市場調查報告書

促進農業DX(數位化轉型)的新創新

Novel Innovations Facilitating Digital Transformation of Agricultural Sector

出版商 Frost & Sullivan 商品編碼 950642
出版日期 內容資訊 英文 63 Pages
商品交期: 最快1-2個工作天內
價格
促進農業DX(數位化轉型)的新創新 Novel Innovations Facilitating Digital Transformation of Agricultural Sector
出版日期: 2020年06月30日內容資訊: 英文 63 Pages
簡介

通過創新的數字技術提高農場生產力和利潤率

聯合國糧食及農業組織(糧農組織)證實,人口增加,財富增加和城市化與對全球糧食安全的威脅日益增加有關。自1980年代以來,數位技術已在農業領域得到廣泛應用,精確農業已用於最大化和優化糧食生產。如今,全球各地的農場正從簡單的精確農業轉變為智能數位農業,並利用信息和通信技術(ICT)的優勢來推動DX(數位轉型)。智能耕作涉及通過在不同數位通路之間實時進行大量數據通信,將農場數據轉化為可行的見解。正在建立有效的方法來監視,跟蹤,分析和優化各種農業資產和生產過程。現在,數位化還確保以高度優化,個性化和智能的方式管理農業投入物。另一方面,雖然消費者越來越意識到如何生產食物,但是對農場進行數位化處理可以實現整個農業的可追溯性。

本報告分析了在農業領域引入和利用DX(數位轉換)的方法,概述了農業數位技術,迄今為止的傳播和利用狀況及成果,以及農業DX的概述。我們將收集信息,例如具體示例,主要利益相關者,未來增長機會和分析師的觀點。

內容

第1章執行摘要

第2章數位農業技術概述

  • 農業對數位技術的需求
  • 數位化在農業中的作用
  • 在農業中實現DX的條件
  • 農業數位化和優先領域的優勢
  • 農業數位化的挑戰
  • 促進農業數位化的世界政策
  • 數位農業技術:價值鏈內部

第3章農業創新生態系統的數位化轉型

  • 採用AI(人工智能)進行實時作物監測/疾病診斷
    • 將AI應用於農場的物聯網平台
    • 實現數據驅動的農業決策能力
    • 與AI相關的主要利益相關者
  • 無人機機器人
    • 通過使用無人機,無人機和機器人進行高效的作物評估/實時牲畜管理
    • 使用專用的高光譜攝像機實現更快的農作物篩選
    • 使用光譜圖像的經濟高效的植物篩選方法
    • 利用在近紅外區域起作用的螢光電話的高分辨率光學成像
    • 使用埃及藍的經濟有效的光學成像/顯微鏡方法
    • 用於監測地面運動的機載衛星圖像(ML)
    • 實時實現有效的衛星圖像,同時消除雲端量問題
    • 與無人機機器人有關的主要利益相關者
    • 無人機,機器人和衛星的特徵
  • 區塊鏈
    • 通過區塊鏈平台加強食品可追溯性並促進透明的農業交易
    • 通過基於區塊鏈的平台實現高效的食品供應鏈
    • 在龐大的食品供應鏈中提高問責制和透明度
    • 基於雲端的自動操作系統,用於提供 "農業即服務"
    • 經濟高效的基於雲端的服務,使智能農業得以傳播
    • 與區塊鏈相關的主要利益相關者
  • 傳感器和無線通信技術
    • 傳感器/無線通信技術,支持多個輸入參數的實時測量
    • 低維護,免電池的先進農業無線傳感器網絡
    • 經濟高效的傳感器技術助力先進農業
    • 基於RFID的無電池傳感器可實現經濟高效的精密農業
    • 通過具有成本效益和低維護的傳感器技術實現先進的農業技術
    • 使用Wi-Fi進行經濟有效的土壤檢測
    • 通過具有成本效益的土壤水分測繪技術實現精準農業
    • 與傳感器/無線通信技術有關的主要利益相關者

第4章分析

  • 數位技術在農業中的應用:重大成功案例
  • 農業數位化對可持續發展目標的影響(可持續發展目標)
  • 發達國家數位技術在農業中的應用
  • 新興國家在農業中採用數位技術

第5章增長機會

  • 增長機會:研究開發(R&D)投資
  • 增長機會:技術融合
  • 增長機會:與研發相關的業務聯盟(夥伴關係)

第6章分析師見解

  • 主要分析師對農業數字化的見解

第7章主要聯繫人

  • 行業人士的主要聯繫方式
  • 法律免責聲明
目錄
Product Code: D959

Utilization of Innovative Digital Technologies to Enhance Farm Productivity and Profitability

The Food and Agricultural Organization (FAO) of the United Nations has identified that growing populations, rising affluence and urbanization are translating into increased threat to global food security. The agriculture sector has undergone a series of transformation since the 19th century, including mechanized agriculture as well as green revolution. Since 1980's, agriculture industry embraced digital technologies to enable precision farming for maximized and optimized food production. Today, leveraging the advancements in Information and Communication Technologies (ICT), farms across the world are transforming digitally from mere precision farming to smart and digital farming. In contrast to precision farming that mainly relies on GPS, smart farming modernizes the agriculture sector through the use of automation, artificial intelligence (AI) and robotics. Unlike precision farming, smart farming involves conversion of farm data into actionable insights by enabling mass data communication in real time among various digital technologies. Thus, it paves way for an efficient route for monitoring, tracking, analyzing and optimizing various agricultural assets and production processes. Digitalization also currently ensures that the agricultural input resources are managed in a highly optimized, personalized, and intelligent manner. With the growing awareness among consumers to know how their food is being produced, digitalization of farms will enable traceability along the entire agricultural value chain.

