NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

陶瓷奈米纖維應用評估

Application Assessment of Ceramic Nanofibers

出版商 Frost & Sullivan 商品編碼 931783
出版日期 內容資訊 英文 49 Pages
商品交期: 最快1-2個工作天內
價格
陶瓷奈米纖維應用評估 Application Assessment of Ceramic Nanofibers
出版日期: 2020年03月30日內容資訊: 英文 49 Pages
簡介

陶瓷奈米纖維被視為陶瓷的1D奈米結構,主要使用金屬氧化物陶瓷。陶瓷奈米纖維相較其他塊體奈米纖維 (如陶瓷纖維) 尺寸較小,具有各種生理化學、結構特性,從而擴大了其在各種領域的應用潛力。未來3年,特別是電子及儲能等將是高成長潛力的應用領域。

本報告研究陶瓷奈米纖維結構/非結構應用雙方面的應用機會,彙整陶瓷奈米纖維結構及特性、具潛力應用領域、未來技術創新和製品普及可能性、全球各國的開發和普及方向、主要企業因應情況、產業相關者未來需因應的挑戰等情報。

第1章 摘要整理

第2章 技術概要

  • 陶瓷纖維:低導熱性的輕量纖維材料
  • 陶瓷纖維的應用:絕緣是主要最終應用,但國防及工具製造中也有應用
  • 具可控性的陶瓷奈米纖維:1D奈米結構
  • 陶瓷奈米纖維主要透過靜電紡絲製造
  • 陶瓷奈米纖維奈米結構:導致與塊體形狀不同的特性

第3章 技術開發與採用趨勢

  • 美國積極材展開材料合成研究;歐洲和亞太地區則專注於特定應用的使用
  • 中國和美國在陶瓷奈米纖維方面具有重要專利活動

第4章 應用情勢

  • 陶瓷奈米纖維主要應用領域
  • 各種陶瓷奈米纖維材料可活用於各項應用
  • 超輕量1D陶瓷奈米纖維,提升儲能裝置性能和安全性
  • 技術創新聚焦於具高離子傳輸潛力的複合電極、電解質開發
  • 陶瓷奈米纖維製墊:提升電子裝置的電磁遮蔽效率
  • EMI屏蔽、PCB、電子零件的陶瓷奈米纖維墊技術創新
  • 用於觸媒轉化器、非均質觸媒載體的多孔質結構陶瓷奈米纖維
  • 陶瓷奈米纖維技術創新聚焦Hetrocatalytic反應及觸媒過濾器應用
  • 陶瓷奈米纖維的骨格和複合材料強化骨附著、藥物溶解率
  • 醫療領域技術創新:聚焦植入物、組織工程的陶瓷奈米纖維製骨骼和複合材料
  • 作為水、空氣分離之有效吸附媒介的陶瓷奈米纖維
  • 淨水、空氣過濾、沸石載體的陶瓷奈米纖維技術創新
  • 陶瓷奈米纖維實現高靈敏度感測器開發
  • 基於金屬氧化物陶瓷奈米纖維的感測器技術創新
  • 陶瓷奈米纖維能為可穿戴式裝置充電功能、為織物提供可修正的化學特性
  • 技術創新範圍:可穿戴式奈米發電機、發光紡織品、絕緣織物等

第5章 技術ROADMAP與機會評估

  • 陶瓷奈米纖維的未來性:實現儲能和電子領域的短期普及
  • 各種應用領域中的陶瓷奈米纖維採用機會評估
  • 電子和儲能:主要短期應用領域
  • 感測器□複合材料□紡織品:在中期其重要性可能增加

第6章 成長機會

  • 成長機會:4大主要展望
  • 策略課題:重要成功因素

第7章 主要聯絡資訊

第8章 附錄

目錄
Product Code: D92D

Electronics and Energy Storage are High Growth Opportunity Applications for Ceramic Nanofibers in the Next Three Years

Ceramic nanofibers are considered as 1D nanostructures of ceramics, with the most predominantly metal oxide ceramics. The reduced size of the ceramic nanofibers in comparison to their bulk counterparts such as ceramic fibers results in varied physiochemical and structural characteristics, thereby, expanding their application potential.

