NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

碳納米管的全球市場(2021-2031)

The Global Market for Carbon Nanotubes 2021-2031

出版商 Future Markets, Inc. 商品編碼 975544
出版日期 內容資訊 英文 397 Pages
訂單完成後即時交付
價格
碳納米管的全球市場(2021-2031) The Global Market for Carbon Nanotubes 2021-2031
出版日期: 2021年04月30日內容資訊: 英文 397 Pages
簡介

全球碳納米管 (CNT) 市場在電子設備和電動汽車電池中使用的導電材料需求推動下快速增長。 LG Chem 最近宣佈將其碳納米管產能擴大 1,200 公噸至 1,700 公噸。 2020 年底,Carbice Corporation 籌集了 1500 萬美元用於開發電子設備熱管理的 CNT。Carbice Corporation還以約 1.15 億美元收購了Shenzhen Sanshun Nano New Materials Co., Ltd (SUSN)。

用於家用電器、電力電纜、電池、聚合物複合材料、塗料、航空航天、傳感器、加熱器、過濾器、生物醫學等的多壁碳納米管 (MWCNT) 粉末、陣列、片材、薄片、薄膜、紗線。正在使用。此外,單壁碳納米管(SWCNTs)的大規模工業化生產已經開始,橡膠、塗料、透明導電膜、晶體管、傳感器、存儲器件等有望迎來新的市場機遇。

本報告調查了碳納米管的全球市場,並提供了有關市場趨勢、需求、按應用劃分的市場規模、前景/概述/發展/評估、競爭形勢、主要公司簡介等信息。

目錄

第 1 章執行摘要

  • 全球碳納米管市場(2021 年)
    • 對多壁碳納米管 (MWCNT) 的需求增加
    • 單壁碳納米管 (SWCNT) 主導市場
    • 行業發展(2020-2021)
  • 卓越的性能
    • 多壁碳納米管
    • 單壁碳納米管
  • 商業產品
  • 多壁碳納米管
    • 應用
    • 主要公司
    • 2021年產能
    • 市場需求
  • 單壁碳納米管
    • 應用
    • 主要公司
    • 生產能力
    • 市場需求
  • 碳納米管市場的挑戰
  • COVID-19 對另一個市場的影響

第 2 章碳納米管概述

  • 屬性
  • CNT特性比較
  • 多壁碳納米管 (MWCNT)
    • 屬性
    • 應用
  • 單壁碳納米管 (SWCNT)
    • 屬性
    • 應用
    • 多壁碳納米管和單壁碳納米管的比較
  • 雙壁碳納米管 (DWNT)
    • 屬性
    • 應用
  • 垂直取向的單壁納米管 (VACNT)
    • 屬性
    • 應用
  • 少數壁碳納米管 (FWNT)
    • 屬性
    • 應用
  • 碳納米角 (CNH)
    • 屬性
    • 應用
  • 碳蔥
    • 屬性
    • 應用
  • 氮化硼納米管 (BNNT)
    • 屬性
    • 應用
  • 碳納米纖維
    • 屬性
    • 應用

第 3 章碳納米管的合成與製備

第 4 章碳納米管專利

第 5 章碳納米管定價和定價因素

第 6 章3D列印

  • 市場概覽
  • 應用
  • 市場評估
  • 全球市場(交易量):截至 2030 年的結果和預測
  • 產品開發人員

第 7 章粘合劑

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2030 年的結果和預測
  • 產品開發人員

第 8 章航空航天

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2030 年的結果和預測
  • 產品開發人員

第 9 章汽車

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2030 年的結果和預測
  • 產品開發人員

第 10 章電池

  • 市場概覽
  • 應用
    • 電動汽車電池中所含的碳納米管
    • 鋰硫(Li-S)電池納米材料
    • 鈉離子電池納米材料
    • 鋰空氣電池納米材料
    • 用於電子設備的柔性和彈性電池
    • 靈活有彈性的LIB
  • 柔韌有彈性的超級電容器
    • 材料
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2030 年的結果和預測
  • 產品開發人員

第 11 章複合

  • 市場概覽
  • 纖維基聚合物複合材料部件
    • 市場展望
    • 應用
    • 市場評估
  • 金屬基複合材料
    • 市場評估
  • 全球市場(交易量):截至 2030 年的結果和預測
  • 產品開發人員

第 12 章導電油墨

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2030 年的結果和預測
  • 產品開發人員

第 13 章建設

  • 市場概覽
  • 市場展望
  • 市場評估
    • 水泥
    • 瀝青瀝青
  • 全球市場(交易量):截至 2030 年的結果和預測
  • 產品開發人員

