表紙
市場調查報告書
商品編碼
1067256

全球生物基和可生物降解塑料市場(2022-2030 年)

The Global Market for Biobased and Biodegradable Plastics 2022-2030

出版日期: | 出版商: Future Markets, Inc. | 英文 400 Pages, 88 Figures, 64 Tables | 訂單完成後即時交付

價格
  • 全貌
  • 簡介
  • 目錄
簡介

近年來,塑料的使用引起了很多環境和資源方面的關注。因此,塑料行業正在將重點轉向天然和可再生解決方案,例如生物基和可生物降解的化學品和聚合物。由於立法、消費者需求、改進的生產技術和成本節約,預計未來幾年生物基和可生物降解塑料的使用將會增加。

本報告分析了全球生物基和生物降解塑料市場,並預測了最新的市場狀況、未來前景,以及整體產能、產量和需求(2019-2030 年),按產品類型劃分的詳細趨勢/地區、主要公司概況(300多家公司)等。

目錄

第 1 章執行摘要

  • 市場趨勢
  • 世界產量(至 2030 年)
  • 主要製造商和全球產能
    • 製造商
    • 按生物基/可生物降解塑料的類型
  • 地區產量
    • 北美
    • 歐洲
    • 亞太地區
    • 巴西
  • 全球對生物基和可生物降解塑料的需求:按市場劃分(2020-2021 年)
  • COVID-19 危機對生物塑料市場和未來需求的影響
  • 生物基和可生物降解塑料市場面臨的挑戰

第 2 章調查方法

第 3 章全球塑料市場

  • 世界生產
  • 塑料的重要性
  • 使用塑料的問題
  • 生物基和/或可生物降解塑料的類型

第 4 章全球生物基化學品市場

  • 類型
  • 生產能力
  • 生物基己二酸
  • 11-氨基十一烷酸(11-AA)
  • 1,4-丁二醇 (1,4-BDO)
  • 十二烷二酸(DDDA)
  • 環氧氯丙烷 (ECH)
  • 乙烯
  • 糠醛
  • 5-氯甲基糠醛 (5-CMF)
  • 2,5-法蘭羧酸 (2,5-FDCA)
  • 法蘭羧酸甲酯 (FDME)
  • 異山梨醇
  • 衣康酸
  • 3-羥基丙酸(3-HP)
  • 5 羥甲基糠醛(HMF)
  • 乳酸(D-LA)
  • 乳酸-L-乳酸(L-LA)
  • 丙交酯
  • 左旋葡萄糖酮
  • 乙□丙酸
  • 單乙二醇 (MEG)
  • 單丙二醇 (MPG)
  • 粘康酸
  • 石腦油
  • 五亞甲基二異氰酸酯
  • 1,3-丙二醇 (1,3-PDO)
  • 癸二酸
  • 丁二酸(SA)

第 5 章全球生物聚合物/生物塑料市場

  • 生物基/可再生塑料
    • 插入式生物基塑料
    • 新型生物基塑料
  • 可生物降解和可堆肥的塑料
    • 可生物降解
    • 堆肥的可能性
  • 優點和缺點
  • 生物基和/或可生物降解塑料的類型
  • 生物基和/或可生物降解塑料市場領導者:按類型分類
  • 區域產能(至2030年)
  • 合成生物基聚合物
    • 聚乳酸(Bio-PLA)
    • 聚對苯二甲酸乙二醇酯(Bio-PET)
    • 聚對苯二甲酸丙二醇酯(Bio-PTT)
    • 聚乙烯夫喃酸酯(Bio-PEF)
    • 聚□胺(Bio-PA)
    • 聚(聚己二酸-共對苯二甲酸丁二醇酯)(Bio-PBAT)
    • 聚丁二酸丁二醇酯(PBS)及共聚物
    • 聚乙烯(Bio-PE)
    • 聚丙烯(Bio-PP)
    • 澱粉混合物
  • 天然生物基聚合物
    • 聚羥基烷酸酯 (PHA)
    • 多醣
    • 蛋白質基生物塑料
    • 藻類/真菌
    • 殼聚醣
  • 生物塑料市場細分
    • 包裝
    • 消費品
    • 建築/建築
    • 紡織品
    • 電子產品
    • 農業/園藝

第 6 章生物基可降解塑料企業概況(共311家)

第 7 章參考文獻

目錄
Product Code: BIOPOLY0622

Environmental and resource concerns regarding the use of plastics have increased greatly in recent years. As a result, the plastics industry is pivoting towards natural and renewable solutions such as biobased and biodegradable chemicals and polymers. The use of biobased and biodegradable plastics will increase in the coming years driven by legislation, consumer demand, improved production technologies and reduced costs.

