NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

5G基礎設施材料:技術與知識產權分析

Materials for 5G Infrastructure: Technology and IP Analysis

出版商 Frost & Sullivan 商品編碼 1022241
出版日期 內容資訊 英文 72 Pages
商品交期: 最快1-2個工作天內
價格
5G基礎設施材料:技術與知識產權分析 Materials for 5G Infrastructure: Technology and IP Analysis
出版日期: 2021年07月22日內容資訊: 英文 72 Pages
簡介

在過去三年中,與 5G 網絡部署相關的活動有所增加。 5G 行業的利益相關者正在積極致力於建設 5G 基礎設施,以確保不間斷的連接。然而,他們面臨著 5G 天線、濾波器、環行器、電纜和佈線等 5G 電子元件傳輸損耗的挑戰。因此,需要具有低損耗特性的高性能材料。正在考慮具有低介電常數、介電損耗角正切和吸濕性的材料,因為它們有可能解決傳輸損耗問題。此外,還需要具有能夠承受電路板製造條件的熱穩定性和能夠分散高頻操作過程中產生的熱量的導熱性的材料。

在5G組件中,5G天線被認為是重要的組件之一,因為隨著家用電器的增加和5G基礎設施的分散,需要建設配備大量天線的基站。目前,5G天線採用液晶聚合物、聚□亞胺、含氟聚合物、低溫共燒陶瓷等材料。但由於高介電常數、高價格等限制,高性能、高性價比的新材料的研發正在進行中。玻璃和聚合物樹脂如聚苯醚和聚苯硫醚具有優異的介電和熱性能,因此正在考慮將它們用於 5G 網絡。

本報告調查了5G基礎設施材料,概述了5G基礎設施、5G基礎設施材料技術大綱、優勢和局限性、材料特性和性能、技術適用性評估、近期研究和商業發展趨勢,總結了增長機會分析。

目錄

第 1 章戰略義務

  • 成長困難
  • 戰略要務 8 (TM)
  • 三大戰略勢在必行對市場的影響
  • 增長機會推動的增長管道引擎 (TM)
  • 調查方法

第二章調查背景

  • 調查範圍
  • 調查範圍和調查內容
  • 主要調查結果

第3章5G基礎設施介紹

  • 5G 旨在為無線網絡行業提供新的功能和體驗
  • 需要穩定可靠的 WiFi 連接的應用需要 5G 快速註冊 全面部署大網絡需要大規模引入5G基礎設施
  • 5G 基礎設施採用全新網絡架構,下一代回程,不同於 4G 基礎設施
  • 高毫米波衰減對 5G 基礎設施架構有重大影響
  • 使用特殊的低損耗材料對於採用 5G 標準的基礎設施組件至關重要。
  • 5G 網絡需要光纖基礎設施來連接射頻設備
  • 5G天線有望促進新材料的研發和採用

第 4 章 5G 材料:技術快照

  • 信號損耗、熱管理和生產效率是 5G 天線材料的重要問題
  • 預計天線的結構和可用於基板的材料將很重要。
  • LCP 等材料已被用於 5G 天線
  • 液晶聚合物正被用作 5G 基板材料。
  • 聚□亞胺因其價格競爭力和優異的熱性能而備受關注。
  • 具有優異介電和機械性能的氟樹脂
  • 低溫共燒陶瓷因其優異的機械和熱性能以及無毒而被採用。
  • 正在研究開發具有優異性價比的5G天線的玻璃
  • 正在研究聚苯醚作為天線基板的替代材料。
  • 具有優異介電性能和耐化學性的 PPS 樹脂備受關注。
  • 各種5G天線材料具有不同的特性和資產
  • 具有出色商業潛力的低損耗材料擴大了採用的可能性
  • 正在採用具有優異性價比的低損耗材料

第五章創新指標

  • 許多低損耗材料由化工企業直接提供給 5G 行業
  • 公私合營項目,開發端到端 5G 解決方案並擴大 5G 基板材料的產能
  • 研究機構正在加大對創新生態系統的貢獻
  • 合作夥伴關係對於擴大產品組合至關重要
  • 根據IP分析,2016年至2020年專利申請量有所增加 從
  • IP 的材料細分來看,玻璃、LTCC 和 PI 佔據了 5G 基板材料的最高位置。

