市場調查報告書

人工光合作用的突破性創新

Breakthrough Innovations in Artificial Photosynthesis

出版商 Frost & Sullivan 商品編碼 950643
出版日期 內容資訊 英文 59 Pages
商品交期: 最快1-2個工作天內
價格
人工光合作用的突破性創新 Breakthrough Innovations in Artificial Photosynthesis
出版日期: 2020年06月30日內容資訊: 英文 59 Pages
簡介

能源供求之間的差距是世界上的主要挑戰之一,同時,用低二氧化碳燃料和中性燃料替代煤炭,石油和天然氣也變得非常重要。促進可再生能源和可持續能源生產的技術的發展將為當前的燃料供應提供替代方案,從而最大程度地減少溫室氣體排放並最終減少負面的環境影響。人工光合作用(AP)被認為是新興技術之一,有望為當今的化石燃料提供可持續的替代能源替代品。人造光合作用(AP)可用於生產氫氣和其他特殊化學品,並可作為多種高端應用的原料。在工業規模上將AP成功商業化有望在不遠的將來顯著減少人為二氧化碳排放並促進能源轉換。

本報告調查了人工光合作用的突破性創新,概述了人工光合作用,當前和新興的技術與創新以及增長機會。

內容

第1章執行摘要

  • 調查範圍
  • 調查過程和調查方法
  • 主要發現

第2章人工光合作用概述

  • 人工光合作用與自然光合作用之間的區別
  • 保留可再生能源,並通過人工光合作用將能量損失降至最低
  • 人工光合作用工藝的應用
  • 人工光合作用類型及其現狀
  • 確定氫生成速率和人工光合作用過程的步驟
  • 與人工光合作用過程相關的優勢和挑戰

第3章當前和新興的人工光合作用技術

  • 當前實現技術
  • 新技術

第4章基於最新技術的創新

  • 當前的人工光合作用技術
  • 人工光合作用的新興技術
  • 基於技術準備水平的創新生態系統的利益相關者
  • 成功驗證的用於特種化學品生產的混合工藝
  • 在交通運輸行業實現循環經濟的新概念輪胎
  • 旨在提高AP處理效率的新創新
  • 使用金納米晶體作為催化劑的光電催化
  • 使用分子催化劑的光電催化劑
  • 使用金屬催化劑和氮化物作為半導體的光電催化劑
  • 可高效產生氫氣和一氧化碳的下一代光電化學電池(PEC)
  • 用於將二氧化碳轉化為碳氫化合物的太陽能熱化學反應器

第5章增長機會

  • 研發投入
  • 技術融合
  • 研發聯盟

第6章分析師見解

  • 主要分析師對人造光合作用的見解

第7章主要聯繫人

  • 行業聯繫人
  • 免責聲明
目錄
Product Code: D97C

Advancements in Artificial Photosynthesis Processes that Enable Clean Energy Generation

The gap between energy demand and supply is one of the major global challenges and simultaneously, the replacement of coal, oil and natural gas with carbon dioxide lean or neutral fuels has also become very crucial . The development of technologies accelerating renewable and sustainable energy generation provides alternatives to the current fuel supplies, minimises greenhouse gas emissions and ultimately reduces the negative impact on the environment.

Artificial Photosynthesis (AP) is considered as one of the emerging technologies with a high potential of delivering sustainable alternatives to the current set of fossil fuels. AP can be used to produce hydrogen which and other speciality chemicals that can be used as feedstocks in a wide range of high end applications. Successful commercialization of AP at an industrial scale will definitely reduce anthropogenic carbon dioxide emissions by a significant amount and will also enable an easy energy transition in the near future.