Report contents include:

  • Review of the Biobased and Biodegradable Plastics market in 2021.
  • Outlook for 2022.
  • In depth market analysis of biobased chemical feedstocks & biobased and Biodegradable Plastics
  • Global production capacities, market demand and trends 2019-2030.
  • In depth regional analysis of production.
  • Analysis of bio-based chemical including 11-Aminoundecanoic acid (11-AA), 1,4-Butanediol (1,4-BDO), Dodecanedioic acid (DDDA), Epichlorohydrin (ECH), Ethylene, Furan derivatives, 5-Chloromethylfurfural (5-CMF), 2,5-Furandicarboxylic acid (2,5-FDCA), Furandicarboxylic methyl ester (FDME), Isosorbide, Itaconic acid, 5 Hydroxymethyl furfural (HMF), Lactic acid (D-LA), Lactic acid - L-lactic acid (L-LA), Lactide, Levoglucosenone, Levulinic acid, Monoethylene glycol (MEG), Monopropylene glycol (MPG), Muconic acid, Naphtha, 1,5-Pentametylenediamine (DN5), 1,3-Propanediol (1,3-PDO), Sebacic acid and Succinic acid.
  • Analysis of synthetic biopolymers market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers, Protein-based bioplastics, Algal and fungal.
  • Market segmentation analysis.
  • Profiles of over 300 companies. Companies profiled include NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF , AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Kraig Biocraft Laboratories, Spiber, Bast Fiber Technologies Inc., Kelheim Fibres GmbH, BComp, Circular Systems, Evrnu, Natural Fiber Welding, Icytos, Versalis SpA, Clariant, MetGen Oy, Praj Industries Ltd., Bloom Biorenewables SA, FP Innovations, UPM, Klabin SA, RenCom AB and many more.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market trends
  • 1.2. Global production to 2030
  • 1.3. Main producers and global production capacities
    • 1.3.1. Producers
    • 1.3.2. By biobased and biodegradable plastic type
  • 1.4. Regional production
    • 1.4.1. North America
    • 1.4.2. Europe
    • 1.4.3. Asia-Pacific
      • 1.4.3.1. China
      • 1.4.3.2. Japan
      • 1.4.3.3. Thailand
      • 1.4.3.4. Indonesia
    • 1.4.4. Brazil
  • 1.5. Global demand for biobased and biodegradable plastics 2020-21, by market
  • 1.6. Impact of COVID-19 crisis on the bioplastics market and future demand
  • 1.7. Challenges for the biobased and biodegradable plastics market

2. RESEARCH METHODOLOGY

3. THE GLOBAL PLASTICS MARKET

  • 3.1. Global production
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Types of Biobased and/or Biodegradable Plastics

4. THE GLOBAL MARKET FOR BIO-BASED CHEMICALS

  • 4.1. Types
  • 4.2. Production capacities
  • 4.3. Bio-based adipic acid
  • 4.4. 11-Aminoundecanoic acid (11-AA)
  • 4.5. 1,4-Butanediol (1,4-BDO)
  • 4.6. Dodecanedioic acid (DDDA)
  • 4.7. Epichlorohydrin (ECH)
  • 4.8. Ethylene
  • 4.9. Furfural
  • 4.10. 5-Chloromethylfurfural (5-CMF)
  • 4.11. 2,5-Furandicarboxylic acid (2,5-FDCA)
  • 4.12. Furandicarboxylic methyl ester (FDME)
  • 4.13. Isosorbide
  • 4.14. Itaconic acid
  • 4.15. 3-Hydroxypropionic acid (3-HP)
  • 4.16. 5 Hydroxymethyl furfural (HMF)
  • 4.17. Lactic acid (D-LA)
  • 4.18. Lactic acid - L-lactic acid (L-LA)
  • 4.19. Lactide
  • 4.20. Levoglucosenone
  • 4.21. Levulinic acid
  • 4.22. Monoethylene glycol (MEG)
  • 4.23. Monopropylene glycol (MPG)
  • 4.24. Muconic acid
  • 4.25. Naphtha
  • 4.26. Pentamethylene diisocyanate
  • 4.27. 1,3-Propanediol (1,3-PDO)
  • 4.28. Sebacic acid
  • 4.29. Succinic acid (SA)