第 6 章特色公司

  • 杜邦:適合毫米波頻段運行的豐富5G材料陣容
  • 日立化成:開發出可實現 5G 部件小型化的印刷電路板材料
  • Resonant:為 5G 行業的射頻濾波器設計提供軟件
  • Kaneka:開發出天線基板用改性聚□亞胺耐熱材料
  • AGC:為小基站開發透明玻璃天線
  • 索爾維:推出具有壓倒性熱特性的高頻應用氟樹脂
  • Toray:開發控制 PPS 薄膜中分子鏈取向的技術
  • 嘉興嘉立電子:開發了一種使用陶瓷填料的新型樹脂基體
  • KOA:開發毫米波天線用LTCC基板
  • 科慕:用於 5G 電纜和天線的氟樹脂商業化

第 7 章增長機會

  • 增長機會 1:改善現有 5G 材料的低損耗特性
  • 增長機會 2:用於開發高效新材料的人工智能
  • 增長機會 3:合作開發端到端 5G 解決方案

第8章附錄

  • 標準評估——背景數據
  • 技術準備水平 (TRL):說明

第 9 章後續步驟

目錄
Product Code: D9F4

Growth Opportunities Driven by the Need for Low-loss, Cost-effective Materials in 5G Infrastructure

In the last three years, activities related to the rollout of 5G networks have increased. Stakeholders in the 5G industry are actively trying to build 5G infrastructures to ensure uninterrupted connectivity. However, stakeholders face challenges related to transmission losses in 5G electronic components, such as 5G antennas, filters, circulators, cables, and wirings. This has resulted in the need for high-performance materials with low-loss properties. Materials with low dielectric constant, dissipation factor, and moisture absorption are being investigated as they can potentially address the challenges related to transmission losses. In addition, materials with thermal stability needed to resist the circuit boards production conditions and thermal conductivity to distribute the heat generated during operations at high frequencies are also in demand.

Among 5G components, 5G antennas are considered as one of critical components driven by rise of consumer electronics and the changes in 5G infrastructure toward decentralization, which requires massive construction of base stations that contain large number of antennas.

Materials such as liquid crystal polymers, polyimides, fluoropolymers, or low temperature co-fired ceramics are currently used for 5G antennas. However, their limitations, such as high dielectric constant and high prices, are driving R&D efforts to develop new high-performing and cost-effective materials. Emerging material alternatives such as glass or polymeric resins, including polyphenylene ether and polyphenylene sulfide resins are being investigated for use in 5G networks due to their promising dielectric and thermal performance.

This research titled "Materials for 5G Infrastructure - Technology and IP Analysis" focuses on various emerging materials and assesses the advantages and limitations of each and its applicability in 5G infrastructure and components, specifically 5G antenna and substrate materials. The research also provides an analysis of materials and performance characteristics, properties, and technology-readiness levels.

The analysis contains a comprehensive overview of key stakeholders active in developing 5G antennas substrate materials and recent research and commercial developments.

Briefly, this research provides:

  • 5G infrastructure overview
  • Types of 5G components
  • Types of materials used in 5G antennas
  • R&D initiatives
  • Patenting trends and insights
  • Companies to action
  • Growth opportunities for 5G material developers

Table of Contents

1. Strategic Imperatives

  • 1.1. Why Is It Increasingly Difficult to Grow?
  • 1.2. The Strategic Imperative 8™
  • 1.3. The Impact of the Top Three Strategic Imperatives on the Materials for 5G Infrastructure Technology
  • 1.4. About The Growth Pipeline Engine™
  • 1.5. Growth Opportunities Fuel the Growth Pipeline Engine™
  • 1.6. Research Methodology

2.0 Research Context

  • 2.1. Research Scope
  • 2.2. Research Coverage and Key Questions the Study Will Answer
  • 2.3. Key Findings

3.0 Introduction to 5G Infrastructure

  • 3.1. 5G Aims to Deliver New Capabilities and Experiences Across the Wireless Network Industry
  • 3.2. Applications that Rely on Stable and Reliable WiFi Connections Drive the Need for Fast 5G Enrollment
  • 3.3. Full Rollout of 5G Network Requires Massive Implementation of 5G Infrastructure
  • 3.4. 5G Infrastructure Differs from 4G Infrastructure in New Network Architecture, New Chemistry, and Next-generation Backhaul
  • 3.5. High Attenuation of mmWaves Significantly Impacts the Architecture of 5G Infrastructure
  • 3.6. Adoption of Infrastructure Components to 5G Standards Relies on Utilization of Special Low-loss Materials
  • 3.7. 5G Networks will Require Fiber Optic Infrastructure to Connect RF Equipment
  • 3.8. 5G Antennas Expected to Drive R&D and Adoption of New Materials

