表紙
市場調查報告書

超材料的全球市場分析、預測

The Global Market for Metamaterials to 2030

出版商 Future Markets, Inc. 商品編碼 721682
出版日期 內容資訊 英文 112 Pages
訂單完成後即時交付
價格
Back to Top
超材料的全球市場分析、預測 The Global Market for Metamaterials to 2030
出版日期: 2019年01月14日內容資訊: 英文 112 Pages
簡介

本報告提供全球超材料的市場調查,超材料定義和概要,市場發展的過程,投資、資金籌措趨勢,各種類型,各最終用途產業的主要趨勢、用途、市場影響因素分析、收益的變化與預測,主要企業簡介等彙整。

第1章 簡介

第2章 調查手法

第3章 摘要整理

  • 超材料市場發展的過程
  • 近幾年的成長
  • 市場收益現況、預測
  • 地區分析
  • 市場機會分析
  • 投資、資金籌措
  • 未來展望
  • 市場、技術的課題

第4章 超材料:概要

  • 所謂超材料
  • 超材料的各種類型
    • 電磁超材料
      • 雙底片 (DNG) 超材料
      • 單一底片超材料
      • 電磁能隙超材料 (EBG)
      • Bi-isotropic、bianisotropic超材料
      • 掌性超材料
    • 兆赫波超材料
    • 光子超材料
    • 可調諧超材料
    • 頻率選擇面 (FSS) 超材料
    • 非線性超材料
    • 聲波超材料

第5章 超材料市場分析、預測:各產業、用途

  • 音響
    • 成長推動因素、趨勢
    • 用途
      • 隔音、隔音
    • 市場分析、成長預測、收益估計
  • 通訊
    • 成長推動因素、趨勢
    • 用途
      • 天線
      • 溫度控管
      • 無線供電
      • 運輸部門的行動通訊
    • 市場分析、成長預測、收益估計
  • 汽車
    • 成長推動因素、趨勢
    • 用途
      • 雷達、感測器
      • 自動駕駛車
      • 防止反射塑膠
    • 市場分析、成長預測、收益估計
  • 航太、防衛、安全
    • 成長推動因素、趨勢
    • 用途
      • 隱形技術
      • 雷達
      • 光學感測器
      • 安全篩檢
      • 複合材料
      • 擋風薄膜
      • 電磁屏蔽
      • 溫度控管
    • 市場分析、成長預測、收益估計
  • 塗料劑、薄膜
    • 成長推動因素、趨勢
    • 用途
      • 冷卻薄膜
      • 反射防止面
      • 光學的太陽光反射塗料
    • 市場分析、成長預測、收益估計
  • 太陽光
    • 成長推動因素、趨勢
    • 用途
    • 收益預測
  • 醫療圖像
    • 成長推動因素、趨勢
    • 用途
      • 放射線檢測器
    • 收益預測
  • 觸控螢幕、顯示器
    • 成長推動因素、趨勢
    • 用途
      • 伸縮性顯示器
      • 軟質材料

第6章 企業簡介

  • Acoustic Metamaterials Group Ltd
  • AEgis Technologies Group, Inc.
  • Echodyne, Inc.
  • Evolv Technology, Inc.
  • EM Infinity
  • Fractal Antenna Systems, INc.
  • Imuzak Co., Ltd.
  • Kymeta Corporation
  • Magment AG
  • Metaboards Limited
  • Metamagnetics, Inc.
  • Metamaterial Technologies, Inc
  • MetaShield LLC
  • Metasonics
  • Metawave
  • Multiwave Technologies AG
  • Nanohmics Inc
  • NKT Photonics A/S
  • PARC
  • Phoebus Optoelectronics LLC
  • Pixie Dust Technologies, Inc.
  • Pivotal Commware, INc.
  • Protemics GmbH
  • Radi-Cool, INc.
  • Sonobex Ltd.
  • Specom Oy
  • Plasmonics, Inc.

第7章 文獻

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Metamaterials applications will represent a multi-billion market within the next decade with product advances in radar and lidar for autonomous vehicles, telecommunications antenna, 5G networks, coatings, vibration damping, wireless charging, noise prevention and more.

