NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

包裝用奈米技術及奈米材料的全球市場

The Global Market for Nanotechnology and Nanomaterials in Packaging

出版商 Future Markets, Inc. 商品編碼 955118
出版日期 內容資訊 英文 203 pages, 31 figures, 70 tables
訂單完成後即時交付
價格
包裝用奈米技術及奈米材料的全球市場 The Global Market for Nanotechnology and Nanomaterials in Packaging
出版日期: 2021年01月15日內容資訊: 英文 203 pages, 31 figures, 70 tables
簡介

奈米材料從食品保管到可追溯性,追蹤,包裝供應鏈的各種階段已商品化。 UV保護,濕氣阻隔,氣體阻隔,對揮發性成分的阻隔,機械性強度等的特性大幅度改善包裝材料。

本報告提供全球包裝用奈米技術及奈米材料的市場調查,市場定義和概要,市場成長的各種影響因素分析,各類型、用途的收益規模的變化、預測,包裝用途的奈米材料的類型、用途、特性的詳細分析,主要企業簡介等資訊彙整。

第1章 簡介

第2章 調查手法

第3章 摘要整理

  • 市場推動因素、市場趨勢
  • 市場課題與風險分析
  • 全球市場的需求、收益

第4章 包裝的類型

  • 阻隔薄膜、塗料
  • 抗菌活性包裝
  • 防偽包裝
  • 智慧型包裝

第5章 包裝所使用的奈米材料

  • 合成
  • 塗料、薄膜
  • 奈米感測器
  • 纖維素奈米纖維(CNF)
    • 紙、紙板包裝
    • 阻隔薄膜
    • 抗菌包裝
  • 纖維素奈米結晶
  • 細菌奈米纖維素(BNC)
  • 石墨烯
  • 奈米銀
  • 奈米二氧化矽
  • 氧化鋅奈米粒子
  • 奈米碳管
  • 幾丁聚醣奈米粒子
  • 奈米黏土
  • 二氧化鈦奈米粒子
  • 銅奈米粒子
  • 疏水性、親水性塗料
  • 超疏水性塗料

第6章 企業簡介

第7章 參考文件

目錄

Nanomaterials have already been commercialized at various stages of the packaging supply chain from food storage to traceability and tracking. Their enhanced properties, such as UV protection, barrier to moisture, gases and volatile components, mechanical strength, significantly improve packaging materials.

Nanomaterials-based packaging is used to:

  • extend product shelf-life, provide food safety assurance and food quality maintenance.
  • increase barrier properties (mainly from oxygen and moisture).
  • enhance mechanical properties such as strength and flexibility as well as being biodegradable.
  • provide protection for contents through the use of nanoscale bacteriocidal and bacteriostatic to control growth and to reduce activities of microbes.
  • add unique security and anti-counterfeiting features.

The use of nanomaterials in packaging will play a significant role in:

  • decreasing the huge amounts of food waste in both industrialized and developing countries.
  • reducing reliance on petroleum-based packaging.
  • meeting demand for more environmentally friendly packaging products with triggered biodegradability, but with the same mechanical properties as commonly used materials.
  • ensure food safety and traceability for the entire supply chain.

Nanomaterials utlized in packaging include:

  • Cellulose nanofibers.
  • Graphene.
  • Nanosilver.
  • Nanoclays.
  • Cellulose nanocrystals.
  • Antimicrobial nanocoatings and films.
  • Nanosilica, zinc oxide and titanium oxide nanoparticles.
  • Carbon nanotubes.
  • Chitosan nanoparticles.
  • Quantum dots.

Report contents include:

  • Market drivers and trends for the use of nanomaterials in packaging.
  • Market challenges for the use of nanomaterials in packaging.
  • Global market revenues for nanomaterials in packaging, by type and applications.
  • Assessment of nanomaterials in barrier films and coatings, antibacterial (antimicrobial) packaging, anti-counterfeit packaging, nanocomposites and food sensors.
  • 78 company profiles including products, target markets, contact details. etc. Companies covered include Asahi Kasei, Dow, Valentis Nanotech, Toyo Seikan Kaisha, Sun Chemical, Sciessent, Plasmatreat and Nanobiomatters/Bactiblock.