4.0 5G Materials: Technology Snapshot

  • 4.1. Signal Loss, Thermal Management, and Production Efficacy are Key Challenges for 5G Antennas Materials
  • 4.2. Materials that can be used for an Antenna's Structure and Substrate are Expected to Become Highly Important
  • 4.3. Materials, Such as LCPs, are Already in Use in 5G Antennas
  • 4.4. Liquid Crystal Polymers Are Leading in Adoption as 5G Substrate Materials
  • 4.5. Polyimides are Gaining Interest Due to Competitive Pricing and Good Thermal Performance
  • 4.6. Fluoropolymers Exhibit Exceptional Dielectric and Mechanical Properties
  • 4.7. Low-temperature Co-fired Ceramics Possess Excellent Mechanical and Thermal Properties and Non-toxicity that Can Facilitate Adoption
  • 4.8. Glass is Being Increasingly Researched for Use in Developing Cost-effective 5G Antennas
  • 4.9. Polyphenylene Ether Is Being Researched as an Alternative Material for Antenna Substrates
  • 4.10. PPS Resins Have Attracted Market Attention Due to Their Excellent Dielectric Performance and Chemical Resistance
  • 4.11. Various 5G Antenna Materials Offer Different Properties and Assets
  • 4.12. Low-loss Materials with Excellent Business Viability Can Find Increasing Adoption Potential
  • 4.13. Cost-effective Materials with Low-loss Properties Will Witness Increasing Adoption

5.0 Innovation Indicators

  • 5.1. Many Low-loss Materials are Provided Directly to the 5G Industry by Chemical Companies
  • 5.2. Public and Private Funding Projects to Develop End-to-end 5G Solutions and Expand Production Capacity for 5G Substrate Materials
  • 5.3. Research Institutes' Contributions to the Innovation Ecosystem on the Rise
  • 5.4. Partnerships are Prevalent for Product Portfolio Expansion
  • 5.5. IP Analysis Showcases Increase in Patent Filing Activity During 2016 to 2020
  • 5.6. IP Breakdown for Materials Type Shows that Glass, LTCC, and PI are Top Materials for 5G Substrates

6.0 Companies to Action

  • 6.1. DuPont Offers a Broad Portfolio of 5G-Suitable Materials for mmWave Bands Operations
  • 6.2. Hitachi Chemicals has Developed a Printing Wiring Board Material Enabling Miniaturization of 5G Components
  • 6.3. Resonant Offers Software for Designing RF Filters for the 5G Industry
  • 6.4. Kaneka Corporation Develops a Modified Polyimide Heat-resistant Material for Antenna Substrate Applications
  • 6.5. AGC Develops Transparent Glass Antennas for Small Cells
  • 6.6. Solvay Delivers Fluoropolymers for High-frequency Applications that Offer Unparalleled Thermal Performance
  • 6.7. Toray's Technology can Control the Orientation of Molecular Chains in PPS Films
  • 6.8. Jiaxing Glead Electronics Develops a New Resin Matrix with a Ceramic Filler
  • 6.9. KOA Corporation Develops LTCC Substrate for mmWave Antennas
  • 6.10. The Chemours  Company Commercializes its Fluoropolymer Resin for 5G Cables and Antennas

7.0 Growth Opportunities

  • 7.1. Growth Opportunity 1: Improvement of Low-loss Properties in Existing 5G Materials
  • 7.1. Growth Opportunity 1: Improvement of Low-loss Properties in Existing 5G Materials (Continued)
  • 7.2. Growth Opportunity 2: AI for Developing Efficient, New Materials
  • 7.2. Growth Opportunity 2: AI for Developing Efficient, New Materials (Continued)
  • 7.3. Growth Opportunity 3: Collaborations to Develop End-to-End 5G Solutions
  • 7.3. Growth Opportunity 3: Collaborations to Develop End-to-End 5G Solutions (Continued)

8.0 Appendix

  • 8.1. Criteria Evaluation-Background Data
  • 8.2. Technology Readiness Levels (TRL): Explanation

9.0 Next Steps

  • 9.1. Your Next Steps
  • 9.2. Why Frost, Why Now?
  • Legal Disclaimer