第 14 章電子

  • 可穿戴電子產品和顯示器
    • 市場概覽
    • 市場展望
    • 應用
    • 市場評估
    • 全球市場:到 2031 年的表現和預測
    • 產品開發人員
  • 晶體管和集成電路
    • 市場概覽
    • 應用
    • 市場展望
    • 市場評估
    • 全球市場:到 2031 年的表現和預測
    • 產品開發人員
  • 存儲設備
    • 市場概覽
    • 市場展望
    • 市場評估
    • 全球市場(交易量):截至 2031 年的實際結果和預測
    • 產品開發人員

第 15 章過濾

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):到 2031 年的表現和預測
  • 產品開發人員

第 16 章燃料電池

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 17 章生命科學與醫學

  • 市場概覽
  • 應用
  • 市場展望
    • 藥物輸送
    • 影像診斷
    • 種植體
    • 醫用生物傳感器
    • 傷口護理
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 18 章潤滑劑

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 到 2031 年的噸世界市場、歷史和預測
  • 產品開發人員

第 19 章石油和天然氣

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 20 章油漆和塗料

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 21 章光伏發電

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 22 章橡膠與輪胎

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 23 章傳感器

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 24 章智能紡織品和服裝

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 25 章超級電容器

  • 市場概覽
  • 應用
  • 市場展望
  • 市場評估
  • 全球市場(交易量):截至 2031 年的實際結果和預測
  • 產品開發人員

第 26 章其他市場

  • 熱界面材料
    • 市場評估
  • 電源線
    • 市場評估

第 27 章協作

  • 供應和許可
  • 融資與投資

第 28 章多壁碳納米管公司簡介

第 29 章單壁碳納米管公司簡介概述

第 30 章調查方法

第 31 章參考資料

目錄

The global carbon nanotubes market is growing rapidly, driven by demand for conductive materials for applications in electronics and batteries for electric vehicles. LG Chem has recently announced completion a 1,200 metric ton (MT) expansion of their CNT production capacity to 1,700 MT. At the end of 2020, Carbice Corporation raised $15 million to develop CNTs for thermal management in electronics. Cabot Corporation acquired Shenzhen Sanshun Nano New Materials Co., Ltd (SUSN) for approximately $115 million.

Multi-walled carbon nanotube (MWCNT) powders, arrays, sheets, flakes, films and yarns have found applications in consumer electronics, power cables, batteries, polymer composites, coatings, aerospace, sensors, heaters, filters and biomedicine. Large-scale industrial production of single-walled carbon nanotubes (SWCNTs) has been initiated, promising new market opportunities in rubber, coatings, transparent conductive films, transistors, sensors and memory devices.

  • Global production capacities for MWCNTS and SWCNTs, historical and forecast to 2031.
  • Industry activity 2020-2031.
  • Analysis of other carbon nanotube related materials including Double-walled carbon nanotubes, Vertically aligned CNTs (VACNTs), Few-walled carbon nanotubes (FWNTs), Carbon nanohorns (CNH), Boron Nitride nanotubes (BNNTs) and carbon nanofibers.
  • Market analysis of carbon nanotubes in batteries, supercapacitors, fuel cells, 3D printing, rubber, automotive and aerospace composites, packaging, electronics, adhesives, thermal management, construction materials, filters, biomedicine, lubricants, oil & gas, paints & coatings, solar cells, sensors, rubber, textiles and cables.
  • Analysis of synthesis methods. Analysis of carbon nanotubes synthesis from carbon capture, biomass and recycled materials.
  • Profiles of more than 135 companies. Companies profiled include LG Chem, MECHnano, C2CNT LLC, Huntsman Corporation, NovationSi, Zeon Corporation, Eden Innovations Ltd, Cabot Corporation, Carbice Corporation, NAWA Technologies, OCSiAl and many more.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The global market for carbon nanotubes in 2021
    • 1.1.1. Demand for Multi-walled carbon nanotubes (MWCNTs) increasing
    • 1.1.2. Single-walled carbon nanotubes (SWCNTs) gaining market traction
    • 1.1.3. Industry developments 2020-2021
  • 1.2. Exceptional properties
    • 1.2.1. MWCNTs
    • 1.2.2. SWCNTs
  • 1.3. Commercial products
  • 1.4. MWCNTs
    • 1.4.1. Applications
    • 1.4.2. Key players
    • 1.4.3. Production capacities in 2021
    • 1.4.4. Market demand, metric tons (MT)
  • 1.5. SWCNTs
    • 1.5.1. Applications
    • 1.5.2. Key players
    • 1.5.3. Production capacities
    • 1.5.4. Market demand, metric tons (MT)
  • 1.6. Carbon nanotubes market challenges
  • 1.7. Market impact from COVID-19