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Aims and objectives of the study
    • 1.1.1. Properties of nanomaterials
    • 1.1.2. Categorization

2. RESEARCH METHODOLOGY

3. EXECUTIVE SUMMARY

  • 3.1. Market drivers and trends in packaging
    • 3.1.1. Antimicrobial packaging for food safety
    • 3.1.2. Active packaging
    • 3.1.3. Intelligent/smart packaging
    • 3.1.4. Biobased packaging and sustainable packaging
    • 3.1.5. Improved barrier function to increase shelf life
  • 3.2. Market challenges and risk assessment
  • 3.3. Global market demand and revenues for nanopackaging

4. TYPES OF PACKAGING

  • 4.1. Barrier films and coatings
  • 4.2. Antimicrobial active packaging
  • 4.3. Anti-counterfeit packaging
  • 4.4. Intelligent packaging

5. NANOMATERIALS USED IN PACKAGING

  • 5.1. Composites
  • 5.2. Coatings and films
  • 5.3. Nanosensors
  • 5.4. Cellulose nanofibers (CNFs)
    • 5.4.1. Paper and board packaging
    • 5.4.2. Barrier films
    • 5.4.3. Antimicrobial packaging
  • 5.5. Cellulose nanocrystals
    • 5.5.1. Properties
    • 5.5.2. Applications
      • 5.5.2.1. Barrier films
      • 5.5.2.2. Anti-counterfeiting films
      • 5.5.2.3. Antimicrobial coatings
  • 5.6. Bacterials nanocellulose (BNC)
    • 5.6.1. Applications
  • 5.7. Graphene
    • 5.7.1. Properties
    • 5.7.2. Barrier films for food packaging
    • 5.7.3. Anti-bacterial activity
    • 5.7.4. Anti-viral activity
      • 5.7.4.1. Reduced graphene oxide (rGO)
  • 5.8. Nanosilver
    • 5.8.1. Properties
    • 5.8.2. Antimicrobial and antiviral activity
    • 5.8.3. Nanosilver in packaging
  • 5.9. Nanosilica
    • 5.9.1. Properties
    • 5.9.2. Antimicrobial and antiviral activity
    • 5.9.3. Easy-clean and dirt repellent
  • 5.10. Zinc oxide nanoparticles
    • 5.10.1. Properties
    • 5.10.2. Antimicrobial packaging films
  • 5.11. Carbon nanotubes
    • 5.11.1. Properties
    • 5.11.2. Antimicrobial activity
  • 5.12. Chitosan nanoparticles
    • 5.12.1. Antimicrobial coatings
    • 5.12.2. Packaging coatings and films
  • 5.13. Nanoclays
    • 5.13.1. Properties
    • 5.13.2. Barrier films
    • 5.13.3. Nanoclay producers
  • 5.14. Titanium dioxide nanoparticles
    • 5.14.1. Properties
    • 5.14.2. Antibacterial films
  • 5.15. Copper nanoparticles
    • 5.15.1. Properties
    • 5.15.2. Anti-microbial coatings
  • 5.16. Hydrophobic and hydrophilic coatings
    • 5.16.1. Hydrophilic coatings
    • 5.16.2. Hydrophobic coatings
      • 5.16.2.1. Properties
  • 5.17. Superhydrophobic coatings
    • 5.17.1. Properties
      • 5.17.1.1. Anti-microbial use

6. COMPANY PROFILES

7. REFERENCES

TABLES

  • Table 1. Categorization of nanomaterials.
  • Table 2. Application markets, competing materials, nanomaterials advantages and current market size in packaging.
  • Table 3. Nanomaterials used in active and smart packaging.
  • Table 4. Traditional plastic materials used in packaging.
  • Table 5. Summary of barrier films and coatings for packaging.
  • Table 6. Summary of antimicrobial active packaging.
  • Table 7. Summary of anti-counterfeit nano-based packaging.
  • Table 8. Summary of intelligent packaging.
  • Table 9. Nanosensors in intelligent packaging for food safety and quality.
  • Table 10. Nanomaterials used in polymers, properties, concentrations and processing methods.
  • Table 11. Nanocomposites in packaging.
  • Table 12. Nanocoatings and films in packaging.
  • Table 13. Nanosensors used in packaging.
  • Table 14. Nanocellulose in paper and board packaging.
  • Table 15. Oxygen permeability of nanocellulose films compared to those made form commercially available petroleum-based materials and other polymers.
  • Table 16. CNC sources, size and yield.
  • Table 17. CNC properties.
  • Table 18. Mechanical properties of CNC and other reinforcement materials.
  • Table 19. Applications of cellulose nanocrystals (NCC).
  • Table 20. Applications of bacterial nanocellulose (BNC).
  • Table 21. Graphene properties relevant to application in packaging.
  • Table 22. Bactericidal characters of graphene-based materials.
  • Table 23. Antibacterial effects of ZnO NPs in different bacterial species.
  • Table 24. Mechanism of chitosan antimicrobial action.
  • Table 25. Nanoclay producers.
  • Table 26. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces.
  • Table 27. Disadvantages of commonly utilized superhydrophobic coating methods.
  • Table 28. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.
  • Table 29. Granbio Nanocellulose Processes.
  • Table 30. Oji Holdings CNF products.
  • Table 31. Oji Holdings CNF products.

