表紙
市場調查報告書

電子產業中量子技術的新興機會

Emerging Opportunities of Quantum Technologies in Electronics Industry

出版商 Frost & Sullivan 商品編碼 931777
出版日期 內容資訊 英文 73 Pages
商品交期: 最快1-2個工作天內
價格
電子產業中量子技術的新興機會 Emerging Opportunities of Quantum Technologies in Electronics Industry
出版日期: 2020年03月28日內容資訊: 英文 73 Pages
簡介

量子技術意指可操作原子及原子以下的粒子,在國防、航太宇宙、工業、商業、基礎設施、貨運、物流市場等領域的應用都帶來重大影響,也有顛覆市場的可能性,讓新等級的高敏感度設備有可能問世。

此報告調查分析電子產業中的量子技術,針對技術情勢、導入情景、技術開發、利益關係人、技術倡議、技術路線圖等提供系統化資訊。

目次

第1章 重點摘要

第2章 量子電子技術格局 - 狀況分析

  • 量子電子將顛覆工業、國防、安全、和醫療市場
  • 各種不同的量子電子技術運用
  • 推動採用量子電子的因素
  • 小型化是採用量子電子技術的主要挑戰

第3章 量子慣性感測器

  • 量子陀螺儀和加速度計讓靈敏度提高
  • 量子慣性感測器會顛覆舊有的導航系統及MEMS感測器
  • 量子慣性感測器運用上的影響
  • 利益關係人最近的發展 - 量子慣性感測器
  • 量子慣性感測器獲得投資

第4章 量子重力感測器

  • 量子重力感測器 - 概要
  • 重力感測:量子加速度計的早期機會
  • 量子重力感測器的運用情況
  • 落差分析:量子重力感測器的機會與挑戰
  • 利益關係人最近的發展 - 量子重力感測器

第5章 量子磁力計

  • 量子磁力計 - 概要
  • 量子磁力計運用的多樣化
  • 量子磁力計在精密位置檢測中的運用
  • 推動採用量子磁力計的機會
  • 妨礙採用量子磁力計的因素
  • 利益關係人最近的發展 - 量子磁力計

第6章 量子時鐘

  • 量子時鐘實現精確計時
  • 量子時鐘的機會
  • 妨礙採用量子原子時鐘的問題點
  • 量子原子時鐘之運用
  • 利益關係人最近的發展 - 量子磁力計
  • 利益關係人正在與大學合作進行量子開發

第7章 量子電腦

  • 量子電腦具有超乎想像的運算力
  • 量子電腦的機會
  • 妨礙採用量子電腦的因素
  • 在各種業界運用量子電腦
  • 利益關係人最近的發展與研究 -量子電腦
  • Kagome Metal在量子電腦找到運用方式
  • 鑽石裡的氮空缺有可能可保持量子情報

第8章 量子通訊

  • 量子中繼器和量子密鑰分發在啟用量子通信中扮演關鍵作用
  • 推動量子通訊的機會
  • 妨礙採用量子通訊的原因
  • 利益關係人最近的發展 -量子電腦
  • 量子計算的最新研究促進量子亂數產生器的發展

第9章 量子技術對新型冠狀病毒 (COVID-19) 的影響

  • 與新型冠狀病毒搏鬥的機會
  • 使用超級計算機研究COVID-19的影響創造量子計算的潛在應用

第10章 量子電子生態系統和供應鏈分析

  • 量子技術生態系統組件
  • 量子供應鏈中參與者的主要類型
  • 量子供應鏈中的其他參與者

第11章 業界最佳實踐 - 對於合作夥伴/聯盟的評價及最新發展

  • 量子纏結技術的進步為量子互聯網開啟道路
  • 最近的合作夥伴關係推動了量子計算的發展

第12章 技術路線圖與成長機會

  • 量子電子路線圖
  • 戰略投資推動採用量子技術

第13章 業界的聯絡方式

目錄
Product Code: D963

Miniaturized Quantum Devices, Lasers, Detectors, Atom/Ion Traps are Poised to Disrupt Aerospace/Defense, Civil Infrastructure, Geophysical Exploration, Transportation, Logistics, Robotics, Telecom, and Datacom Applications

Quantum technology, which enables the manipulation of atoms and sub-atomic particles, will allow for a new class of ultra-sensitive devices with key potential to profoundly impact and disrupt significant applications in areas such as defense, aerospace, industrial, commercial, infrastructure, transportation and logistics markets. The ability to control and predict the behavior of atoms and ions has key opportunities to enable exquisitely sensitive sensors for application such as ultra-precise navigation, improved location of buried objects, enhanced geophysical or resource exploration, as well as ultra-precise measurement of time, computers able to solve very complex problems much faster than classical computers, considerably more secure and rapid data communications, and imaging in previously impossible conditions with greatly enhanced resolution.

Quantum technology is also driving advancements in more compact lasers, microfabricated atom/ion traps and diffraction gratings for trapping and cooling atoms, single photon detectors for applications such as enhanced imaging and quantum cryptography, microfabricated vapor cells containing atomic vapors or optically cooled atoms.