2. OVERVIEW OF CARBON NANOTUBES

  • 2.1. Properties
  • 2.2. Comparative properties of CNTs
  • 2.3. Multi-walled nanotubes (MWCNT)
    • 2.3.1. Properties
    • 2.3.2. Applications
  • 2.4. Single-wall carbon nanotubes (SWCNT)
    • 2.4.1. Properties
    • 2.4.2. Applications
    • 2.4.3. Comparison between MWCNTs and SWCNTs
  • 2.5. Double-walled carbon nanotubes (DWNTs)
    • 2.5.1. Properties
    • 2.5.2. Applications
  • 2.6. Vertically aligned CNTs (VACNTs)
    • 2.6.1. Properties
    • 2.6.2. Applications
  • 2.7. Few-walled carbon nanotubes (FWNTs)
    • 2.7.1. Properties
    • 2.7.2. Applications
  • 2.8. Carbon Nanohorns (CNHs)
    • 2.8.1. Properties
    • 2.8.2. Applications
  • 2.9. Carbon Onions
    • 2.9.1. Properties
    • 2.9.2. Applications
  • 2.10. Boron Nitride nanotubes (BNNTs)
    • 2.10.1. Properties
    • 2.10.2. Applications
  • 2.11. Carbon nanofibers
    • 2.11.1. Properties
    • 2.11.2. Applications

3. CARBON NANOTUBE SYNTHESIS AND PRODUCTION

4. CARBON NANOTUBES PATENTS

5. CARBON NANOTUBES PRICING AND PRICE DRIVERS

6. 3D PRINTING

  • 6.1. Market overview
  • 6.2. Applications
  • 6.3. Market assessment
  • 6.4. Global market in tons, historical and forecast to 2030
  • 6.5. Product developers

7. ADHESIVES

  • 7.1. Market overview
  • 7.2. Applications
  • 7.3. Market prospects
  • 7.4. Market assessment
  • 7.5. Global market in tons, historical and forecast to 2030
  • 7.6. Product developers

8. AEROSPACE

  • 8.1. Market overview
  • 8.2. Applications
  • 8.3. Market prospects
  • 8.4. Market assessment
  • 8.5. Global market in tons, historical and forecast to 2030
  • 8.6. Product developers

9. AUTOMOTIVE

  • 9.1. Market overview
  • 9.2. Applications
  • 9.3. Market prospects
  • 9.4. Market assessment
  • 9.5. Global market in tons, historical and forecast to 2030
  • 9.6. Product developers

10. BATTERIES

  • 10.1. Market overview
  • 10.2. Applications
    • 10.2.1. CNTs in electric vehicle batteries
    • 10.2.2. Nanomaterials in Lithium-sulfur (Li-S) batteries
    • 10.2.3. Nanomaterials in Sodium-ion batteries
    • 10.2.4. Nanomaterials in Lithium-air batteries
    • 10.2.5. Flexible and stretchable batteries in electronics
    • 10.2.6. Flexible and stretchable LIBs
      • 10.2.6.1. Fiber-shaped Lithium-Ion batteries
      • 10.2.6.2. Stretchable lithium-ion batteries
      • 10.2.6.3. Origami and kirigami lithium-ion batteries
      • 10.2.6.4. Fiber-shaped Lithium-Ion batteries
  • 10.3. Flexible and stretchable supercapacitors
    • 10.3.1. Materials
  • 10.4. Market prospects
  • 10.5. Market assessment
  • 10.6. Global market in tons, historical and forecast to 2030
  • 10.7. Product developers

11. COMPOSITES

  • 11.1. Market overview
  • 11.2. Fiber-based polymer composite parts
    • 11.2.1. Market prospects
    • 11.2.2. Applications
    • 11.2.3. Market assessment
  • 11.3. Metal-matrix composites
    • 11.3.1. Market assessment
  • 11.4. Global market in tons, historical and forecast to 2030
  • 11.5. Product developers

12. CONDUCTIVE INKS

  • 12.1. Market overview
  • 12.2. Applications
  • 12.3. Market prospects
  • 12.4. Market assessment
  • 12.5. Global market in tons, historical and forecast to 2030
  • 12.6. Product developers

13. CONSTRUCTION

  • 13.1. Market overview
  • 13.2. Market prospects
  • 13.3. Market assessment
    • 13.3.1. Cement
    • 13.3.2. Asphalt bitumen
  • 13.4. Global market in tons, historical and forecast to 2030
  • 13.5. Product developers