FIGURES

  • Figure 1. Global revenues for nanotechnology and nanomaterials in packaging 2018-2030, by nanomaterials type, tons.
  • Figure 2. Global revenues for nanotechnology and nanomaterials in packaging 2018-2030, by applications, millions USD.
  • Figure 3. Schematic of gas barrier properties of nanoclay film.
  • Figure 4. Security tag developed by Nanotech Security.
  • Figure 5. TEM image of cellulose nanocrystals.
  • Figure 6. CNC slurry.
  • Figure 7. Antimicrobial activity of Graphene oxide (GO).
  • Figure 8. Anti-bacterial mechanism of silver nanoparticle coating.
  • Figure 9. Oso fresh food packaging incorporating antimicrobial silver.
  • Figure 10. Hydrophobic easy-to-clean coating.
  • Figure 11. Schematic of antibacterial activity of ZnO NPs.
  • Figure 12. Mechanism of antimicrobial activity of carbon nanotubes.
  • Figure 13. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).
  • Figure 14. Nanoclays structure. The dimensions of a clay platelet are typically 200-1000 nm in lateral dimension and 1 nm thick.
  • Figure 15. Nanoclay composite oxygen barrier schematic.
  • Figure 18. (a) Water drops on a lotus leaf.
  • Figure 19. A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.
  • Figure 20. Contact angle on superhydrophobic coated surface.
  • Figure 24. Anpoly cellulose nanofiber hydrogel.
  • Figure 25. MEDICELLU™.
  • Figure 26. Asahi Kasei CNF fabric sheet.
  • Figure 28. CNF nonwoven fabric.
  • Figure 29. Chuetsu Pulp & Paper CNF production process.
  • Figure 30. nanoforest-S.
  • Figure 31. nanoforest-PDP.
  • Figure 32. nanoforest-MB.
  • Figure 33. Daio Paper CNF production process.
  • Figure 34. ELLEX products.
  • Figure 35. CNF-reinforced PP compounds.
  • Figure 36. Kirekira! toilet wipes.
  • Figure 37. Dotz Nano GQD products.
  • Figure 38. Nano Bio film product.
  • Figure 39. DKS Co. Ltd. CNF production process.
  • Figure 40. Rheocrysta spray.
  • Figure 41. DKS CNF products.
  • Figure 42. Imerys CNF production process.
  • Figure 43. Granbio CNF production process.
  • Figure 44. CNF gel.
  • Figure 45. Block nanocellulose material.
  • Figure 46. CNF products developed by Hokuetsu.
  • Figure 47. Quantum dots tag on plastic bottle.
  • Figure 48. Innventia CNF production process.
  • Figure 49. Self-cleaning nanocoating applied to face masks.
  • Figure 50. Dual Graft System.
  • Figure 51. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).
  • Figure 52. Nippon Paper CNF production process.
  • Figure 53. Nippon Paper Industries' adult diapers.
  • Figure 54. CNF wet powder.
  • Figure 55. CNF transparent film.
  • Figure 56. Transparent CNF sheets.
  • Figure 57. Oji Paper CNF production process.
  • Figure 58. AUROVISCO Transparent CNF slurry.
  • Figure 59. CNF clear sheets.
  • Figure 60. CNF clear sheets.
  • Figure 61. XCNF.
  • Figure 62. Stora Enso CNF production process.
  • Figure 63. Silver / CNF composite dispersions.
  • Figure 64. CNF/nanosilver powder.
  • Figure 65. UPM-Kymmene CNF production process.
  • Figure 66. VTT 100% bio-based stand-up pouches.
  • Figure 67. VTT CNF production process.
  • Figure 68. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.
  • Figure 69. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.
  • Figure 70. Zelfo Technology GmbH CNF production process.