表紙
市場調查報告書

推動遺傳基因編輯、基因治療的飛躍性發展與主流化

Gene Editing and Gene Therapy Breakthroughs Propelling Mainstream Treatments

出版商 Frost & Sullivan 商品編碼 723029
出版日期 內容資訊 英文 55 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
推動遺傳基因編輯、基因治療的飛躍性發展與主流化 Gene Editing and Gene Therapy Breakthroughs Propelling Mainstream Treatments
出版日期: 2018年09月28日內容資訊: 英文 55 Pages
簡介

本報告提供遺傳基因編輯、基因治療的飛躍的發展趨勢調查,現在可利用的遺傳基因療法,遺傳基因編輯工具種類與概要,基因治療平台、媒介類型種類與概要,基因治療藥的開發平台趨勢,遺傳基因編輯、基因治療技術的IP環境,主要企業的簡介,成長機會分析等彙整資料。

第1章 摘要整理

第2章 技術概要

  • 現在可利用的遺傳基因療法

第3章 遺傳基因編輯工具

  • 簡介:遺傳基因編輯工具
  • CRISPR
  • CRISPR的專利戰鬥
  • 鋅指核酸酶 (ZFN)
  • TALEN
  • ARC核酸水解酵素

第4章 基因治療平台

  • 基因治療平台的建立:技術區分
  • 基因治療技術和媒介類型
  • 基因治療的突破和時間軸
  • 基因治療開發:最新的成功
  • 基因治療開發的障礙
  • 病毒載體:概要

第5章 基因治療技術的推動因素與阻礙

  • 推動基因治療的飛躍性發展的主要要素
  • 抑制基因治療技術成長的主要要素

第6章 主要企業

  • 美國、EU的企業清單

第7章 有飛躍性發展潛力的基因治療藥:藥劑開發平台

  • 前臨床開發
  • 第一階段臨床試驗
  • 第二階段臨床試驗
  • 第三階段臨床試驗

第8章 遺傳基因編輯、基因治療技術的IP環境

第9章 成長機會

  • 成長機會:CNS和心臟疾病
  • 成長機會:1次的治療設計
  • 成長機會:更佳的藥價設定模式

第10章 附錄

目錄
Product Code: D85E

A new wave of gene therapy treatments to revolutionize treatment of inherited diseases

The drug approvals of Yescarta (axicabtagene ciloleucel), Luxturna (Voretigene neparvovec) and Kymriah (Tisagenlecleucel) have turned a leaf in the pharmaceutical chapter of gene therapy development. Currently, genetic disorders do not have satisfactory treatment outcomes. This is in part due to the inability of small molecule drugs and enzyme replacement therapies, usually prescribed for inherited diseases, to correct the root cause of the disorders. In other words, they are not corrective therapies. Gene therapy offers exactly what small molecule drugs and enzyme therapy therapies don't- they can offer corrective solutions for inherited disorders.

A new wave of gene therapy breakthroughs can be expected to follow in the next few years after a two-decade long hiatus that witnessed very few proven gene therapy drug candidates. This potential in-flux of gene therapy candidates is due to the two fundamental factors. First, the refining and development of cutting-edge vector platform both by academia and by pharmaceutical industry. This has resulted in the widely used advanced Adeno-associated viral vectors and Lentiviral vectors, both of which are used according to the applicability. Second, the development of novel gene editing tools such as TALENs, Meganucleases, CRISPR/Cas along with the improvement of old techniques such as ZFNs have helped improve the translational capability of gene therapies currently in clinical development.

In the following study, the development of gene editing tools as well as gene-transfer enabling vectors is traced over the last decade or so while also putting into perspective the number of gene therapy candidates currently in clinical development in addition to the various potential cures and satisfactory treatments that await patients affected by genetic diseases .

Table of Contents

1.0. EXECUTIVE SUMMARY

  • 1.1. Research Scope - Application of Technology
  • 1.2. Research Methodology - The Frost & Sullivan Core Value
  • 1.3. Key Findings

2.0. TECHNOLOGY SNAPSHOT

  • 2.1. Currently Available Gene Therapy Treatments on the Market

3.0. GENE EDITING TOOLS

  • 3.1. An Introduction to Gene Editing Tools
  • 3.2. Clustered Regularly Interspaced Short Palindromic Repeats
  • 3.2.1. CRISPR Patent Battle- Event Timeline
  • 3.3. Zinc Finger Nucleases (ZFNs)
  • 3.4. Transcription Activator-like Effector Nucleases
  • 3.5. ARC- Nucleases (ARCUS)

4.0. GENE THERAPY PLATFORM

  • 4.1. Building a Gene Therapy Platform- Technology Segmentation
  • 4.2. Methods of Gene Therapy and types of vectors used
  • 4.3. A Timeline Highlighting Gene Therapy Breakthroughs
  • 4.4. More Recent Successes in Gene Therapy Development
  • 4.5. A Brief Account of Setbacks Encountered in Gene Therapy Development Over the Years
  • 4.6. Viral Vectors- Overview

5.0. DRIVERS AND CHALLENGES OF GENE THERAPY TECHNOLOGY

  • 5.1. Key Factors Aiding Development of Gene Therapy Breakthroughs
  • 5.2. Key Factors Restricting the Growth of Gene Therapy Technology

6.0. MAJOR COMPANIES

  • 6.1. A Comprehensive List of Gene Therapy Companies (US & EU)
  • 6.1. A Comprehensive List of Gene Therapy Companies (US & EU) (continued)
  • 6.1. A Comprehensive List of Gene Therapy Companies (US & EU) (continued)
  • 6.1. A Comprehensive List of Gene Therapy Companies (US & EU) (continued)
  • 6.1. A Comprehensive List of Gene Therapy Companies (US & EU) (continued)
  • 6.1. A Comprehensive List of Gene Therapy Companies (US & EU) (continued)
  • 6.1. A Comprehensive List of Gene Therapy Companies (US & EU) (continued)
  • 6.1. A Comprehensive List of Gene Therapy Companies (US & EU) (continued)

7.0. DRUG DEVELOPMENT PIPELINE OF POTENTIAL BREAKTHROUGH GENE THERAPIES

  • 7.1. Gene Therapy Leads in Pre-clinical Development
  • 7.2. Gene Therapies in Phase 1 Clinical Study
  • 7.3. Gene Therapies in Phase 2 Clinical Study
  • 7.4. Gene Therapies in Phase 3 Clinical Development
  • 7.5. Gene Therapies Segmentation Based on Development phase

8.0. INTELLECTUAL PROPERTY LANDSCAPE OF GENE EDITING AND GENE THERAPY TECHNOLOGY

  • 8.1. Patent Research Scope and Concepts
  • 8.2. Top 20 Patent Holders in the Pharmaceutical Industry
  • 8.3. Global Office-wise Patent Distribution Trend- Top 3 countries
  • 8.4. Patent Trends of Gene Editing Tools, 2015-2017
  • 8.5. Year-wise Patent Publication Related to Gene Therapy, 2010-2018

9.0. GROWTH OPPORTUNITIES

  • 9.1. Growth Opportunity 1: CNS and Heart Diseases
  • 9.2. Growth Opportunity 2: One-time Treatment Design
  • 9.3. Growth Opportunity 3: Better Pricing Model

10.0. APPENDIX

  • 10.1. Key Contacts
  • Legal Disclaimer
Back to Top