表紙
市場調查報告書

奈米紡織品的全球市場

The Global Market for Nanotextiles

出版商 Future Markets, Inc. 商品編碼 902992
出版日期 內容資訊 英文 152 Pages
訂單完成後即時交付
價格
Back to Top
奈米紡織品的全球市場 The Global Market for Nanotextiles
出版日期: 2019年07月30日內容資訊: 英文 152 Pages
簡介

本報告提供全球奈米紡織品市場相關調查,奈米紡織品的各種市場與用途,奈米紡織品所使用的奈米材料,市場成長的推動要素與趨勢,產業的合作授權協定,全球奈米紡織品市場上用途·各奈米材料種類的收益,紡織品上奈米材料的優點,奈米紡織品的市場課題及技術課題,近幾年的商業活動等相關分析,並提供主要企業的簡介等資訊。

第1章 調查手法

第2章 摘要整理

第3章 奈米紡織品市場

  • 智慧紡織品
  • 穿戴式電子產品
  • 導電油墨
  • 服裝·運動服
  • 鞋子
  • 醫療用紡織品·穿戴式
  • 紡織品用印刷式電池
  • 太陽能能源採集紡織品

第4章 奈米紡織品的石墨烯

  • 用途
  • 服裝·運動服
  • 鞋子
  • 工業用紡織品
  • 電子紡織品/穿戴式
  • 導電油墨

第5章 奈米紡織品的奈米碳管

  • 多層奈米碳管 (MWCNT)
  • 單層奈米碳管 (SWCNT)
  • 應用
  • 防帶電紡織品
  • 穿戴式的SWNCTS

第6章 奈米紡織品的奈米纖維素

  • 纖維素奈米纖維 (CNF)
  • 奈米纖維素的優點
  • 纖維素奈米結晶 (CNC)
  • 衛生的產品
  • 衛生·吸收性產品
  • 穿戴式電子產品

第7章 奈米紡織品的奈米纖維

  • 用途
  • 防護紡織品
  • E紡織品

第8章 奈米紡織品的奈米銀

  • 抗菌紡織品
  • 導電性紡織品的銀奈米線

第9章 奈米紡織品的奈米塗料

  • 紡織品的奈米塗料的種類
  • 紡織品的抗菌奈米塗料
  • 紡織品的自我清洗奈米塗料
  • 疏油性·全空疏性塗料及表面
  • 紡織品的抗紫外線奈米塗料
  • 防護紡織品

第10章 奈米紡織品企業的簡介 (78公司)

第11章 參考文獻

目錄

The Market for Nanotextiles broadly encompasses:

  • Nanocoated/finished textiles (e.g. anti-bacterial nanocoatings, self-cleaning, flame retardant nanoclays). Most nano-enabled textiles on the market fall into this category.
  • Nanocomposite textiles fibre materials (e.g. CNTs integrated into manufacture for enhanced strength; smart textiles with sensor elements; conductive textiles; shape memory textiles).
  • Nanofiber textiles (electrospun nanofibers for protection, conductivity etc.)
  • Nano-based non-wovens (e.g. barrier nanofilm integrated in layers).
  • E-textiles/wearable electronics incorporating nanomaterials.

The development of high value-added products such as smart fabrics, wearable consumer and medical devices and protective textiles has increased rapidly in the last decade. Recent advances in stimuli-responsive surfaces and interfaces, sensors and actuators, flexible electronics, nanocoatings and conductive nanomaterials has led to the development of a new generation of smart and adaptive electronic fibers, yarns and fabrics for application in E-textiles.

Report contents include:

  • Markets and applications of nanotextiles including wearable electronics, E-textiles, apparel, sportswear, footwear, medical textiles and industrial textiles.
  • Nanomaterials utilized in nanotextiles including graphene, carbon nanotubes, nanocellulose, metal oxide nanomaterials, nanosilver, nanofibers and nanocoatings.
  • Market drivers and trends
  • Nanotextles industrial collaborations and licence agreements
  • Global market revenues for nanotextiles to 2030 by applications and nanomaterials types.
  • Advantages of nanomaterials in textiles.
  • Market and technical challenges for nanotextiles.
  • Recent commercial activity.
  • 78 nanotextiles producer profiles.

