NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

突破性創新可加速塑料分解

Breakthrough Innovations Enhancing Plastics Degradation

出版商 Frost & Sullivan 商品編碼 985479
出版日期 內容資訊 英文 71 Pages
商品交期: 最快1-2個工作天內
價格
突破性創新可加速塑料分解 Breakthrough Innovations Enhancing Plastics Degradation
出版日期: 2020年12月23日內容資訊: 英文 71 Pages
簡介

根據聯合國的資料,塑料在現代生活方式中的普遍影響每年產生約3億噸化石燃料基塑料。到目前為止,約有一半的塑料在一次性使用後便被丟棄,最終約有60%的廢物被填埋或存儲在環境中。到2050年,塑料廢物的產生量預計每年將超過1200 MMT。

這使塑料成為陸地和海洋污染的主要來源,並對生物多樣性構成重大威脅。塑料回收技術是20年前引入的,但尚未大規模發現。塑料回收技術經常面臨著將廢物有效,經濟地轉化為有價值的資源的挑戰,因此塑料廢物總是被傾倒在垃圾填埋場中,或者被附近的水資源(微塑料)沖走。化學回收和焚化過程顯示出良好的轉化率,但是這些方法會產生有害排放物和有害氣體。

由於其複雜的結構,塑料需要50到1000年的長時間分解。因此,以更高的分解速度進行塑料分解的技術進步是緊迫的問題。

本報告分析了塑料分解(塑料分解)技術在世界各地的傳播情況,概述了該技術,主要的分解方法(生物,物理化學方法等)以及迄今為止的技術發展,我們將為您提供包括有關變動和未來可能性的信息,與介紹,主要公司的介紹/方法狀態,戰略發展/資本交易的變動,未來增長機會和問題有關的問題。

目錄

第1章戰略挑戰

第2章執行摘要

  • 分析範圍
  • 分析方法
  • 分析要點:塑料分解技術
  • 聚乙烯基塑□□料:廣泛用於各種行業
  • 物理化學和生物分解過程:塑料廢物管理的可持續替代方案
  • 通過回收塑料劣化的必要性
  • 對與生物和物理化學分解過程有關的研發(R&D)活動非常感興趣
  • 塑料分解:塑料廢物管理的可持續替代方案

第3章技術評估

  • 塑料分解過程的類型
  • 通過瞭解影響分解過程的因素來優化塑料廢物的分解過程
  • 通過混合過程加速物理劣化
  • 化學分解工藝的未來發展:包括具有成本效益和環保的方法
  • 在物理化學分解過程中開發可持續方法
  • 一項旨在促進分解蔓延的可持續發展塑料廢物管理的可持續方法
  • 在化學分解過程中採用經濟高效的催化劑
  • 由於碳和VOC氣體的高風險,限制了化學分解過程的使用
  • 低降解率限制了物理降解的採用
  • 缺乏有關理化分解過程中能耗的知識
  • 塑料廢料的生物分解:商業化仍然有限
  • 催化劑的高成本限制了物理化學分解的擴散
  • 塑料廢料的生物分解:商業化仍然有限

第4章創新指標

  • 熱解工藝的未來
  • 通過結合使用各種工藝來優化生物降解工藝
  • 對整個歐洲和亞太地區的化學和物理化學研究活動表現出濃厚的興趣
  • 鹼水解:一種新的化學分解方法
  • 在過去三年中,整個歐洲的專利活動有所擴大
  • 對採用可持續替代聚氨酯對苯二甲酸酯(PET)降解的替代方案非常感興趣
  • 許可使用塑料降解技術的機會有限
  • 對優化生物降解過程的興趣日益濃厚
  • 北美和歐洲對政府資金的濃厚興趣

第5章新型冠狀病毒感染(COVID-19):對技術發展的影響

  • 聚合物技術的降解:明智的選擇,可以解決傳播COVID-19感染的塑料廢料

第6章推薦的行為(C2A)

  • 在北美傳播和優化可持續分解過程
  • 加強微生物分解技術
  • COVID-19可持續的替代方案,以消除不斷增長的塑料廢物爆發
  • 支持引入大規模微生物分解過程
  • 混合分解技術在歐洲的普及
  • 使用添加劑開發具有成本效益的分解技術
  • 北美可持續生物降解過程的發展
  • 未來的可能性:高性能□促分解工藝的發展
  • 未來的可能性:廢物管理行業發展循環經濟方法
  • 未來可能性:製造可調節的生物降解工藝
  • 未來可能性:開發可持續的聚苯乙烯廢物分解途徑
  • 未來的可能性:在歐洲採用大規模,高性能的生物降解
  • 未來的可能性:亞太地區生物降解的介紹

第7章成長機會

  • 成長機會(1):塑料降解是COVID-19方案中的可持續解決方案-未來市場機會
  • 成長機會(2):使用混合工藝開發可持續的塑料分解替代方案

第8章主要公司的聯繫信息

下一步

目錄
Product Code: D9E7

Technology development focusing on sustainable degradation pathways for managing plastic waste

The omnipresent influence of plastics in modern lifestyle has led to the production of about 300 million tons of fossil fuel-based plastics annually, according to the UN. About half of the total plastics produced till date are thrown away after a single use, and about 60% of the waste ends up in landfills or accumulates in the environment. It is predicted that by 2050, the amount of plastic waste generated will be more than 1,200MMT per year.

This makes plastics a major contributor to land and marine pollution and poses a big threat to the biodiversity. Although plastic recycling technologies are introduced 2 decades ago, they still haven't witnessed the wide-scale adoption. Plastic recycling technologies often face challenges to efficiently and economically convert plastic waste into a valuable resource and the plastic waste invariably ends up in the landfills or washes away to the nearby water resource and resides as micro-plastic. Although chemical recycling and incineration process show good conversion rates, these methods produce harmful emissions and hazardous gases.