14. ELECTRONICS

  • 14.1. WEARABLE ELECTRONICS AND DISPLAYS
    • 14.1.1. Market overview
    • 14.1.2. Market prospects
    • 14.1.3. Applications
    • 14.1.4. Market assessment
    • 14.1.5. Global market, historical and forecast to 2031
    • 14.1.6. Product developers
  • 14.2. TRANSISTORS AND INTEGRATED CIRCUITS
    • 14.2.1. Market overview
    • 14.2.2. Applications
    • 14.2.3. Market prospects
    • 14.2.4. Market assessment
    • 14.2.5. Global market, historical and forecast to 2031
    • 14.2.6. Product developers
  • 14.3. MEMORY DEVICES
    • 14.3.1. Market overview
    • 14.3.2. Market prospects
    • 14.3.3. Market assessment
    • 14.3.4. Global market in tons, historical and forecast to 2031
    • 14.3.5. Product developers

15. FILTRATION

  • 15.1. Market overview
  • 15.2. Applications
  • 15.3. Market prospects
  • 15.4. Market assessment
  • 15.5. Global market in tons, historical and forecast to 2031
  • 15.6. Product developers

16. FUEL CELLS

  • 16.1. Market overview
  • 16.2. Applications
  • 16.3. Market prospects
  • 16.4. Market assessment
  • 16.5. Global market in tons, historical and forecast to 2031
  • 16.6. Product developers

17. LIFE SCIENCES AND MEDICINE

  • 17.1. Market overview
  • 17.2. Applications
  • 17.3. Market prospects
    • 17.3.1. Drug delivery
    • 17.3.2. Imaging and diagnostics
    • 17.3.3. Implants
    • 17.3.4. Medical biosensors
    • 17.3.5. Woundcare
  • 17.4. Market assessment
  • 17.5. Global market in tons, historical and forecast to 2031
  • 17.6. Product developers

18. LUBRICANTS

  • 18.1. Market overview
  • 18.2. Applications
  • 18.3. Market prospects
  • 18.4. Market assessment
  • 18.5. Global market in tons, historical and forecast to 2031
  • 18.6. Product developers

19. OIL AND GAS

  • 19.1. Market overview
  • 19.2. Applications
  • 19.3. Market prospects
  • 19.4. Market assessment
  • 19.5. Global market in tons, historical and forecast to 2031
  • 19.6. Product developers

20. PAINTS AND COATINGS

  • 20.1. Market overview
  • 20.2. Applications
  • 20.3. Market prospects
  • 20.4. Market assessment
  • 20.5. Global market in tons, historical and forecast to 2031
  • 20.6. Product developers

21. PHOTOVOLTAICS

  • 21.1. Market overview
  • 21.2. Applications
  • 21.3. Market prospects
  • 21.4. Market assessment
  • 21.5. Global market in tons, historical and forecast to 2031
  • 21.6. Product developers

22. RUBBER AND TIRES

  • 22.1. Market overview
  • 22.2. Applications
  • 22.3. Market prospects
  • 22.4. Market assessment
  • 22.5. Global market in tons, historical and forecast to 2031
  • 22.6. Product developers

23. SENSORS

  • 23.1. Market overview
  • 23.2. Applications
  • 23.3. Market prospects
  • 23.4. Market assessment
  • 23.5. Global market in tons, historical and forecast to 2031
  • 23.6. Product developers

24. SMART TEXTILES AND APPAREL

  • 24.1. Market overview
  • 24.2. Applications
  • 24.3. Market prospects
  • 24.4. Market assessment
  • 24.5. Global market in tons, historical and forecast to 2031
  • 24.6. Product developers

25. SUPERCAPACITORS

  • 25.1. Market overview
  • 25.2. Applications
  • 25.3. Market prospects
  • 25.4. Market assessment
  • 25.5. Global market in tons, historical and forecast to 2031
  • 25.6. Product developers

26. OTHER MARKETS

  • 26.1. THERMAL INTERFACE MATERIALS
    • 26.1.1. Market assessment
  • 26.2. POWER CABLES
    • 26.2.1. Market assessment

