NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

具有業務模型的創新技術將推動視音頻平台和架構戰略的發展(2020)

Disruptive Technologies with Innovative Business Models Driving Platform and Architecture Strategies for AVs, 2020

出版商 Frost & Sullivan 商品編碼 963541
出版日期 內容資訊 英文 66 Pages
商品交期: 最快1-2個工作天內
價格
具有業務模型的創新技術將推動視音頻平台和架構戰略的發展(2020) Disruptive Technologies with Innovative Business Models Driving Platform and Architecture Strategies for AVs, 2020
出版日期: 2020年09月23日內容資訊: 英文 66 Pages
簡介

汽車行業正處於一個轉折點,傳統的商業模式已經崩潰,市場動態已發生變化,城市化和擁堵狀況有所加劇,排放和安全法規得到了加強,消費者對數字功能的期望也有所提高。對用戶安全的關注正在增加。生態系統不僅在出現新的業務模型時而且在技術方面都在迅速發展。

傳統上,大多數原始設備製造商和一級供應商都採用孤立的方法來開發聯網自動駕駛汽車。但是,從長遠來看,這種特殊的聚焦方法是不可行的。 OEM需要一種策略來探索應用程序開發的好處,並側重於技術三大支柱的融合。

OEM廠商還致力於增強其E/E架構,以處理不斷發展的傳感器和處理軟件套件中的海量數據。隨著本地服務器停止運行,車輛增加的數據攝取要求雲計算的重要性。

本報告探討了驅動視音頻平台和體系結構戰略的技術,並提供了有關增長機會,戰略和特定於平台的市場分析的信息。

目錄

執行摘要

  • 平台組件
  • 底盤平台
  • 電子平台
  • 軟件平台
  • 雲平台
  • 平台之間的夥伴關係策略
  • 重要結論

調查範圍和目的

  • 調查範圍
  • 在此調查中需要回答的重要問題

定義

  • 車輛細分
  • 自動操作標準
  • 目標電動汽車(xEV)

行業概述

  • 汽車行業形勢的變化
  • 形勢變化行業優化
  • OEM進行傳統開發的主要挑戰
  • 基於平台的CASE方法

車輛/底盤平台

  • 未來的自動駕駛汽車平台
  • 模塊化和滑板平台
  • 主要平台
  • OEM策略:滑板平台上的BEV

電子平台

  • E/E體系結構的演變
  • 傳感器硬件的發展
  • 自動化程度對傳感器數據融合的作用
  • EV功率組件
  • OEM E/E架構策略
  • 電動汽車電池和電機策略

軟件平台

  • 支持AD的主要車載軟件
  • 軟硬件解耦
  • 基於AI的軟件和傳統軟件
  • 機器學習的作用
  • 機器學習的實現
  • 自動駕駛軟件平台

雲和邊緣計算平台

  • AV的數據存儲和計算
  • 邊緣與雲計算
  • 雲邊緣計算模型
  • 雲存儲和計算
  • OEM雲戰略

案例融合

  • 案例融合
  • 案例收斂的含義

增長機會和建議

  • 成長機會-OEM/TSP的投資與合作夥伴關係
  • 成功與成長的戰略需求

重要結論

  • 重要結論 結論:三大預測
  • 免責聲明

附錄

目錄
Product Code: MF26-18

Growth Potential Enhanced by 4-layered Platform Approach Toward CASE

The automotive industry is at a tipping point, with traditional business models being disrupted, changing the market dynamics?increasing urbanization and congestion, tighter emission and safety regulations, evolving consumer expectations for digital features, and focus on user safety. The ecosystem is evolving at a rapid pace, not only through the emergence of new business models, but also on the technological front.

Traditionally, most OEMs and Tier-I suppliers have been taking the siloed approach for developments in connected, autonomous, and electric vehicles. However, this approach of singular focus is not viable for the long term. OEMs will need strategies that explore the benefits of developing applications focused on the convergence of the 3 technology pillars. To cope with this transition, automakers will need to realign their value proposition around these emerging dynamics and rethink their physical and digital platform strategies to harness the value of myriad types of data.

Powertrain electrification is among the most important strategies of every OEM to achieve the long-term vision of carbon-neutral mobility. OEMs are also aiming to create a consolidated chassis platform, which will be modular enough to handle multiple segments of vehicles. These factors will force the OEMs to shift from well-established legacy chassis platforms to multi-energy platforms (MEPs) and modular and dedicated electric platforms. OEMs are also focused on strengthening their E/E architecture, which can handle humongous data sizes from continuously evolving sensor suite and processing software. The rise of data ingestion per vehicle has called in the significance of cloud computation as on-premise servers become incapable.

The study covers the key platforms that OEMs need to focus on, as they shift their strategy to data-centric revenue models from traditional vehicle-centric business models. As every OEM strategizes their individual path toward CASE convergence, the expected evolution of the platforms are explored, along with major industry partnerships.

Key Issues Addressed:

  • How is the automotive industry shifting, and what are the implications of that shift on traditional OEM strategies?
  • Which are the 4 key platforms that OEMs need to focus on to align their strategy with future CASE convergence?
  • How is the chassis platform evolving, as the industry gears up for electrification and adding redundancies for L4 and L5 autonomy?
  • How will development toward higher-level autonomy affect the in-vehicle electronics and software, and how will the industry cope with increasing data?
  • What are specific OEMs and developers strategizing for the 4 key platforms?

Table of Contents

Executive Summary

  • Platform Components
  • Chassis Platform
  • Electronic Platform
  • Software Platform
  • Cloud Platform
  • Partnership Strategies across Platforms
  • Key Conclusions

Research Scope and Objectives

  • Research Scope
  • Key Questions this Study will Answer

Definitions

  • Vehicle Segmentation
  • Standards for Autonomous Driving
  • Electric Vehicle (xEV) in Scope

Industry Overview

  • Shifting Landscape of the Automotive Industry
  • Industry Optimizations Due to Shifting Landscape
  • Key Challenges for OEMs with Traditional Development
  • Platform-based Approach Toward CASE

Vehicle and Chassis Platform

  • Future Autonomous Vehicle Platforms
  • Modular and Skateboard Platforms
  • Key Platforms
  • OEMs' Strategy-BEVs on Skateboard Platform

Electronic Platform

  • Evolution of E/E Architecture
  • Evolution of Sensor Hardware
  • Role of Sensor Data Fusion by Level of Automation
  • EV Power Components
  • OEM E/E Architecture Strategies
  • EV Battery and Motor Strategy

Software Platform

  • Key In-vehicle Software Enabling AD
  • Software-Hardware Decoupling
  • AI-based Software Vs. Conventional Software
  • Role of Machine Learning
  • Implementation of Machine Learning
  • Autonomous Driving Software Platforms

Cloud and Edge Computing Platform

  • Data Storage and Computing for AVs
  • Edge Vs. Cloud Computing
  • Cloud-Edge Computation Models
  • Cloud Storage and Computation
  • OEM Cloud Strategy

CASE Convergence

  • CASE Convergence
  • Implications of CASE Convergence

Growth Opportunities and Companies to Action

  • Growth Opportunity-Investments and Partnerships from OEMs/TSPs
  • Strategic Imperatives for Success and Growth

Key Conclusions

  • Key Conclusions
  • The Last Word-3 Big Predictions
  • Legal Disclaimer

Appendix

  • Market Engineering Methodology
  • Abbreviations and Acronyms Used
  • List of Exhibits
  • List of Exhibits (continued)
  • List of Exhibits (continued)