Metamaterials are artificially engineered structures with exceptional material properties (acoustic, electrical, magnetic, optical, etc.). They comprise arrays of resonators that manipulate electromagnetic waves or sound in ways not normally found in nature.

Possessing customized dielectric properties and tunable responses they allow for excellent flexibility in a range of applications, their use enabling the manipulation of fields and waves at a subwavelength scale.

Initial R&D in metamaterials has focused on cloaking and light manipulation, but the last few years has seen applications development in:

  • telecommunications
  • acoustics
  • sensors
  • radar imaging
  • optics (terahertz and infrared)
  • coatings & films
  • lidar systems for self-driving cars
  • medical imaging.

There are now over 25 metamaterials product developers worldwide, who have received >$300 million in recent investment as the metamaterials market picks up again after a sluggish few years.

Report contents include:

  • Description of the global metamaterials market in 2018.
  • Global revenue estimates to 2030 by markets.
  • Stage of commercialization for metamaterials applications, from basic research to market entry.
  • Market drivers, trends and challenges, by end user markets.
  • Competitive landscape.
  • In-depth market assessment of opportunities for metamaterials in sound insulation, vibration damping, antennas, thermal management, wireless charging, transport communications, radar, sensors, autonomous vehicles, anti-reflective plastics, security screening, EMI, anti-reflection coatings, solar coatings, displays, soft materials and medical imaging.
  • In-depth profiles of 30 companies, including products, investments, partnerships and commercial activities. Companies profiled include Anywaves, Echodyne, Inc., Evolv Technologies, Inc., Fractal Antenna Systems, Inc, Kymeta Corporation, Lumotive, Metamaterial Technologies, Inc. and Metawave Corporation.
  • Detailed forecasts for key growth areas, opportunities and user demand.
  • Revenues and activities by region.
  • Markets targeted, by product developers and end users.

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Aims and objectives of the study
  • 1.2. Market opportunity analysis

2. RESEARCH METHODOLOGY

3. EXECUTIVE SUMMARY

  • 3.1. Historical metamaterials market
  • 3.2. Recent growth
  • 3.3. Global market revenues, current and forecast
  • 3.4. Regional analysis
  • 3.5. Market opportunity assessment
  • 3.6. Investment funding in metamaterials
  • 3.7. Future perspectives and prospects
  • 3.8. Market and technology challenges

4. METAMATERIALS OVERVIEW

  • 4.1. What are metamaterials?
    • 4.1.1. Metasurfaces
  • 4.2. Types of metamaterials
    • 4.2.1. Electromagnetic metamaterials
      • 4.2.1.1. Double negative (DNG) metamaterials
      • 4.2.1.2. Single negative metamaterials
      • 4.2.1.3. Electromagnetic bandgap metamaterials (EBG)
      • 4.2.1.4. Bi-isotropic and bianisotropic metamaterials
      • 4.2.1.5. Chiral metamaterials
    • 4.2.2. Terahertz metamaterials
    • 4.2.3. Photonic metamaterials
    • 4.2.4. Tunable metamaterials
    • 4.2.5. Frequency selective surface (FSS) based metamaterials
    • 4.2.6. Nonlinear metamaterials
    • 4.2.7. Acoustic metamaterials