27. COLLABORATIONS

  • 27.1. Supply and licensing
  • 27.2. Funding and investment

28. MULTI-WALLED CARBON NANOTUBES COMPANY PROFILES

29. SINGLE-WALLED CARBON NANOTUBES COMPANY PROFILES

30. RESEARCH METHODOLOGY

31. REFERENCES

Tables

  • Table 1. Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications
  • Table 2. Industry developments in carbon nanotubes 2020-2021
  • Table 3. Typical properties of SWCNT and MWCNT
  • Table 4. Applications of MWCNTs
  • Table 5. Key MWCNT producers
  • Table 6. Annual production capacity of the key MWCNT producers in 2021 (MT)
  • Table 7. MWCNT market demand forecast (metric tons), 2018-2031
  • Table 8. Annual production capacity of SWCNT producers in 2021 (MT)
  • Table 9. SWCNT market demand forecast (metric tons), 2018-2031
  • Table 10. Carbon nanotubes market challenges
  • Table 11. Assessment of impact from COVID-19 by end user market. Key: Low, little impact and market will continue to grow. Medium, market impacted to some degree affecting growth prospects over next 1-2 years. High: Market significantly impacted
  • Table 12. Properties of carbon nanotubes
  • Table 13. Properties of CNTs and comparable materials
  • Table 14. Markets, benefits and applications of Single-Walled Carbon Nanotubes
  • Table 15. Comparison between single-walled carbon nanotubes and multi-walled carbon nanotubes
  • Table 16. Comparative properties of BNNTs and CNTs
  • Table 17. Applications of BNNTs
  • Table 18. Comparison of well-established approaches for CNT synthesis
  • Table 19. SWCNT synthesis methods
  • Table 20. Location of SWCNT patent filings 2008-2020
  • Table 21. Main SWCNT patent assignees
  • Table 22. Carbon nanotubes pricing (MWCNTS, SWCNT etc.) by producer
  • Table 23. Market overview for carbon nanotubes in 3D printing
  • Table 24. Applications of carbon nanotubes in 3D printing
  • Table 25. Market and applications for carbon nanotubesin 3D printing
  • Table 26. Demand for carbon nanotubes in 3-D printing (tons), 2018-2030
  • Table 27. Product developers in carbon nanotubes in 3D printing
  • Table 28. Market overview for carbon nanotubes in adhesives
  • Table 29. Applications of carbon nanotubes in adhesives
  • Table 30. Scorecard for carbon nanotubes in adhesives
  • Table 31. Market and applications for carbon nanotubes in adhesives
  • Table 32. Demand for carbon nanotubes in adhesives (tons), 2018-2030
  • Table 33. Product developers in carbon nanotubes for adhesives
  • Table 34. Market overview for carbon nanotubes in aerospace
  • Table 35. Applications of carbon nanomaterials in aerospace
  • Table 36. Scorecard for carbon nanotubes in aerospace
  • Table 37. Market and applications for carbon nanotubes in aerospace
  • Table 38. Demand for carbon nanotubes in aerospace (tons), 2018-2030
  • Table 39. Product developers in carbon nanotubes for aerospace
  • Table 40. Market overview for carbon nanotubes in automotive
  • Table 41. Applications of carbon nanotubes in automotive
  • Table 42. Scorecard for carbon nanotubes in automotive
  • Table 43. Market and applications for carbon nanotubes in automotive
  • Table 44. Demand for carbon nanotubes in automotive (tons), 2018-2030
  • Table 45. Product developers in carbon nanotubes in the automotive market
  • Table 46. Market overview for carbon nanotubes in batteries
  • Table 47. Applications of carbon nanotubes in batteries
  • Table 48. Applications in sodium-ion batteries, by nanomaterials type and benefits thereof
  • Table 49. Applications in lithium-air batteries, by nanomaterials type and benefits thereof
  • Table 50. Applications in flexible and stretchable supercapacitors, by advanced materials type and benefits thereof
  • Table 51. Scorecard for carbon nanotubes in batteries
  • Table 52. Market and applications for carbon nanotubes in batteries
  • Table 53: Estimated demand for carbon nanotubes in batteries (tons), 2018-2030
  • Table 54: Product developers in carbon nanotubes for batteries
  • Table 55. Market overview for carbon nanotubes in composites
  • Table 56. Scorecard for carbon nanotubes in fiber-based polymer composite parts
  • Table 57. Applications of carbon nanotubes in fiber-based polymer composite parts
