市場調查報告書

實現無鈷電池的新創新

Emerging Innovations Enabling Cobalt-free Batteries

出版商 Frost & Sullivan 商品編碼 950645
出版日期 內容資訊 英文 40 Pages
商品交期: 最快1-2個工作天內
價格
實現無鈷電池的新創新 Emerging Innovations Enabling Cobalt-free Batteries
出版日期: 2020年06月30日內容資訊: 英文 40 Pages
簡介

需要有效的能量存儲解決方案,以建立具有集成化電動汽車和可再生能源電網的可持續能源生態系統。目前,最有希望的候選方法是鋰離子電池(LIB)化學技術,該技術將石墨陽極與鈷酸鋰陰極結合在一起以實現高能量密度。但是,眾所周知,LIB面臨另一個嚴峻挑戰,即電池製造原料的可用性以及價格挑戰。電池製造通常需要鋰,鎳,鎂和鈷以及其他金屬。由於鈷容易受到脆弱的全球供應鏈的影響,因此鈷尤其受到電池和電動汽車製造商的關注。世界各地的電池製造商都在不斷致力於無鈷電池化學方法的開發,這些數據是通過數據驅動來識別和製造電池供電化學方法中鈷的潛在替代品的。

本報告重點介紹無鈷電池化學的新創新和最新成就,以及它們各自的技術響應水平,並提供整個行業的最新趨勢和發展,以及政府對研發活動的支持。全球鈷供應鏈中的舉措和挑戰。

第1章執行儀表板

  • 研究範圍:問題和解決方案的預測
  • 分析框架:Frost&Sullivan的核心價值
  • 調查方法

第2章成長環境概述

  • 技術定義和適應
  • 技術比較:鈷基電池和無鈷電池
  • 錳和鎳是主要無鈷電池化學中鈷的替代品
  • 由於熱穩定性和有限的循環壽命而減少了無鈷電池化學物質的採用
  • 無鈷電池為電動汽車的增長提供可持續的未來
  • 鈷供應鏈問題將產業轉移到無鈷電池
  • 無鈷電池領域的領先公司
  • 監管支持推動了無鈷化學品的創新和採用

第3章推薦的行為/CTA

  • 使用源自海水的材料的無鈷電池
  • 碘作為陰極元件可實現經濟高效的電池設計
  • 基於高鎳含量的無鈷鋰離子電池
  • 鋁作為鈷替代品可實現經濟高效的無鈷電池
  • 固體聚合物電解質中的金屬氟化物:實現無鈷電池
  • 氟化鐵作為鈷替代品,可實現更高的能量密度,非常適合電動汽車應用
  • 鋰鎳錳氧化物(LNMO)正極材料,可實現無鈷電池
  • 具有成本效益的製造,高能量密度和快速充電功能推動了LNMO電池的發展
  • 基於納米材料複合材料的無鈷電池
  • 基於納米材料的複合材料電池的快速充電能力和高能量密度驅動研究
  • 基於有機化合物和納米材料的快速充電電池
  • 用於電動汽車的電池,不含鎳,鈷,鋁或鎂

第4章增長機會

  • 先進技術領先於無鈷電池化學
  • 北美和歐洲牽頭進行研發投資,以發展無鈷電池技術
  • 無鈷電池集成在電池供應鏈中,可以簡化進度

第5章技術和IP狀態

  • 中國領導無鈷電池的研發活動

第6章主要聯繫人

  • 行業聯繫人
  • 免責聲明
目錄
Product Code: D999

Fragility of the Global Cobalt Supply Chain Driving the Battery Manufacturers' Transition Towards Cobalt Free Battery Chemistries

The transition towards a sustainable energy eco-system with e-mobility and renewable energy integrated power grids require efficient energy storage solutions. As of now the most promising candidate of choice has been the Lithium-ion battery (LIB) chemistry, in which, a graphite anode is paired with a lithium cobalt oxide cathode, offering high energy density. However, LIBs are known to have a price challenge along with another serious challenge, the availability of raw materials for battery manufacturing. Battery manufacturing typically requires lithium, nickel, magnesium, and cobalt amongst other metals. Cobalt, in particular, is a matter of concern for battery and EV manufacturers due to Cobalt's vulnerability to a fragile global supply chain.