5. MARKETS AND APPLICATIONS FOR METAMATERIALS

  • 5.1. Global revenues for metamaterials, by market, 2017-2030 (Millions USD)
  • 5.2. ACOUSTICS
    • 5.2.1. Market drivers and trends
    • 5.2.2. Applications
      • 5.2.2.1. Sound insulation
      • 5.2.2.2. Vibration dampeners
    • 5.2.3. Market assessment, growth prospects and revenue estimates
      • 5.2.3.1. Global revenues for metamaterials in acoustics, 2017-2030
  • 5.3. COMMUNICATIONS
    • 5.3.1. Market drivers and trends
    • 5.3.2. Applications
      • 5.3.2.1. Antennas
      • 5.3.2.2. Thermal management
      • 5.3.2.3. Wireless charging
      • 5.3.2.4. Mobile communications in transport
    • 5.3.3. Market assessment, growth prospects and revenue estimates
      • 5.3.3.1. Global revenues for metamaterials in communications, 2017-2030
  • 5.4. AUTOMOTIVE
    • 5.4.1. Market drivers and trends
    • 5.4.2. Applications
      • 5.4.2.1. Radar and sensors
      • 5.4.2.2. Autonomous vehicles
      • 5.4.2.3. Anti-reflective plastics
    • 5.4.3. Market assessment, growth prospects and revenue estimates
    • 5.4.3.1. Global revenues for metamaterials in automotive, 2017-2030
  • 5.5. AEROSPACE, DEFENCE & SECURITY
    • 5.5.1. Market drivers and trends
    • 5.5.2. Applications
      • 5.5.2.1. Stealth technology
      • 5.5.2.2. Radar
      • 5.5.2.3. Optical sensors
      • 5.5.2.4. Security screening
      • 5.5.2.5. Composites
      • 5.5.2.6. Windscreen films
      • 5.5.2.7. Electromagnetic shielding
      • 5.5.2.8. Thermal management
    • 5.5.3. Market assessment, growth prospects and revenue estimates
    • 5.5.3.1. Global revenues for metamaterials in aerospace, defence and security 2017-2030
  • 5.6. COATINGS AND FILMS
    • 5.6.1. Market drivers and trends
    • 5.6.2. Applications
      • 5.6.2.1. Cooling films
      • 5.6.2.2. Anti-reflection surfaces
      • 5.6.2.3. Optical solar reflection coatings
    • 5.6.3. Market assessment, growth prospects and revenue estimates
      • 5.6.3.1. Global revenues for metamaterials in coatings and films, 2017-2030
  • 5.7. SOLAR
    • 5.7.1. Market drivers and trends
    • 5.7.2. Applications
    • 5.7.3. Global revenues for metamaterials in solar, 2017-2030
  • 5.8. MEDICAL IMAGING
    • 5.8.1. Market drivers and trends
    • 5.8.2. Applications
      • 5.8.2.1. Radiation detectors
    • 5.8.3. Global revenues for metamaterials in medical imaging, 2017-2030
  • 5.9. TOUCH SCREENS AND DISPLAYS
    • 5.9.1. Market drivers and trends
    • 5.9.2. Applications
      • 5.9.2.1. Stretchable displays
      • 5.9.2.2. Soft materials

6. METAMATERIALS COMPANY PROFILES

7. MAIN METAMATERIALS RESEARCH CENTRES AND GROUPS

8. REFERENCES

Tables

  • Table 1. Market summary for metamaterials
  • Table 2. Global revenues for metamaterials, total, 2017-2030 (Millions USD), Conservative estimate
  • Table 3. Global revenues for metamaterials, by region, 2017-2030 (Millions USD)
  • Table 4. Market opportunity assessment matrix for metamaterials applications
  • Table 5. Investment funding in metamaterials companies
  • Table 6. Market and technology challenges in metamaterials
  • Table 7. Global revenues for metamaterials, by market, 2017-2030 (Millions USD)
  • Table 8: Metamaterials in sound insulation-market drivers and trends
  • Table 9. Market assessment for metamaterials in acoustics
  • Table 10. Market opportunity assessment for metamaterials in acoustics
  • Table 11. Global revenues for metamaterials in acoustics, 2017-2030 (Millions USD)
  • Table 12: Metamaterials in communications-market drivers and trends
  • Table 13. Unmet need, metamaterial solution and markets
  • Table 14. Market assessment for metamaterials in communications
  • Table 15. Market opportunity assessment for metamaterials in communications
  • Table 16. Global revenues for metamaterials in communications, 2017-2030 (Millions USD)
  • Table 17: Metamaterials in the automotive sector-market drivers and trends
  • Table 18. Market assessment for metamaterials in automotive
  • Table 19. Market opportunity assessment for metamaterials in automotive
  • Table 20. Global revenues for metamaterials in automotive, 2017-2030 (Millions USD)
  • Table 21: Metamaterials in aerospace, defence and security-market drivers and trends
  • Table 22. Market assessment for metamaterials in aerospace, defence & security
  • Table 23. Market opportunity assessment for metamaterials in aerospace, defence & security
  • Table 24. Global revenues for metamaterials in aerospace, defence & security, 2017-2030 (Millions USD)
  • Table 25: Metamaterials in coatings and films-market drivers and trends
  • Table 26. Market assessment for metamaterials in coatings and films
  • Table 27. Market opportunity assessment for metamaterials in coatings and films
  • Table 28. Global revenues for metamaterials in coatings and films, 2017-2030 (Millions USD)
  • Table 29: Metamaterials in solar-market drivers and trends
  • Table 30. Global revenues for metamaterials in solar, 2017-2030 (Millions USD)
  • Table 31: Metamaterials in medical imaging-drivers and trends
  • Table 32. Global revenues for metamaterials in medical imaging, 2017-2030 (Millions USD)
  • Table 33: Metamaterials in touch screens and displays-drivers and trends
  • Table 34. Main metamaterials research centres and groups