  • Table 58. Market and applications for carbon nanotubes in fiber-based composite parts
  • Table 59. Market and applications for carbon nanotubes in metal matrix composites
  • Table 60. Global market for carbon nanotubes in composites 2018-2030, tons
  • Table 61: Product developers in carbon nanotubes in composites
  • Table 62. Market overview for carbon nanotubes in conductive inks
  • Table 63. Applications of carbon nanomaterials in conductive ink
  • Table 64. Scorecard for carbon nanotubes in conductive inks
  • Table 65. Market and applications for carbon nanotubes in conductive inks
  • Table 66. Comparative properties of conductive inks
  • Table 67: Demand for carbon nanotubes in conductive ink (tons), 2018-2027
  • Table 68. Product developers in carbon nanotubes for conductive inks
  • Table 69. Market overview for carbon nanotubes in construction
  • Table 70. Scorecard for carbon nanotubes in construction
  • Table 71. Carbon nanotubes for cement
  • Table 72. Carbon nanotubes for asphalt bitumen
  • Table 73: Demand for carbon nanotubes in construction (tons), 2018-2030
  • Table 74: Carbon nanotubes product developers in construction
  • Table 75. Market overview for carbon nanotubes in wearable electronics and displays
  • Table 76. Scorecard for carbon nanotubes in wearable electronics and displays
  • Table 77. Applications of carbon nanotubes in wearable electronics and displays
  • Table 78. Market and applications for carbon nanotubes in wearable electronics and displays
  • Table 79. Comparison of ITO replacements
  • Table 80. Demand for carbon nanotubes in wearable electronics and displays, 2018-2031
  • Table 81. Product developers in carbon nanotubes for electronics
  • Table 82. Market overview for carbon nanotubes in transistors and integrated circuits
  • Table 83. Applications of carbon nanotubes in transistors and integrated circuits
  • Table 84. Scorecard for carbon nanotubes in transistors and integrated circuits
  • Table 85. Market and applications for carbon nanotubes in transistors and integrated circuits
  • Table 86. Demand for carbon nanotubes in transistors and integrated circuits, 2018-2031
  • Table 87. Product developers in carbon nanotubes in transistors and integrated circuits
  • Table 88. Market overview for carbon nanotubes in memory devices
  • Table 89. Scorecard for carbon nanotubes in memory devices
  • Table 90. Market and applications for carbon nanotubes in memory devices
  • Table 91: Demand for carbon nanotubes in memory devices, 2018-2031
  • Table 92: Product developers in carbon nanotubes for memory devices
  • Table 93: Comparison of CNT membranes with other membrane technologies
  • Table 94. Market overview for carbon nanotubes in filtration
  • Table 95. Applications of carbon nanotubes in filtration
  • Table 96. Scorecard for carbon nanotubes in filtration
  • Table 97. Market and applications for carbon nanotubes in filtration
  • Table 98. Demand for carbon nanotubes in filtration (tons), 2018-2031
  • Table 99: Carbon nanotubes companies in filtration
  • Table 100. Electrical conductivity of different catalyst supports compared to carbon nanotubes
  • Table 101. Market overview for carbon nanotubes in fuel cells
  • Table 102. Applications of carbon nanotubes in fuel cells
  • Table 103. Scorecard for carbon nanotubes in fuel cells
  • Table 104. Market and applications for carbon nanotubes in fuel cells
  • Table 105: Demand for carbon nanotubes in fuel cells (tons), 2018-2031
  • Table 106: Product developers in carbon nanotubes for fuel cells
  • Table 107. Market overview for carbon nanotubes in life sciences and medicine
  • Table 108. Applications of carbon nanotubes in life sciences and biomedicine
  • Table 109. Scorecard for carbon nanotubes in drug delivery
  • Table 110. Scorecard for carbon nanotubes in imaging and diagnostics
  • Table 111. Scorecard for carbon nanotubes in medical implants
  • Table 112. Scorecard for carbon nanotubes in medical biosensors
  • Table 113. Scorecard for carbon nanotubes in woundcare
  • Table 114. Market and applications for carbon nanotubes in life sciences and medicine
  • Table 115: Demand for carbon nanotubes in life sciences and medical (tons), 2018-2031