Key questions addressed in the innovation report:

  • What is the technology landscape for quantum technologies?
  • What is the global adoption scenario and what are the initiatives globally that drive the adoption of quantum technologies?
  • What are the key focus areas of technology development?
  • Who are the key stakeholders influencing technology development and adoption?
  • What are the recent technology initiatives?
  • What is the technology roadmap for quantum technology?

Table of Contents

1.0 Executive Summary

  • 1.1. Scope of Research
  • 1.2. Research Methodology
  • 1.3. Research Methodology Explained
  • 1.4. Key Findings - Quantum Electronics Finds Applications in Submarines and Satellites
  • 1.5. Key Findings - Quantum Magnetometers Generate Interest in Navigation

2.0 Quantum Electronics Technology Landscape - Status Review

  • 2.1. Quantum Electronics will Disrupt Industrial, Defense, Security, and Healthcare Markets
  • 2.2. Applications of Different Types of Quantum Electronics
  • 2.3. Factors Driving the Adoption of Quantum Electronics
  • 2.4. Miniaturization is a Major Challenge for Adoption of Quantum Electronics

3.0 Quantum Inertial Sensors

  • 3.1. Quantum Gyroscopes and Accelerometers Provide Enhanced Sensitivity
  • 3.2. Quantum Inertial Sensors Have Opportunities to Disrupt Conventional Navigation Systems and MEMS Sensors
  • 3.3. Application Impact of Quantum Inertial Sensors
  • 3.4. Recent Developments with Stakeholders - Quantum Inertial Sensors
  • 3.5. Quantum Inertial Sensors are Gaining Investments

4.0 Quantum Gravity Sensors

  • 4.1. Quantum Gravity Sensors - Overview
  • 4.2. Gravity Sensing: An Earlier Opportunity for Quantum Accelerometers
  • 4.3. Application Landscape of Quantum Gravity Sensors
  • 4.4. Gap Analysis : Quantum Gravity Sensors Opportunities and Challenges
  • 4.5. Recent Developments with Stakeholders - Quantum Gravity Sensors

5.0 Quantum Magnetometers

  • 5.1. Quantum Magnetometers - Overview
  • 5.2. Application Diversity of Quantum Magnetometers
  • 5.3. Quantum Magnetometers find Applications in Precision Location Detection
  • 5.4. Opportunities Driving Adoption of Quantum Magnetometers
  • 5.5. Factors Hindering Adoption of Quantum Magnetometers
  • 5.6. Stakeholder Developments - Quantum Magnetometers

6.0 Quantum Clocks

  • 6.1. Quantum Clocks Enable Precision Timing
  • 6.2. Opportunities of Quantum Clocks
  • 6.3. Challenges Hindering Adoption of Quantum Atomic Clocks
  • 6.4. Applications for Quantum Atomic Clocks
  • 6.5. Stakeholder Developments - Quantum Magnetometers
  • 6.6. Stakeholders are Collaborating with Universities for Quantum Developments

7.0 Quantum Computing

  • 7.1. Quantum Computers have Unprecedented Computational Power
  • 7.2. Opportunities of Quantum Computing
  • 7.3. Factors Hindering Adoption of Quantum Computing
  • 7.4. Applications of Quantum Computing Across Different Industries
  • 7.5. Stakeholder Developments and Recent Research in Quantum Computing
  • 7.6. Kagome Metal finds Applications in Quantum Computers
  • 7.7. Nitrogen Vacancy Diamonds have the Potential to Retain Quantum Information

8.0 Quantum Communications

  • 8.1. Quantum Repeaters and Quantum Key Distribution play Key Roles in Enabling Quantum Communication
  • 8.2. Opportunities Driving Quantum Communications
  • 8.3. Factors Hindering Adoption of Quantum Communications
  • 8.4. Stakeholder Developments - Quantum Computing
  • 8.5. Recent Research in Quantum Computing Enables Development of Quantum Random Number Generator

9.0 Impact of Quantum Technologies on COVID-19

  • 9.1. Opportunities to Combat Coronavirus (COVID-19)
  • 9.2. Use of Supercomputers to Study COVID-19 Impact Creates Potential Applications of Quantum Computing

10.0 Quantum Electronics Ecosystem and Supply Chain Analysis

  • 10.1. Quantum Technology Ecosystem Components
  • 10.2. Key Types of Participants in the Quantum Supply Chain
  • 10.3. Other Participants in the Quantum Supply Chain

11.0 Industry Best Practices - Assessment of Partnerships/Alliances and Recent Developments

  • 11.1. Advancements in Quantum Entanglement Pave the Way for Quantum Internet
  • 11.2. Recent Partnerships Drive Developments in Quantum Computing

12.0 Technology Roadmap & Growth Opportunities

  • 12.1. Quantum Electronics Roadmap
  • 12.2. Strategic Investments Drive Adoption of Quantum Technologies

13.0 Industry Contacts

  • 13.1. Key Industry Contacts
  • 13.1. Key Industry Contacts (continued)
  • Legal Disclaimer