Figures

  • Figure 1. Global revenues for metamaterials, total, 2017-2030 (Millions USD)
  • Figure 2. Global revenues for metamaterials, by market, 2017-2030 (Millions USD)
  • Figure 3. Global revenues for metamaterials, by region, 2017-2030 (Millions USD)
  • Figure 4. Metamaterials commercialization roadmap
  • Figure 5: Technology Readiness Level (TRL) for metamaterials
  • Figure 6. Metamaterials example structures
  • Figure 7. Metamaterial schematic versus conventional materials
  • Figure 8. Electromagnetic metamaterial
  • Figure 9. Schematic of Electromagnetic Band Gap (EBG) structure
  • Figure 10. Schematic of chiral metamaterials
  • Figure 11. Terahertz metamaterials
  • Figure 12. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer
  • Figure 13. Global revenues for metamaterials, by market, 2017-2030 (Millions USD)
  • Figure 14. Prototype metamaterial device used in acoustic sound insulation
  • Figure 15. Metamaterials installed in HVAC sound insulation the Hotel Madera Hong Kong
  • Figure 16. Robotic metamaterial device for seismic-induced vibration mitigation
  • Figure 17. Global revenues for metamaterials in acoustics, 2017-2030 (Millions USD)
  • Figure 18. Wireless charging technology prototype
  • Figure 19. Flat-panel satellite antenna (top) and antenna mounted on a vehicle (bottom)
  • Figure 20. Global revenues for metamaterials in communications, 2017-2030 (Millions USD)
  • Figure 21. Metamaterials in automotive applications
  • Figure 22. Lumotive advanced beam steering concept
  • Figure 23. Illustration of EchoDrive operation
  • Figure 24. Anti-reflective metamaterials plastic
  • Figure 25. Global revenues for metamaterials in automotive, 2017-2030 (Millions USD)
  • Figure 26. Metamaterials invisibility cloak for microwave frequencies
  • Figure 27. Metamaterials radar antenna
  • Figure 28. Metamaterials radar array
  • Figure 29. Evolv Edge visitor screening solution
  • Figure 30. Lightweight metamaterial microlattice
  • Figure 31. metaAIR eyewear
  • Figure 32. Global revenues for metamaterials in aerospace, defence & security, 2017-2030 (Millions USD)
  • Figure 33. Schematic of dry-cooling technology
  • Figure 34. Global revenues for metamaterials in coatings and films, 2017-2030 (Millions USD)
  • Figure 35. Global revenues for metamaterials in solar, 2017-2030 (Millions USD)
  • Figure 36. A patient in MRI scan modified by metasurface
  • Figure 37. Global revenues for metamaterials in medical imaging, 2017-2030 (Millions USD)
  • Figure 38. Stretchable hologram
  • Figure 39. Design concepts of soft mechanical metamaterials with large negative swelling ratios and tunable stress-strain curves
  • Figure 40. Anywaves antenna products. CubeSat S-band antenna , CubeSat X-band antenna and UAV cellular antenna
  • Figure 41. Schematic of MESA System
  • Figure 42. Evolv Edge screening system
  • Figure 43. FM/R technology
  • Figure 44. Metablade antenna
  • Figure 45. MTenna flat panel antenna
  • Figure 46. LIDAR system for autonomous vehicles
  • Figure 47. Metamaterials film
  • Figure 48. Metaboard wireless charger
  • Figure 49. metaAIR
  • Figure 50. Metamaterial structure used to control thermal emission
Back to Top