Table of Contents

1. RESEARCH METHODOLOGY

  • 1.1. Market definition
  • 1.2. Methodology
  • 1.3. Properties of nanomaterials

2. EXECUTIVE SUMMARY

  • 2.1. NANOMATERIALS IN TEXTILES
    • 2.1.1. Recent growth
    • 2.1.2. Future growth
    • 2.1.3. Nanotechnology as a market driver
    • 2.1.4. From rigid to flexible and stretchable
  • 2.2. MARKET DRIVERS AND TRENDS
    • 2.2.1. Reduction in size, appearance and cost of sensors for wearables
    • 2.2.2. Growth in the wearable electronics market
    • 2.2.3. Need for improved conductivity
    • 2.2.4. Growth in remote health monitoring and diagnostics
    • 2.2.5. Need for flexible and stretchable advanced materials
    • 2.2.6. Need for thermal management materials
    • 2.2.7. Growth in the market for anti-microbial textiles
    • 2.2.8. Need to improve the properties of cloth or fabric materials
    • 2.2.9. Environmental and regulatory
    • 2.2.10. Increase in demand for UV protection textiles and apparel
    • 2.2.11. Need for biodegradable sanitary products
    • 2.2.12. Increasing demand for smart fitness clothing
  • 2.3. MARKET CHALLENGES
  • 2.4. GLOBAL MARKETS FOR NANOTEXTILES, BY NANOMATERIALS AND APPLICATIONS

3. MARKETS FOR NANOTEXTILES

  • 3.1. Smart textiles
  • 3.2. Wearable electronics
    • 3.2.1. Wearable sensors
    • 3.2.2. Wearable gas sensors
    • 3.2.3. Wearable strain sensors
    • 3.2.4. Wearable tactile sensors
    • 3.2.5. Industrial monitoring
    • 3.2.6. Military
  • 3.3. Conductive inks
    • 3.3.1. Nanoparticle ink
    • 3.3.2. Conductive Filaments
    • 3.3.3. Conductive films, foils and grids
    • 3.3.4. Inkjet printing in flexible electronics
    • 3.3.5. Printed heaters
  • 3.4. Apparel and sportswear
  • 3.5. Footwear
  • 3.6. Medical textiles and wearables
    • 3.6.1. Nanomaterials-based devices
    • 3.6.2. Printable, flexible and stretchable health monitors
      • 3.6.2.1. Patch-type skin sensors
      • 3.6.2.2. Skin temperature monitoring
      • 3.6.2.3. Hydration sensors
      • 3.6.2.4. Wearable sweat sensors
  • 3.7. Printed batteries for textiles
  • 3.8. Solar energy harvesting textiles

4. GRAPHENE IN NANOTEXTILES

  • 4.1. Applications
  • 4.2. Apparel and sportswear
  • 4.3. Footwear
  • 4.4. Industrial textiles
  • 4.5. Electronic textiles/wearables
    • 4.5.1. Conductive yarns
      • 4.5.1.1. Flexible graphene batteries
  • 4.6. Conductive coatings

5. CARBON NANOTUBES IN NANOTEXTILES

  • 5.1. Multi-walled nanotubes (MWCNT)
    • 5.1.1. Properties
  • 5.2. Single-walled nanotubes (SWCNT)
  • 5.3. Applications
    • 5.3.1. Flame retardant coatings
  • 5.4. Anti-static textiles
  • 5.5. SWNCTS in wearables

6. NANOCELLULOSE IN NANOTEXTILES

  • 6.1. Cellulose nanofibers (CNF)
  • 6.2. Advantages of nanocellulose
  • 6.3. Cellulose nanocrystals (CNC)
  • 6.4. Sanitary products
  • 6.5. Hygiene and absorbent products
  • 6.6. Wearable electronics

7. NANOFIBERS IN NANOTEXTILES

  • 7.1. Applications
  • 7.2. Protective textiles
  • 7.3. E-textiles

8. NANOSILVER IN NANOTEXTILES

  • 8.1. Anti-bacterial textiles and wound dressings
  • 8.2. Silver nanowires in conductive textiles
    • 8.2.1. Silver flake
    • 8.2.2. Silver (Ag) nanoparticle ink
      • 8.2.2.1. Conductivity
    • 8.2.3. Silver nanowires

9. NANOCOATINGS IN NANOTEXTILES

  • 9.1. Types of nanocoatings in textiles
  • 9.2. Anti-bacterial nanocoatings in textiles
  • 9.3. Self-cleaning nanocoatings in textiles
    • 9.3.1. Hydrophilic coatings
    • 9.3.2. Hydrophobic coatings
      • 9.3.2.1. Properties
    • 9.3.3. Superhydrophobic coatings and surfaces
      • 9.3.3.1. Properties
  • 9.4. Oleophobic and omniphobic coatings and surfaces
    • 9.4.1. SLIPS
  • 9.5. UV-resistant nanocoatings in textiles
  • 9.6. Protective textiles