  • Table 116. Product developers in carbon nanotubes for life sciences and biomedicine
  • Table 117. Market overview for carbon nanotubes in lubricants
  • Table 118. Nanomaterial lubricant products
  • Table 119. Applications of carbon nanotubes in lubricants
  • Table 120. Scorecard for carbon nanotubes in lubricants
  • Table 121. Market and applications for carbon nanotubes in lubricants
  • Table 122: Demand for carbon nanotubes in lubricants (tons), 2018-2031
  • Table 123: Product developers in carbon nanotubes for lubricants
  • Table 124. Market overview for carbon nanotubes in oil and gas
  • Table 125. Applications of carbon nanotubes in oil and gas
  • Table 126. Scorecard for carbon nanotubes in oil and gas
  • Table 127. Market and applications for carbon nanotubes in oil and gas
  • Table 128: Demand for carbon nanotubes in oil and gas (tons), 2018-2031
  • Table 129: Product developers in carbon nanotubes for oil and gas
  • Table 130. Markets for carbon nanotube coatings
  • Table 131. Market overview for carbon nanotubes in paints and coatings
  • Table 132. Applications of carbon nanotubes in paints and coatings
  • Table 133. Scorecard for carbon nanotubes in paints and coatings
  • Table 134. Market and applications for carbon nanotubes in paints and coatings
  • Table 135. Demand for carbon nanotubes in paints and coatings (tons), 2018-2031
  • Table 136: Product developers in carbon nanotubes for paints and coatings
  • Table 137. Market overview for carbon nanotubes in photovoltaics
  • Table 138. Applications of carbon nanotubes in photovoltaics
  • Table 139. Scorecard for carbon nanotubes in photovoltaics
  • Table 140. Market and applications for carbon nanotubes in photovoltaics
  • Table 141: Demand for carbon nanotubes in photovoltaics (tons), 2018-2031
  • Table 142: Product developers in carbon nanotubes for solar
  • Table 143. Market overview for carbon nanotubes in rubber and tires
  • Table 144. Applications of carbon nanomaterials in rubber and tires
  • Table 145. Scorecard for carbon nanotubes in rubber and tires
  • Table 146. Market and applications for carbon nanotubes in rubber and tires
  • Table 147: Demand for carbon nanotubes in rubber and tires (tons), 2018-2031
  • Table 148: Product developers in carbon nanotubes in rubber and tires
  • Table 149. Market overview for carbon nanotubes in sensors
  • Table 150. Applications of carbon nanotubes in sensors
  • Table 151. Scorecard for carbon nanotubes in sensors
  • Table 152. Market and applications for carbon nanotubes in sensors
  • Table 153: Demand for carbon nanotubes in sensors (tons), 2018-2031
  • Table 154: Product developers in carbon nanotubes for sensors
  • Table 155: Desirable functional properties for the textiles industry afforded by the use of nanomaterials
  • Table 156. Market overview for carbon nanotubes in smart textiles and apparel
  • Table 157. Applications of carbon nanotubes in smart textiles and apparel
  • Table 158. Scorecard for carbon nanotubes in smart textiles and apparel
  • Table 159. Market and applications for carbon nanotubes in smart textiles and apparel
  • Table 160: Demand for carbon nanotubes in textiles (tons), 2018-2031
  • Table 161: Carbon nanotubes product developers in smart textiles and apparel
  • Table 162. Market overview for carbon nanotubes in supercapacitors
  • Table 163. Applications of carbon nanotubes in supercapacitors
  • Table 164. Scorecard for carbon nanotubes in supercapacitors
  • Table 165. Market and applications for carbon nanotubes in supercapacitors
  • Table 166: Demand for carbon nanotubes in supercapacitors (tons), 2018-2031
  • Table 167: Product developers in carbon nanotubes for supercapacitors
  • Table 168. Market and applications for carbon nanotubes in thermal interface materials
  • Table 169. Market and applications for carbon nanotubes in power cables
  • Table 170: CNT producers and companies they supply/licence to
  • Table 171 . Funding and investments in carbon nanotubes
  • Table 172. Properties of carbon nanotube paper
  • Table 173. Chasm SWCNT products
  • Table 174. Toray CNF printed RFID
  • Table 175. Ex-producers of SWCNTs
  • Table 176. SWCNTs distributors

