices - 2008-2019
  • 3.1. U.S. Distribution Of Refined Rare Earth Products
  • 3.2. Rare-Earth Price Index
  • 3.3. Comparison Of Rare Earth Consumption Between China And The World
  • 3.4. Global Supply-Demand Forecast
  • 3.5. REE Demand By Volume
  • 3.6. REE Demand By Value
  • 3.7. REE Applications By Volume
  • 3.8. REE Applications By Value
  • 3.9. REE Composition By End Use
  • 3.10. Approximate Percentage Content Of Current And Prospective Ores
  • 4.1. Application Market Share by Volume
  • 4.2. Illustration of MOSFET and Gate Oxide
  • 4.3. STI CMP Using Ceria
  • 4.4. Hafnium Demand for Semiconductors
  • 4.5. HDD Drive and Neo Magnets
  • 4.6. Traditional Design of a 5-mm white LED
  • 4.7. Scattered Photon Extraction white LED
  • 4.8. Supply Chain for Fluorescent Lighting
  • 4.9. EV Rare Earths Applications
  • 4.10. Wind Turbine Motor
  • 4.11. Supply Chain for Permanent Magnets
  • 4.12. Catalytic Converter for Automobiles
  • 5.1. Rare Earth Elements: World Production And Reserves
  • 6.1. Supply Of Strategic Metals To The European Union