表紙
市場調查報告書

壽命終止鋰離子電池 (LIB) 管理:電池回收技術

Managing End-of-Life Li-ion Batteries: Battery Recycling Technologies

出版商 Frost & Sullivan 商品編碼 931785
出版日期 內容資訊 英文 47 Pages
商品交期: 最快1-2個工作天內
價格
壽命終止鋰離子電池 (LIB) 管理:電池回收技術 Managing End-of-Life Li-ion Batteries: Battery Recycling Technologies
出版日期: 2020年03月30日內容資訊: 英文 47 Pages
簡介

隨著降低二氧化碳 (CO2) 排放量的行動推展,鋰離子電池 (LIB) 的回收也變得越來越重要。此外,從壽命終止LIB中回收鈷及鋰等貴金屬的需求也越來越高,各國政府、研究機構、電池製造商正積極推動技術開發及回收行動。

本報告研究壽命終止鋰離子電池 (LIB) 回收技術概要及活用情況,彙整LIB回收產業基本結構、最新情勢、主要市場推動與阻礙因素、代表性LIB回收技術特性及優缺點、近期技術創新與普及趨勢、業界相關者未來需因應的課題等情報。

第1章 摘要整理

第2章 鋰離子電池 (LIB) 回收產業:概要

  • 一次或二次電池:根據化學反應的可逆性分類
  • 電動車 (EV) 銷售台數增加:為電池回收業者創造機會
  • 鋰及鈷的價格左右LIB回收收益性
  • 政府政策和規範:為LIB回收市場鋪路
  • 壽命終止LIB:回收以外
  • 陰極材料組成:對於各種LIB用化學品而言的重要要素
  • 鋰及鈷含量:NMC/NCA/LCO用化學品中最高
  • LIB回收供應鏈內部課題:運輸物流、高資本支出 (CAPEX) 、回收率

第3章 LIB回收市場動態

  • LIB回收市場動態
  • LIB回收市場推動因素:電動車 (EV) 銷售台數增加、LIB原材料價格、預期供需差異
  • LIB回收市場阻礙因素:LIB用化學品的複雜性、壽命終止LIB運輸網路的不足

第4章 LIB回收技術:能量消耗和回收率定義商業可行性

  • LIB用化學品:在選擇LIB回收方法時扮演重要角色
  • 透過對壽命終止LIB成分的加溫及化學特性以回收貴重成分
  • 濕法冶金:LIB回收率最高但需預處理
  • 物理/機械工程和預處理:對於提升回收率而言很重要
  • 高溫冶金:適合大量LIB回收
  • 濕法冶金:最高可達95%的LIB回收率

第5章 LIB回收產業的創新與開發推移

  • 近年趨勢和動態:政府機構、研究機構、主要LIB回收業者情況
  • 應用案例

第6章 智慧財產權情勢分析

第7章 技術ROADMAP

第8章 主要企業聯絡資訊

目錄
Product Code: D952

Innovative Technologies for the Recovery and Reuse of Valuable Metals from End-of-Life Lithium-ion Batteries

Policy level initiatives to meet greenhouse gas emission reduction targets and the drive to improve the air quality in urban cities are expected to keep supporting the sales growth in electric vehicles across the globe, which has already crossed 2 million units in 2019. Further, the consequent increase in spent lithium-ion batteries (LIBs) is likely to present itself as a challenge for waste management, as well as an opportunity for the battery recyclers, to recover valuable metals like lithium and cobalt, making battery recycling a valuable secondary source for key raw materials. Government organizations, research institutions, and battery manufacturers have already begun collaborating for technological advancements in battery recycling technologies.

The research provides use case analysis of prominent battery recyclers along with their recycling methodology and achieved recovery efficiencies. Further, the research study focuses on the following topics: research and development (R&D) activities in the LIB recycling landscape, techno-economic analysis of recycling different LIB chemistries, current market trends & major innovations, factors driving the adoption and development of recycling technology, challenges in the battery recycling supply chain, and key initiatives undertaken to promote the LIB recycling industry.

Table of Contents

1.0 Executive Summary

  • 1.1. Research Scope - Foreseeing Challenges and Solutions
  • 1.2. Research Process & Methodology
  • 1.3. Research Methodology

2.0 LIB Recycling Sector -- Overview

  • 2.1. Reversibility of Chemical Reaction Classifies Batteries as Primary or Secondary Battery
  • 2.2. Growth in EV Sales Creating Opportunity for Battery Recyclers
  • 2.3. Lithium and Cobalt Prices Determining the Profitability of LIB Recycling
  • 2.4. Government Policies & Regulations Paving the Way for Lib Recycling Market
  • 2.4. Government Policies & Regulations Paving the way for Lib Recycling Market
  • 2.5. End-of-Life LIB: Other than Recycling
  • 2.6. Material Composition of Cathode is Significant for Different LIB Chemistries
  • 2.7. Lithium and Cobalt Content Highest in NMC, NCA, and LCO Chemistries
  • 2.8. Challenges Within LIB Recycling Supply Chain: Transportation Logistics, High CAPEX, and Recycling Rate

3.0 LIB Recycling Market Dynamics

  • 3.0. LIB Recycling Market Dynamics
  • 3.1. Growing EV Sales, LIB Raw Material Prices, and their Expected Demand-supply Gap to Drive the Global LIB Recycling Market
  • 3.2. Complex LIB Chemistries and Insufficient Spent-LIB Transportation Network to Restrain the Global LIB Recycling Market

4.0 LIB Recycling Technology's Energy Consumption and Recovery Rate Defining Commercial Viability

  • 4.1. LIB Chemistry Plays a Significant Role While Selecting a LIB Recycling Methodology
  • 4.2. Applying Temperature and Utilizing Chemical Properties of Spent LIB's Components for Recovering Valuable Components
  • 4.3. Hydrometallurgical Method Provides Highest LIB Recycling Rate but Pretreatment of Feed is Required
  • 4.4. Physical/Mechanical Process or Pretreatment Important for Superior Recycling Rate
  • 4.5. Pyrometallurgy Process Suitable for Bulk LIB Recycling
  • 4.6. Hydrometallurgical Process Providing up to ~95% LIB Recycling Rate

5.0 Tracking Innovations and Development in the LIB Recycling Sector

  • 5.1. Recent Trends & Developments By Government Agencies, Research Institutions, and Eminent LIB Recyclers
  • 5.1. Recent Trends & Developments by Government Agencies, Research Institutions, and Eminent LIB Recyclers (continued)
  • 5.1. Recent Trends & Developments by Government Agencies, Research Institutions, and Eminent LIB Recyclers (continued)
  • 5.1. Recent Trends & Developments by Government Agencies, Research Institutions, and Eminent LIB Recyclers (continued)
  • 5.2. Use Cases
  • 5.2. Use Cases (continued)
  • 5.2. Use Cases (continued)
  • 5.2. Use Cases (continued)
  • 5.2. Use Cases (continued)
  • 5.2. Use Cases (continued)

6.0 IP Landscape Analysis

  • 6.0. IP Landscape Analysis

7.0 Technology Roadmap

  • 7.0. Technology Roadmap

8.0 Key Contacts

  • 8.1. Industry Contacts
  • Legal Disclaimer