Figures

  • Figure 1. Demand for MWCNT by application in 2019
  • Figure 2. MWCNT market demand forecast (metric tons), 2018-2031
  • Figure 3. MWCNT market demand forecast (metric tons), by market, 2018-2031
  • Figure 4. SWCNT production capacity by producer in 2021 (metric tons)
  • Figure 5. Schematic of single-walled carbon nanotube
  • Figure 6. TIM sheet developed by Zeon Corporation
  • Figure 7. Double-walled carbon nanotube bundle cross-section micrograph and model
  • Figure 8. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment
  • Figure 9. TEM image of FWNTs
  • Figure 10. Schematic representation of carbon nanohorns
  • Figure 11. TEM image of carbon onion
  • Figure 12. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red
  • Figure 13. Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames
  • Figure 14. Arc discharge process for CNTs
  • Figure 15. Schematic of thermal-CVD method
  • Figure 16. Schematic of plasma-CVD method
  • Figure 17. CoMoCAT® process
  • Figure 18. Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame
  • Figure 19. Schematic of laser ablation synthesis
  • Figure 20. MWCNT patents filed 2007-2020
  • Figure 21. SWCNT patent applications 2001-2020
  • Figure 22. Demand for carbon nanotubes in 3-D printing (tons), 2018-2030
  • Figure 23. Demand for carbon nanotubes in adhesives (tons), 2018-2030
  • Figure 24. Carbon nanotube Composite Overwrap Pressure Vessel (COPV) developed by NASA
  • Figure 25. Demand for carbon nanomaterials in aerospace (tons), 2018-2030
  • Figure 26. HeatCoat technology schematic
  • Figure 27. Veelo carbon fiber nanotube sheet
  • Figure 28. Demand for carbon nanotubes in automotive (tons), 2018-2030
  • Figure 29: Schematic of CNTs as heat-dissipation sheets
  • Figure 30. Theoretical energy densities of different rechargeable batteries
  • Figure 31. Printed 1.5V battery
  • Figure 32. Materials and design structures in flexible lithium ion batteries
  • Figure 33. LiBEST flexible battery
  • Figure 34. Schematic of the structure of stretchable LIBs
  • Figure 35. Electrochemical performance of materials in flexible LIBs
  • Figure 36. Carbon nanotubes incorporated into flexible, rechargeable yarn batteries
  • Figure 37. (A) Schematic overview of a flexible supercapacitor as compared to conventional supercapacitor
  • Figure 38. Stretchable graphene supercapacitor
  • Figure 39: Demand for carbon nanomaterials in batteries (tons), 2018-2030
  • Figure 40. Demand for carbon nanotubes in composites (tons), 2018-2030
  • Figure 41. CSCNT Reinforced Prepreg
  • Figure 42: Demand for carbon nanotubes in conductive ink (tons), 2018-2030
  • Figure 43: Nanotube inks
  • Figure 44. Comparison of nanofillers with supplementary cementitious materials and aggregates in concrete
  • Figure 45: Demand for carbon nanotubes in construction (tons), 2018-2031
  • Figure 46. Demand for carbon nanotubes in wearable electronics and displays, 2018-2031
  • Figure 47. Demand for carbon nanomaterials in transistors and integrated circuits, 2018-2031
  • Figure 48: Thin film transistor incorporating CNTs
  • Figure 49: Demand for carbon nanotubes in memory devices, 2018-2031
  • Figure 50: Carbon nanotubes NRAM chip
  • Figure 51. Strategic Elements' transparent glass demonstrator
  • Figure 52: Demand for carbon nanotubes in filtration (tons), 2018-2031
  • Figure 53: Demand for carbon nanotubes in fuel cells (tons), 2018-2031
  • Figure 54. Demand for carbon nanotubes in life sciences and medical (tons), 2018-2031
  • Figure 55: CARESTREAM DRX-Revolution Nano Mobile X-ray System
  • Figure 56. Graphene medical biosensors for wound healing
  • Figure 57: Graphene Frontiers' Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel
  • Figure 58: GraphWear wearable sweat sensor
  • Figure 59: Demand for carbon nanotubes in lubricants (tons), 2018-2031
  • Figure 60: Demand for carbon nanotubes in oil and gas (tons), 2018-2031
  • Figure 61: Demand for carbon nanotubes in paints and coatings (tons), 2018-2031
  • Figure 62. CSCNT Reinforced Prepreg
  • Figure 63: Demand for carbon nanotubes in photovoltaics (tons), 2018-2031
  • Figure 64: Suntech/TCNT nanotube frame module
  • Figure 65: Demand for carbon nanotubes in rubber and tires (tons), 2018-2031
  • Figure 66: Demand for carbon nanotubes in sensors (tons), 2018-2031
  • Figure 67: Demand for carbon nanotubes in textiles (tons), 2018-2031
  • Figure 68: Demand for carbon nanotubes in supercapacitors (tons), 2018-2031
  • Figure 69. Nawa's ultracapacitors
  • Figure 70. AWN Nanotech water harvesting prototype
  • Figure 71. Carbonics, Inc.'s carbon nanotube technology
  • Figure 72. Fuji carbon nanotube products
  • Figure 73. Internal structure of carbon nanotube adhesive sheet
  • Figure 74. Carbon nanotube adhesive sheet
  • Figure 75. Cup Stacked Type Carbon Nano Tubes schematic
  • Figure 76. CSCNT composite dispersion
  • Figure 77. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays
  • Figure 78. Koatsu Gas Kogyo Co. Ltd CNT product
  • Figure 79. Test specimens fabricated using MECHnano's radiation curable resins modified with carbon nanotubes
  • Figure 80. Hybrid battery powered electrical motorbike concept
  • Figure 81. NAWAStitch integrated into carbon fiber composite
  • Figure 82. Schematic illustration of three-chamber system for SWCNH production
  • Figure 83. TEM images of carbon nanobrush
  • Figure 84. CNT film
  • Figure 85. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process
  • Figure 86: Carbon nanotube paint product
  • Figure 87. HiPCO® Reactor