Modern technologies which enables digital transformation of agriculture include:

Integration of automation technology, drones, spectral imagery, and sensors to increase crop yield reduce crop stress and monitor a range of parameters for enhanced farm management maximized productivity.

Utilization of agricultural robots and unmanned aerial vehicles (UAVs) for increased efficiency, reduced labor and reduced operational expenditures.

Increased use of livestock biometrics ensures maintenance of livestock health and will have a direct impact on the increase in yield of dairy products.

This research study focuses on:

  • Overview and Impact of Digital Technologies on Agriculture
  • Digital Technology Landscape and its Applications in Agriculture Value Chain
  • Innovations in Digital Technologies
  • Key Stakeholders involved in Digital technologies used in Agriculture.
  • Growth Opportunities and Analyst Insights

Table of Contents

1.0. Executive Summary

  • 1.1. Research Scope
  • 1.2. Research Process and Methodology
  • 1.3. Key Findings

2.0. Overview of Digital Agricultural Technologies

  • 2.1. The Need for Digital Technologies in Agriculture
  • 2.2. Role of Digitalization in Agriculture
  • 2.3. Conditions Enabling Digital Transformation of Agriculture
  • 2.4. Benefits and Focus Areas Associated with Digitalization of Agriculture
  • 2.5. Challenges Involved in Digitalization of Agriculture
  • 2.6. Global Policies Facilitating Digitalization of Agriculture
  • 2.7. Technology Landscape of Digital Agriculture in Value Chain

3.0. Digital Transformation of Agriculture - Innovation Ecosystem

  • 3.1.1. Adoption of Artificial Intelligence for Real-time Crop Monitoring and Disease Diagnosis
  • 3.1.2. AI-powered IoT Platform for Farms
  • 3.1.3. Enabling Data-Driven Decision Making Capabilities in Agricultural Sector
  • 3.1.4. Key Stakeholders Associated with AI
  • 3.2. Drones and Robots
    • 3.2.1. Utilization of Drones, UAVs, and Robots Enables Efficient Crop Assessment and Real-time Livestock Management
    • 3.2.2. Enabling Faster Screening of Crops Using Specialized Hyperspectral Cameras
    • 3.2.3. Cost Effective and Efficient Screening Methodology of Plants via Spectral Imagery
    • 3.2.4. High Resolution Optical Imaging Utilizing Fluorophones Capable of Working in Near-infrared Spectrum
    • 3.2.5. Utilizing Egyptian Blue for Cost Effective Optical Imaging & Microscopy
    • 3.2.6. Machine Learning Powered Satellite Imagery for Monitoring Dynamic Land Surface
    • 3.2.7. Enabling Real Time and Effective Satellite Imagery while Eliminating the Challenges Caused by Cloud Cover
    • 3.2.8. Key Stakeholders Associated with Drones and Robots
    • 3.2.9. Characteristic Features of Drones, Robots, and Satellites
  • 3.3. Blockchain
    • 3.3.1. Blockchain Platforms Enhance Traceability of Foods and Facilitate Transparent Agricultural Trading
    • 3.3.2. Blockchain-based Platform Enabling Highly Efficient Food Supply Chain
    • 3.3.3. Improving Accountability and Transparency within the Vast Food Supply Chain
    • 3.3.4. Cloud-based Autonomic System for Delivering Agriculture-as-a-Service
    • 3.3.5. Cost Effective and Efficient Cloud Based Service Enabling Growth in Smart Farming Adoption
    • 3.3.6. Key Stakeholders Associated with Blockchain
  • 3.4. Sensors and Wireless Communication Technologies
    • 3.4.1. Sensors and Wireless Communication Technologies Aid in Real-time Measurement of Several Input Parameters
    • 3.4.2. Low Maintenance and Battery-free Wireless Sensor Network for Advanced Agriculture
    • 3.4.3. Enabling Advanced Agriculture via Cost Effective Sensor Technology
    • 3.4.4. RFID-based Battery-free Sensors Enabling Cost-effective Precision Agriculture
    • 3.4.5. Enabling Advanced Agriculture Techniques via Cost Effective and Low Maintenance Sensor Technology
    • 3.4.6. Cost-effective Soil Sensing Using Wi-Fi
    • 3.4.7. Enabling Precision farming Via Cost Effective Soil Moisture Mapping Technology
    • 3.4.8. Key Stakeholders Associated with Sensors and Wireless Communication Technologies

4.0. Analysis

  • 4.1. Key Successful Case Studies Utilizing Digital Technologies Agriculture
  • 4.2. Impact of Digitalization of Agriculture on Sustainable Development Goals
  • 4.3. Adoption of Digital Technologies in Agriculture in Developed Countries
  • 4.4. Adoption of Digital Technologies in Agriculture in Developing Countries

5.0. Growth Opportunities

  • 5.1. Growth Opportunity - R&D Investment
  • 5.2. Growth Opportunity - Technology Convergence
  • 5.3. Growth Opportunity - R&D Partnership

6.0. Analyst Insights

  • 6.1. Key Analyst Insights on Digitalization of Agriculture

7.0. Key Contacts

  • 7.1. Key Industry Contacts
  • 7.1. Key Industry Contacts (continued)
  • Legal Disclaimer