Battery manufacturers across the globe are continuously working towards the development of cobalt-free battery chemistries, and are also utilizing data-driven methods to identify and fabricate materials which have the potential to substitute cobalt in battery chemistries.

This research, 'Emerging Innovations Enabling Cobalt-free Batteries' focuses on the emerging innovations and the latest achievements in the cobalt-free battery chemistries and the respective technology readiness levels. In addition to above, recent trends and developments across the industry, government-level initiatives supporting research & development activities, along with the challenges present in the global cobalt supply chain is also provided.

Table of Contents

1.0. Executive Dashboard

  • 1.1. Research Scope - Foreseeing Challenges and Solutions
  • 1.2. Analysis Framework - Frost & Sullivan's Core Value
  • 1.3. Research Methodology

2.0. Growth Environment Overview

  • 2.1. Technology Definition and Indications
  • 2.2. Technology Comparison - Cobalt Based and Cobalt-free Batteries
  • 2.3. Manganese and Nickel as a Substitute for Cobalt in Major Cobalt Free battery Chemistries
  • 2.4. Thermal Stability and Limited Cycle Life Hindering the Adoption of Cobalt Free Battery Chemistries
  • 2.5. Cobalt-free Batteries Enabling a Sustainable Future for EV Growth
  • 2.6. Industry Moving towards Cobalt-free Batteries due to Challenges in Cobalt Supply Chain
  • 2.7. Prominent Movers and Shakers of the Cobalt-Free Battery Sector
  • 2.7. Prominent Movers and Shakers of the Cobalt-Free Battery Sector
  • 2.8. Regulatory Support Driving Innovations and Adoption of Cobalt Free Chemistries

3.0. Companies to Action

  • 3.1. Cobalt-free Battery Based on Materials Derived from Sea Water
    • 3.1.1. Enabling Cost effective Battery Design Utilizing Iodine as a Cathode Element
  • 3.2. Cobalt Free Lithium-ion Battery Based on High Nickel Content
    • 3.2.1. Aluminium as a Cobalt Replacement Enabling Cost Effective Cobalt Free battery
  • 3.3. Metal Fluorides in Solid Polymer Electrolyte: Enabling Cobalt Free Batteries
    • 3.3.1. Iron Fluoride as a Cobalt Replacement Enabling Higher Energy Density, Ideal for EV Applications
  • 3.4. Lithium Nickel Manganese Oxide (LNMO) Cathode Material Enabling Cobalt-free Battery
    • 3.4.1. Cost Effective Manufacturing, High Energy Density, and Fast Charging Capabilities Driving Advancements in LNMO Batteries
  • 3.5. Nanomaterial Composites Based Cobalt Free Battery
    • 3.5.1. Quick Charging Capability and High Energy Density Driving Research in Nanomaterial Composite Based Batteries
  • 3.6. Fast Charging Battery Based on Organic Compounds and Nanomaterials
  • 3.7. Battery for EV Applications without Nickel, Cobalt, Aluminum, and Magnesium

4.0. Growth Opportunities

  • 4.1. Advanced Technologies Paving the Way Ahead for Cobalt Free Battery Chemistries
  • 4.2. North America & Europe Leading R&D investments for Advancement in Cobalt Free Battery Technologies
  • 4.3. Integration Within the Battery Supply Chain Required for Streamlining Advancements in Cobalt Free Battery Landscape

5.0. Technology and IP - Landscape

  • 5.1. China Leads Research & Development Activity in Cobalt-free Batteries

6.0. Key Contacts

  • 6.1. Industry Contacts
  • Legal Disclaimer