Plastics due to its complex structure, requires longer period of time to degrade from a minimum of 50 years up to 1000 years, hence technology advancement in plastic degradation with enhanced degradation rates is the need of the hour. This research study hence focuses on the importance of plastic degradation, the types of plastic degradation technologies, factors influencing the adoption of plastic degradation and the benefits of plastic degradation.

The research study also focuses on:

  • Innovations and research developments covering plastic degradation technologies
  • Acquisitions and partnerships
  • IP analysis and comparative assessments
  • Companies to action and growth opportunities.

Table of Contents

1.0 Strategic Imperatives

  • 1.1 The Strategic Imperative 8™
  • 1.2 The Strategic Imperative 8™
  • 1.3 The Impact Of The Top Three Strategic Imperatives On Plastic Degradation Technologies
  • 1.4 About The Growth Pipeline Enginetm
  • 1.5 Growth Opportunities Fuel The Growth Pipeline Engine™

2.0 Executive Summary

  • 2.1 Research Scope
  • 2.2 Research Methodology
  • 2.3 Key Findings - Plastic Degradations Technology
  • 2.4 Polyethylene-based Plastic Is Commonly Used in Various Industries
  • 2.5 Physicochemical and Biological Degradation Process Is a Sustainable Alternative for Managing Plastic Waste
  • 2.6 Need for Plastic Degradation Over Recycling
  • 2.7 High Interest in the R&D Efforts Related to Biological and Physicochemical Degradation Process
  • 2.8 Plastic Degradation is a Sustainable Alternative for Plastic Waste Management

3.0 Technology Assessment

  • 3.1 Types of Plastic Degradation Processes
  • 3.2 Optimizing the Degradation Process of Plastic Waste by Understanding the Factors Influencing the Degradation Process
  • 3.3 Enhancing Physical Degradation through Hybrid Processes
  • 3.4 Future Development of Chemical Degradation Processes will Involve Cost Efficient and Environmentally Friendly Approaches
  • 3.5 Developing Sustainable Approaches in the Physicochemical Degradation Process
  • 3.6 Initiatives across Regions are Aimed at Enhancing Degradation as a Sustainable Pathway in Plastic Waste Management
  • 3.7 Adoption of Cost-efficient Catalyst in Chemical Degradation Process
  • 3.8 High Risk of Carbon and VOC Gases Limits the Adoption of the Chemical Degradation Process
  • 3.9 Low Degradation Rate Limits the Adoption of Physical Degradation
  • 3.10 Limited Knowledge on Energy Consumption of Physicochemical Degradation Process
  • 3.11 Limited Commercialization of Biological Degradation Method of Plastic Waste
  • 3.12 High Cost Catalyst Limits the Adoption of Physicochemical Degradation
  • 3.13 Limited Commercialization of Biological Degradation Method of Plastic Waste

4.0 Innovation Indicators

  • 4.1 Future Potential of the Thermal Degradation Process
  • 4.2 Optimizing the Biological Degradation Process through Combining the Processes
  • 4.3 Robust Interest of Chemical and Physicochemical Research Initiatives across the European and APAC Regions
  • 4.4 Alkaline Hydrolysis is an Emerging Chemical Degradation Process
  • 4.5 Growing Patent Activity Observed across the European Region in the Last Three Years
  • 4.6 High Interest in Adopting Sustainable Alternatives for Polyurethane Terephthalate (PET) Degradation
  • 4.7 Limited Opportunity of Licensing the Plastic Degradation Technology
  • 4.8 Growing Interest on Optimizing the Biological Degradation Process
  • 4.9 High Interest of Government Funding Across the North America and Europe Regions

5.0 COVID-19 Impact on the Technological Development

  • 5.1 Degradation of Polymer Technology as a Wisely Alternative in Addressing the Plastic Waste During the COVID-19 Pandemic

6.0 Companies & Research Institutes to Action

  • 6.1 Optimizing the Adoption of Sustainable Degradation Process Within the North America Region
  • 6.2 Enhancing the Microbial Degradation Technology
  • 6.3 Sustainable Alternative in Resolving the Robust Growth of Plastic Waste During the COVID-19 Pandemic
  • 6.4 Aiding the Adoption of Microbial Degradation Process on a Larger Scale
  • 6.5 Adoption of Hybrid Degradation Technology Within the Europe Region
  • 6.6. Developing a Cost-efficient Degradation Technology Through Additives
  • 6.7 Developing Sustainable Biological Degradation Process Within the North America Regions
  • 6.8 Future Potential of Developing High Performance Enzymatic Degradation Process
  • 6.9 Future Potential of Developing Circular Economy Approach Within the Waste Management Industry
  • 6.10 Future Potential on Fabricating Tunable Biological Degradation Process
  • 6.11 Future Potential in Developing a Sustainable Pathway in Degrading Polystyrene Waste
  • 6.12 Adoption of High Performance Biological Degradation at Larger Scale Within the Europe Region
  • 6.13 Future Potential in Adoption of Biological Degradation Within the Asia Pacific Regions

7.0 Growth Opportunities

  • 7.1 Growth Opportunity 1: Future Opportunity of Plastic Degradation as a Sustainable Solution in the COVID-19 Scenario
  • 7.1 Future Opportunity of Plastic Degradation as a Sustainable Solution in the COVID-19 Scenario (continued)
  • 7.2 Growth Opportunity 2: Development Sustainable Alternative of Plastic Degradation Through Hybrid Process
  • 7.2 Development Sustainable Alternative of Plastic Degradation Through Hybrid Process (continued)

8.0 Key Contacts

  • 8.1 Key Contacts

Next steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer