表紙
市場調查報告書
商品編碼
1053947

世界下一代燃料電池的材料進展:技術分析和增長機會

Global Material Advancements in Next-generation Fuel Cells: Technology Analysis and Growth Opportunities

出版日期: | 出版商: Frost & Sullivan | 英文 95 Pages | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

由於向經濟和環境友好的綠色經濟轉型是不可避免的,因此研究人員正致力於推廣、開發和引入綠色能源技術。其中,通過氫和氧電化學結合發電的燃料電池具有效率高、溫度低、輸出密度高、廢氣排放少等特點。它還有望提供可以以可持續方式生產的氫氣,並且可以產生分佈式和穩定的發電,作為減少對化石燃料依賴和控制化石燃料二氧化碳排放的候選者。

然而,由於鉑和鈀等貴金屬用於製造燃料電池的各種部件,因此存在成本增加和酸性和鹼性環境下的耐久性問題的擔憂,並且此類問題是大規模的。阻礙商業發展。因此,研究人員正專注於創新和開發新材料,以緩解這些技術和經濟挑戰並支持燃料電池的發展。

本報告分析了世界下一代燃料電池材料的進展,分析了各種材料的特點和當前利用狀況、按產品類型劃分的開發/擴散趨勢、專利申請趨勢和未來機會。

目錄

第 1 章戰略挑戰

第 2 章增長機會分析

  • 燃料電池在向低碳轉型中的重要作用
  • 燃料電池相對於傳統電池的優勢
  • 材料開發:克服燃料電池挑戰和未滿足需求的關鍵
  • 分析範圍和重要問題
  • 分析範圍的主要材料
  • 主要分析結果
  • 主要分析結果:低溫燃料電池新材料
  • 主要分析結果:高溫燃料電池新材料

第 3 章各種燃料電池技術:概述

  • 低溫燃料電池的特點和特點
  • 高溫燃料電池的特點和特點

第 4 章陰極材料:技術評價

  • 燃料電池正極材料:簡介
  • 陶瓷:新興的最有前途的正極材料
  • 合金:降低成本並實現高催化活性
  • 貴金屬塗層碳基陰極:陰極製造中的注意事項
  • 燈籠型鈣鈦礦材料在陶瓷材料中採用率最高
  • 鍶燈基材料:提高高溫燃料電池電化學性能的效果
  • 複合材料:熱導率比陶瓷基正極材料低
  • 提高複合材料中GDC/YSZ的濃度:提高正極導電性的效果
  • 碳基納米材料:在微生物燃料電池中的應用
  • 碳布:表現出優於其他用於 MFC 的納米材料的性能
  • 正極材料對比評價:陶瓷或成為正極製造的重要材料

第 5 章負極材料:技術評價

  • 燃料電池負極材料:簡介
  • 鎳基材料:廣泛用作燃料電池的負極材料
  • 鎳基複合材料:目前最廣泛用於陽極製造
  • NiO/SDC:作為陽極製造的潛在材料受到關注
  • 氧化物基陽極:優異的氧化/還原穩定性
  • 氧化錫陶瓷負極材料採用率最高
  • 使用納米材料製造陽極:提高電子傳導性的效果
  • 碳納米管:用於陽極製造的有前途的支持納米材料
  • 金屬合金:比陶瓷材料具有更高的經濟性和導電性
  • 合金:具有潛在的價格優勢,有望成為負極材料的替代品
  • 導電聚合物:陽極製造研究
  • 大比表面積和電子傳導性:對提高負極材料性能的重要作用
  • 複合材料和陶瓷:首選負極材料

第 6 章電解質材料:技術評價

  • 燃料電池電解質:簡介
  • 陶瓷聚合物:燃料電池中最常用的電解質
  • 導電陶瓷電解質的發展:成為重點
  • 傳統 YSZ 電解質:替換為提供高離子電導率的材料
  • 用作燃料電池電解質的主要陶瓷材料比較
  • 聚電解質:低溫燃料電池的最高引入率
  • □類聚合物:生產電解質最常用的材料
  • 用作燃料電池電解質的主要聚合物材料比較
  • 使用的電解液:因燃料電池要求和最終用途需求而異

第 7 章催化劑材料:技術評價

  • 燃料電池催化劑材料:簡介
  • 附著在碳質材料上的金屬:作為燃料電池催化劑的關注
  • 金屬支撐泡沫:黑色泡沫和金屬合金的更好替代品
  • 相容性泡沫催化劑比黑色泡沫具有更大的表面積
  • 聚合物負載催化劑具有提高催化劑的耐久性和穩定性的效果
  • Pt/C/PANI Polymer:作為燃料電池催化劑材料備受矚目
  • 將納米材料用作催化劑:通過提供大比表面積的能力促進研究
  • 納米結構支撐的雙金屬材料:有望增強電極催化活性
  • 聚合物調理催化劑:穩定性優於金屬和合金

第 8 章燃料電池材料:顯著的研發努力

  • 催化劑性能:利益相關者的深入研究和開發
  • PEM 燃料電池研究:商業化創新最有針對性的領域

第 9 章專利分析

  • 燃料電池材料的知識產權趨勢:過去 3 年的擴張趨勢
  • 用於各種燃料電池組件的關鍵材料:IP申請趨勢分析
  • 知識產權分析:專注於燃料電池負極製造的納米材料
  • 中國領先的燃料電池正極材料專利申請
  • 電解質材料知識產權備案:隨著正極材料研究的擴大影響力下降
  • 燃料電池催化劑材料專利申請增加

第 10 章增長機會

  • 成長機遇 (1):納米材料作為支撐材料提高燃料電池性能
  • 增長機會 (2):通過添加替代材料降低鉑 (Pt) 含量以提高燃料電池的經濟相關性
  • 成長機會 (3):制定材料性能比較標準和測試

第 11 章附錄

第 12 章後續步驟

目錄
Product Code: DA2A

The Need for High Performance and Cost Efficiency in Fuel Cells is Opening up Growth Opportunities in the Materials Space.

As the transition to a green economy becomes inevitable (it is economical and environment friendly), researchers will concentrate on the promotion, development, and adoption of green energy technologies. Among these sustainable technologies, fuel cells, which offer the potential to generate electricity by combining hydrogen and oxygen electrochemically, demonstrate advantages such as high efficiency, low operating temperature, high power density, and low emission. In addition, fuel cells are considered potential candidates to mitigate CO2 emissions from fossil fuels by reducing dependency on fossil fuels and offering a better alternative-hydrogen, which can be produced through sustainable methods and promises to deliver decentralized and stabilized power plants.

However, concerns in terms of the high cost associated with these devices due to the use of noble metals such as platinum and palladium in the fabrication of different components of fuel cells and issues regarding the durability of these noble materials in acidic and basic environments are key challenges hindering the large-scale commercial growth of these electrochemical devices. As a result, researchers are focusing on innovating and developing new materials that can attenuate these techno-economic challenges and aid the growth of fuel cells.

This Frost & Sullivan study focuses on identifying and analyzing innovation in the material science of various components such as cathodes, anodes, electrolytes, and catalysts of fuel cells. The materials captured are compared across 4 key technical parameters, that is, particle size (nm), electrical conductivity (S.cm-1), thermal expansion coefficient (K-1), and specific surface area (m2/g). The primary focus of the research is trying to find the most promising material for the fabrication of key components in fuel cells that can enable the commercial-scale production of these electrochemical devices.

Frost & Sullivan has identified 6 key material technologies that will enable a cost-effective approach to fuel cell manufacturing; they are ceramics, composites, metal-based (metals and alloys), nanoparticles, polymers, and others (a supported form of metals on carbonaceous materials/polymers). At present, researchers are focused on nanoparticles due to their efficient application across all fuel cells, either as a based or a doped material. Nanostructures allow these materials to offer greater surface area, smaller particle size, and better porosity. The rising adoption of these materials in fuel cell fabrication will enable fuel cell manufacturers to set up economies of scale at the start of the commercialization phase and resolve major challenges such as high costs and unreliability for the wider application of fuel cell technologies.

Table of Contents

1.0. Strategic Imperatives

  • 1.1. The Strategic Imperative 8™ Factors Creating Pressure on the Growth of Material Advancements in Next-generation Fuel Cells
  • 1.2. The Strategic Imperative 8™
  • 1.3. The Impact of the Top Three Strategic Imperatives on Material Advancements in Next-generation Fuel Cells
  • 1.4. About the Growth Pipeline Engine™
  • 1.5. Growth Opportunities Fuel the Growth Pipeline Engine™
  • 1.6. Research Methodology

2.0. Growth Opportunity Analysis

  • 2.1. Fuel Cells will Play an Important Role in the Low Carbon Transition
  • 2.2. Fuel Cells' Advantages over Conventional Batteries Drive Their Growth
  • 2.3. Materials Development is Key to Overcoming the Challenges and the Unmet Needs of Fuel Cells
  • 2.4. Research Scope and Key Questions the Study Will Answer
  • 2.5. Key Materials in the Research Scope
  • 2.6. Key Findings
  • 2.7. Key Findings: Emerging Materials for Low-temperature Fuel Cells
  • 2.8. Key Findings: Emerging Materials for High-temperature Fuel Cells

3.0. Technology Snapshot of Various Fuel Cells

  • 3.1. Characteristics and Features of Low-temperature Fuel Cells
  • 3.2. Characteristics and Features of High-temperature Fuel Cells

4.0. Cathodic Materials: Technology Assessment

  • 4.1. Cathodic Materials for Fuel Cells: An Introduction
  • 4.2. Ceramics are Emerging as the Most Promising Cathode Materials
  • 4.3. Alloys Help to Achieve High Catalytic Activity While Reducing Costs
  • 4.4. Carbon-based Cathodes Coated with Noble Metals are Gaining Traction in Cathode Fabrication
  • 4.5. Lanthanum-based Perovskite Materials Witness the Highest Adoption among Ceramic Materials
  • 4.6. Lanthanum-based Materials Doped with Strontium Promise Better Electrochemical Performance in High-temperature Fuel Cells
  • 4.7. Composites Exhibit Relatively Lower Thermal Conductivity than Ceramic-based Cathode Materials
  • 4.8. The Increasing Concentration of GDC/YSZ in Composites can Enhance the Electrical Conductivity of Cathodes
  • 4.9. Carbon-based Nanomaterials can find Application in Microbial Fuel Cells
  • 4.10. Carbon Cloth can Outperform Other Nanomaterials if Used in MFCs
  • 4.11. Comparative Assessment of Cathodic Materials Showcases that Ceramics will be the Key Material in Cathode Fabrication

5.0. Anodic Materials: Technology Assessment

  • 5.1. Anodic Materials for Fuel Cells: An Introduction
  • 5.2. Nickel-based Materials are Widely Used as Anode Materials in Fuel Cells
  • 5.3. At Present, Nickel-based Composites are the Most Commonly Used Materials in Anode Fabrication
  • 5.4. NiO/SDC is Gaining Traction as a Potential Material for Anode Fabrication
  • 5.5. Oxide-based Anodes Provide Excellent Oxidation/Reduction Stability
  • 5.6. Tin Oxide will see the Highest Adoption in Ceramic Anode Materials
  • 5.7. Electron Conductivity can be Improved if Nanomaterials are Used in Anode Fabrication
  • 5.8. Carbon Nanotubes are Considered to be a Promising Support Nanomaterial for Anode Fabrication
  • 5.9. Metal Alloys are more Economical than Ceramic Materials; they also Offer Higher Conductivity
  • 5.10. The Potential Price Advantage of Alloys Makes them a Promising Alternative for Use in Metal-based Anode Materials
  • 5.11. Conductive Polymers are Being Researched for Anode Fabrication
  • 5.12. Large Surface Area and Electron Conductivity Play an Important Part in Improving the Performance of Anodic Materials
  • 5.13. Composites and Ceramics are the Preferred Anode Materials

6.0. Electrolyte Materials: Technology Assessment

  • 6.1. Electrolytes for Fuel Cells: An Introduction
  • 6.2. Ceramics and Polymers are the Most Commonly Used Electrolytes in Fuel Cells
  • 6.3. The Development of Conductive Ceramic Electrolytes is Becoming a Key Area of Focus
  • 6.4. Conventional YSZ Electrolytes are Being Replaced with Materials that Offer High Ionic Conductivity
  • 6.5. Comparison of the Key Ceramic Materials Used as Electrolytes in Fuel Cells
  • 6.6. Polymer Electrolytes are Witnessing the Highest Adoption in Low-temperature Fuel Cell Applications
  • 6.7. Sulfonated Polymers are the Most Commonly Used Materials in the Fabrication of Electrolytes
  • 6.8. Comparison of the Key Polymeric Materials Used as Electrolytes in Fuel Cells
  • 6.9. The Electrolytes Used Vary Based on Fuel Cell Requirements and End Application Needs

7.0. Catalytic Materials: Technology Assessment

  • 7.1. Catalytic Materials for Fuel Cells: An Introduction
  • 7.2. Metals Doped on Carbonaceous Materials are Gaining Traction as Catalysts in Fuel Cells
  • 7.3. Metal-supported Forms are Considered a Better Alternative to Black Forms and Metal Alloys
  • 7.4. Supported Form Catalysts Offer Greater Surface Area than the Black Form
  • 7.5. Polymer-supported Catalysts can Improve Catalytic Durability and Stability
  • 7.6. Pt/C/PANI Polymers are Gaining Traction as Fuel Cell Catalytic Materials
  • 7.7. The Ability to Provide Large Specific Surface Area Drives Research in Nanomaterials for Use as Catalysts
  • 7.8. Bimetallic Materials Supported on Nanostructures Promise Enhanced Electrocatalytic Activity
  • 7.9. Catalysts Modified with Polymers Offer Better Stability than Metals and Alloys

8.0. Noteworthy R&D Efforts in Materials for Fuel Cells

  • 8.1. Intensive R&D of Catalyst Performance by Stakeholders
  • 8.2. Research in PEM Fuel Cells are the Most Targeted Area in Commercialized Innovation

9.0. Patent Analysis

  • 9.1. IP Trends in Fuel Cell Materials have been Rising for the Last 3 Years
  • 9.2. Trend Analysis of IP Filing of the Key Materials Used in Different Fuel Cell Components
  • 9.3. IP Analysis Showcases a Focus on Nanomaterials for Anode Fabrication in Fuel Cells
  • 9.4. China Leads Patent Filings for Fuel Cell Cathodic Materials
  • 9.5. IP Filing in Electrolyte Materials Takes a Backseat as Research in Cathode Materials Gains Prominence
  • 9.6. Patent Filings in Catalytic Materials for Fuel Cells is on the Rise

10.0. Growth Opportunity Universe

  • 10.1. Growth Opportunity 1: Nanomaterials as Support Materials to Increase Fuel Cell Performance
  • 10.1. Growth Opportunity 1: Nanomaterials as Support Materials to Increase Fuel Cell Performance (continued)
  • 10.2. Growth Opportunity 2: Reducing Pt Content by Doping Alternative Materials to Improve Fuel Cells' Economic Viability
  • 10.2. Growth Opportunity 2: Reducing Pt Content by Doping Alternative Materials to Improve Fuel Cells' Economic Viability (continued)
  • 10.3. Growth Opportunity 3: Development of Standards and Tests for Material Performance Benchmarking
  • 10.3. Growth Opportunity 3: Development of Standards and Tests for Material Performance Benchmarking (continued)

11.0. Appendix

  • 11.1. Technology Readiness Levels (TRL): Explanation

12.0. Next Steps

  • 12.1. Your Next Steps
  • 12.2. Why Frost, Why Now?
  • Legal Disclaimer