10. NANOTEXTILES COMPANY PROFILES (78 COMPANY PROFILES)

11. REFERENCES

Tables

  • Table 1. Categorization of nanomaterials
  • Table 2. Desirable functional properties for the textiles industry afforded by the use of nanomaterials
  • Table 3. Applications in textiles, by nanomaterials type and benefits thereof
  • Table 4. Global market for nanotextiles, 2018-2030, by application, Millions USD
  • Table 5. Global market for nanotextiles, 2018-2030, by nanomaterials, Millions USD
  • Table 6. Types of smart textiles
  • Table 7. Examples of smart textile products
  • Table 8. Currently available technologies for smart textiles
  • Table 9. Applications in textiles, by advanced materials type and benefits thereof
  • Table 10. Applications in printable, flexible, stretchable and organic sensors, by advanced materials type and benefits thereof
  • Table 11. Typical conductive ink formulation
  • Table 12. Comparative properties of conductive inks
  • Table 13. Applications in conductive inks by type and benefits thereof
  • Table 15. Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof
  • Table 16. Applications in patch-type skin sensors, by materials type and benefits thereof
  • Table 17. Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof
  • Table 18. Properties of graphene
  • Table 19. Applications and benefits of graphene in textiles and apparel
  • Table 20. Graphene apparel product developers
  • Table 21. Graphene footwear product developers
  • Table 22. Graphene industrial textiles product developers
  • Table 23. Graphene conductive yarns product developers
  • Table 24. Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof
  • Table 25. Graphene electronic textiles product developers
  • Table 26. Typical properties of SWCNT and MWCNT
  • Table 27. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive
  • Table 28. Applications and benefits of carbon nanotubes (CNTs) in textiles and apparel
  • Table 29. Properties of CNTs and comparable materials
  • Table 30. Types of nanocellulose
  • Table 31. Properties and applications of CNF
  • Table 32. CNC properties
  • Table 33. Properties of flexible electronics-cellulose nanofiber film (nanopaper)
  • Table 34. Nanofibers types, properties and applications
  • Table 35. Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications
  • Table 36. Nanomaterials utilized in Anti-bacterial coatings-benefits and applications
  • Table 37. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces
  • Table 38. Disadvantages of commonly utilized superhydrophobic coating methods

Figures

  • Figure 1. Polyera Wove Band
  • Figure 2. Global market for nanotextiles, 2018-2030, by application, Millions USD
  • Figure 3. Global market for nanotextiles, 2018-2030, by nanomaterials, Millions USD
  • Figure 4. Evolution of electronics
  • Figure 5: Panasonic CNT stretchable Resin Film
  • Figure 6. Wearable gas sensor
  • Figure 7. BeBop Sensors Smart Helmet Sensor System
  • Figure 8. Torso and Extremities Protection (TEP) system
  • Figure 9. Ralph Lauren Jacket incorporating printed heating elements
  • Figure 10. Connected human body
  • Figure 11. Graphene-based E-skin patch
  • Figure 12. Wearable bio-fluid monitoring system for monitoring of hydration
  • Figure 14. Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs
  • Figure 15. Graphene medical patch
  • Figure 16. TempTraQ wearable wireless thermometer
  • Figure 17. Mimo baby monitor
  • Figure 18. Nanowire skin hydration patch
  • Figure 19. Wearable sweat sensor
  • Figure 20. GraphWear wearable sweat sensor
  • Figure 21. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper
  • Figure 22. Colmar graphene jacket
  • Figure 23. Inov 8 graphene footwear
  • Figure 24. Smartphone app integration with BonBouton graphene sensor technology
  • Figure 25. Graphene geotextile installation
  • Figure 26. Foldable graphene E-paper
  • Figure 27. Conductive yarns
  • Figure 28. Stretchable graphene supercapacitor
  • Figure 29. Textiles covered in conductive graphene ink
  • Figure 30. Types of single-walled carbon nanotubes
  • Figure 31. Formation of a protective CNT-based char layer during combustion of a CNT-modified coating
  • Figure 32. Anti-static textile product incorporating SWCNTs
  • Figure 33. Schematic illustration of the SWCNT-based electronic devices as a wearable array platform, which consists of memory units, capacitors, and logic circuits (left)
  • Figure 34. Stretchable SWNT memory and logic devices for wearable electronics
  • Figure 35. Stretchable carbon aerogel incorporating carbon nanotubes
  • Figure 36. Scale of cellulose materials
  • Figure 37. TEM image of cellulose nanocrystals
  • Figure 38. An iridescent biomimetic cellulose multilayer film remains after water that contains cellulose nanocrystals evaporates
  • Figure 39. CNF deoderant products
  • Figure 40. NFC computer chip
  • Figure 41. Cellulose nanofiber films
  • Figure 42. (hitoe) nanofiber conductive shirt original design(top) and current design (bottom)
  • Figure 43. Anti-bacterials mechanism of silver nanoparticle coating
  • Figure 44. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components
  • Figure 45. Flexible silver nanowire wearable mesh
  • Figure 46. Mechanism of microbial inactivation and degradation with anti-microbial PhotoProtect nanocoatings
  • Figure 47. (a) Water drops on a lotus leaf. (b) Scanning Electron Microscope (SEM) image of the upper leaf side prepared by ‘glycerol substitution' shows the hierarchical surface structure consisting of papillae, wax clusters and wax tubules. (c) Wax tubules on the upper leaf side
  • Figure 48. A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°
  • Figure 49. Contact angle on superhydrophobic coated surface
  • Figure 50. Omniphobic coatings
  • Figure 51. SLIPS repellent coatings
  • Figure 52. Omniphobic-coated fabric
Back to Top