This research service titled, “Application Assessment of Ceramic Nanofibers,” analyzes the applications of the material in both structural and non-structural applications. This research service includes a holistic analysis of the different types of ceramic nanofibers that have the potential to replace existing ceramic fibers and other materials with similar functionalities. Insights are provided on the key companies that have been involved in upgrading the stability, performance, and cost-effectiveness demanded from material. Discussion of geography- wise developments and technology trends have also been analyzed and incorporated into the research service, along with insights on the future scope and the road ahead for technology developers.

Table of Contents

1. Executive Summary

  • 1.1 Research Scope
  • 1.2 Research Methodology
  • 1.3 Key Findings

2. Technology Snapshot

  • 2.1 Ceramic Fibers-Fibrous Lightweight Materials with Low Thermal Conductivity
  • 2.2 Ceramic Fiber Applications-Insulation is Primary End-use, while there is Usage also in Defense and Tool-making
  • 2.3 Ceramic Nanofibers-1D Nanostructures with Controllable Properties
  • 2.4 Ceramic Nanofibers are Predominantly Manufactured Using Electrospinning Methods
  • 2.5 Nanostructure of Ceramic Nanofibers Leads to Differing Properties from the Bulk Form

3. Technology Development and Adoption Trends

  • 3.1 The US is Active in Research on Material Synthesis, while Europe and APAC are Focused on Application-specific Usage
  • 3.2 China and the US have Significant Patent Activity on Ceramic Nanofibers

4. Application Landscape

  • 4.1 Key Applications Sectors of Ceramic Nanofibers
  • 4.2 Different Ceramic Nanofiber Materials can be used in a Range of Applications
  • 4.3 Ultra-light 1D Ceramic Nanofibers Improve Performance and Safety of Energy Storage Devices
  • 4.4 Innovations Focus on Developing Composite Electrodes and Electrolytes with High Ion Transportation Potential
  • 4.5 Ceramic Nanofiber Mats Improve Electromagnetic Shielding Efficiency in Electronic Devices
  • 4.6 Innovations on Ceramic Nanofiber Mats for EMI Shielding, PCBs, and Electronic Components
  • 4.7 Ceramic Nanofiber with Porous Structure for Catalytic Converter and Heterogeneous Catalyst Support
  • 4.8 Innovations are Focused on the Use of Ceramic Nanofiber for Hetrocatalytic Reactions and Catalytic Filters
  • 4.9 Ceramic Nanofiber Scaffolds and Composites Enhance Bone Adhesion and Drug-dissolution Rate
  • 4.10 Innovations on Healthcare Focuses on Ceramic Nanofiber Scaffolds and Composites for Implants and Tissue Engineering
  • 4.11 Ceramic Nanofiber as an Efficient Adsorption Media for Water and Air Separation
  • 4.12 Innovations on Ceramic Nanofibers for Water Purification, Air Filtration, and Zeolite Support
  • 4.13 Ceramic Nanofibers Enable the Development of Sensors with High Sensitivity
  • 4.14 Innovations on Sensors are Based on Metal Oxide Ceramic Nanofibers
  • 4.15 Ceramic Nanofibers for Powering Wearables and Providing Modifiable Chemical Properties to Fabrics
  • 4.16 Innovations Include Wearable Nanogenerators, Luminescent Textiles, and Insulating Fabrics

5. Technology Roadmapping and Opportunity Evaluation

  • 5.1 Future Outlook of Ceramic Nanofiber Demonstrates Short-term Adoption in Energy Storage and Electronics
  • 5.2 Opportunity Evaluation for Adoption of Ceramic Nanofibers Across Applications
  • 5.3 Electronics and Energy Storage are the Key Application Areas in the Short Term
  • 5.4 Sensors, Composites, and Textiles Likely to Gain Significance in Mid term

6. Growth Opportunities

  • 6.1 Growth Opportunities: Four Major Prospects
  • 6.2 Strategic Imperatives: Critical Success Factors

7. Key Contacts

  • 7.1 Key Contacts

8. Appendix

  • 8.1 Technology Readiness Level (TRL) Definition
  • 8.2 Technology Readiness Level (TRL) Ratings Explained
  • 8.3 Opportunity Evaluation of Key Applications--Ratings
  • Legal Disclaimer