Table of Contents

1.0. Executive Summary

  • 1.1. Research Scope
  • 1.2. Research Process and Methodology
  • 1.3. Key Findings

2.0. Overview of Artificial Photosynthesis

  • 2.1. Difference between Artificial Photosynthesis and Natural Photosynthesis
  • 2.2. Artificial Photosynthesis Stores Renewable Energy in the form of Specialty Chemicals thereby Minimizing Energy Loss
  • 2.3. Applications of the Artificial Photosynthesis Process
  • 2.4. Types of Artificial Photosynthesis and their Current Status
  • 2.5. Hydrogen Evolution is the Rate Determining Step in an Artificial Photosynthesis Process
  • 2.6. Benefits and Challenges Involved in Artificial Photosynthesis Processes

3.0. Current and Emerging Artificial Photosynthesis Technologies

  • 3.1 Current Enabling Technologies
    • 3.1.1. Co-Electrolysis and Photo-Electro catalysis are the Most Established Technologies in Artificial Photosynthesis
    • 3.1.2. Co-Electrolysis Produces Syngas which Can be Used as a Feedstock for many Industrial Processes
    • 3.1.3. Benefits and Challenges Associated with Co-Electrolysis
    • 3.1.4. Co-Electrolysis Processes are established and are Commercialized at a Lower Scale
    • 3.1.5. Generation of Hydrogen and Carbon Dioxide Reduction Using Photo electrochemical (PEC) Cells
    • 3.1.6. Benefits and Challenges Associated with Photoelectrocatalysis
    • 3.1.7. Photoelectrocatalysis Processes for Hydrogen Generation Have High TRL levels
    • 3.1.8. Comparative Analysis between Co-Electrolysis and Photoelectrocatalysis
    • 3.1.9. Research Trends Enhancing the Commercialization of AP Technologies
  • 3.2. Emerging Technologies
    • 3.2.1. Hybrid Processes Involve Integration of Biological Processes with AP to Enhance Generation of Specialty Chemicals
    • 3.2.2. Pilot Plants for the Hybrid Process Will be Tested with Increased Generation of Specialty Chemicals
    • 3.2.3. Nanotechnology-enabled Artificial Photosynthesis Offers High Surface Area and Better Light Absorption
    • 3.2.4. Nanotechnology Driven Multi-electron Reduction Process Provides Excellent Energy Conversion Efficiency
    • 3.2.5. Pilot Plants for Nano-catalysts Tested for Reverse Combustion of Carbon Dioxide to Generate Hydrocarbons
    • 3.2.6. Artificial Leaves are 10 Times More Efficient than Natural Photosynthesis
    • 3.2.7. More Research on the Permeable Membranes is carried out to Expedite Commercialization
    • 3.2.8. Comparative Analysis of Emerging Technologies
    • 3.2.9. Initiatives in Europe for Rapid Commercialization of Artificial Photosynthesis Processes
    • 3.2.10. Initiatives in APAC and North America for Rapid Commercialization of Artificial Photosynthesis Processes

4.0. Innovations based on Current and Emerging Technologies

  • 4.1. Research Focused on Current Technologies for Artificial Photosynthesis
  • 4.2. Research Focused on Emerging Technologies for Artificial Photosynthesis
  • 4.3. Stakeholders with Innovative Eco-systems based on Technology Readiness Levels
  • 4.4. Successfully Demonstrated Hybrid Processes for Generation of Specialty Chemicals
  • 4.5. New Concept Tires to Achieve Circular Economy in the Transportation Industry
  • 4.6. Novel Innovations to Enhance the Productivity of AP Processes
  • 4.7. Photoelectrocatalysis with Gold Nanocrystals as Catalyst
  • 4.8. Photoelectrocatalysis with Molecular Catalyst
  • 4.9. Photoelectrocatalysis Using Metal Catalyst and Nitride as Semiconductor
  • 4.10. Next-generation Photoelectrochemical Cells (PEC) for Efficient Hydrogen and Carbon Monoxide Generation
  • 4.11. Solar Thermal Chemical Reactor for Converting Carbon Dioxide to Hydrocarbons

5.0. Growth Opportunities

  • 5.1. Growth Opportunity - R&D Investment
  • 5.2. Growth Opportunity - Technology Convergence
  • 5.3. Growth Opportunity - R&D Partnership

6.0. Analyst Insights

  • 6.1. Key Analyst Insights on Artificial Photosynthesis

7.0. Key Contacts

  • 7.1. Industry Contacts
  • 7.1. Industry Contacts (continued)
  • Legal Disclaimer