5. THE GLOBAL MARKET FOR BIOPOLYMERS AND BIOPLASTICS

  • 5.1. Bio-based or renewable plastics
    • 5.1.1. Drop-in bio-based plastics
    • 5.1.2. Novel bio-based plastics
  • 5.2. Biodegradable and compostable plastics
    • 5.2.1. Biodegradability
    • 5.2.2. Compostability
  • 5.3. Advantages and disadvantages
  • 5.4. Types of Bio-based and/or Biodegradable Plastics
  • 5.5. Market leaders by biobased and/or biodegradable plastic types
  • 5.6. Regional production capacities to 2030
  • 5.7. SYNTHETIC BIO-BASED POLYMERS
    • 5.7.1. Polylactic acid (Bio-PLA)
      • 5.7.1.1. Market analysis
      • 5.7.1.2. Applications
      • 5.7.1.3. Producers and production capacities
      • 5.7.1.4. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.7.2. Polyethylene terephthalate (Bio-PET)
      • 5.7.2.1. Market analysis
      • 5.7.2.2. Applications
      • 5.7.2.3. Producers and production capacities
      • 5.7.2.4. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.7.3. Polytrimethylene terephthalate (Bio-PTT)
      • 5.7.3.1. Market analysis
      • 5.7.3.2. Applications
      • 5.7.3.3. Producers and production capacities
      • 5.7.3.4. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.7.4. Polyethylene furanoate (Bio-PEF)
      • 5.7.4.1. Market analysis
      • 5.7.4.2. Comparative properties to PET
      • 5.7.4.3. Applications
      • 5.7.4.4. Producers and production capacities
    • 5.7.5. Polyamides (Bio-PA)
      • 5.7.5.1. Market analysis
      • 5.7.5.2. Applications
      • 5.7.5.3. Producers and production capacities
      • 5.7.5.4. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.7.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
      • 5.7.6.1. Market analysis
      • 5.7.6.2. Applications
      • 5.7.6.3. Producers and production capacities
      • 5.7.6.4. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.7.7. Polybutylene succinate (PBS) and copolymers
      • 5.7.7.1. Market analysis
      • 5.7.7.2. Applications
      • 5.7.7.3. Producers and production capacities
      • 5.7.7.4. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.7.8. Polyethylene (Bio-PE)
      • 5.7.8.1. Market analysis
      • 5.7.8.2. Applications
      • 5.7.8.3. Producers and production capacities
      • 5.7.8.4. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.7.9. Polypropylene (Bio-PP)
      • 5.7.9.1. Market analysis
      • 5.7.9.2. Applications
      • 5.7.9.3. Producers and production capacities
      • 5.7.9.4. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.7.10. Starch Blends
      • 5.7.10.1. Market analysis
      • 5.7.10.2. Applications
      • 5.7.10.3. Producers and production capacities
      • 5.7.10.4. Production capacities, by country/region 2019-2030, 1,000 tons
  • 5.8. NATURAL BIO-BASED POLYMERS
    • 5.8.1. Polyhydroxyalkanoates (PHA)
      • 5.8.1.1. Types
      • 5.8.1.2. Synthesis and production processes
      • 5.8.1.3. Market analysis
      • 5.8.1.4. Commercially available PHAs
      • 5.8.1.5. Markets for PHAs
      • 5.8.1.6. Producers and production capacities
      • 5.8.1.7. Production capacities, by country/region 2019-2030, 1,000 tons
    • 5.8.2. Polysaccharides
      • 5.8.2.1. Microfibrillated cellulose (MFC)
      • 5.8.2.2. Cellulose nanocrystals
      • 5.8.2.3. Cellulose nanofibers
    • 5.8.3. Protein-based bioplastics
      • 5.8.3.1. Types, applications and producers
    • 5.8.4. Algal and fungal
      • 5.8.4.1. Algal
      • 5.8.4.2. Mycelium
    • 5.8.5. Chitosan
  • 5.9. MARKET SEGMENTATION OF BIOPLASTICS
    • 5.9.1. Packaging
    • 5.9.2. Consumer products
    • 5.9.3. Automotive
    • 5.9.4. Building & construction
    • 5.9.5. Textiles
    • 5.9.6. Electronics
    • 5.9.7. Agriculture and horticulture

6. BIOBASED AND BIODEGRADABLE PLASTICS COMPANY PROFILES (311 company profiles)

7. REFERENCES

List of Tables

  • Table 1. Market drivers and trends in biobased and biodegradable plastics
  • Table 2. Global production capacities of biobased and biodegradable plastics 2018-2030, in 1,000 tons
  • Table 3. Global production capacities, by producers
  • Table 4. Global production capacities of biobased and biodegradable plastics 2019-2030, by type, in 1,000 tons
  • Table 5. Biobased and biodegradable plastics producers in North America
  • Table 6. Biobased and biodegradable plastics producers in Europe
  • Table 7. Biobased and biodegradable plastics producers in Asia-Pacific
  • Table 8. Biobased and biodegradable plastics producers in Latin America
  • Table 9. Issues related to the use of plastics
  • Table 10.Types of Biobased and/or Biodegradable Plastics-Biobased carbon content, biodegradability certification, feedstock, main producers and cost per kg
  • Table 11. List of Bio-based chemicals
  • Table 12. Biobased MEG producers capacities
  • Table 13. Type of biodegradation
  • Table 14. Advantages and disadvantages of biobased plastics compared to conventional plastics
  • Table 15. Types of Bio-based and/or Biodegradable Plastics, applications
  • Table 16. Market leader by Bio-based and/or Biodegradable Plastic types
  • Table 17. Regional capacities, 1,000 tons, 2019-2030, all types
  • Table 18. Polylactic acid (PLA) market analysis
  • Table 19. Lactic acid producers and production capacities
  • Table 20. PLA producers and production capacities
  • Table 21. Planned PLA capacity expansions in China
  • Table 22. Bio-based Polyethylene terephthalate (Bio-PET) market analysis
  • Table 23. Bio-based Polyethylene terephthalate (PET) producers
  • Table 24. Polytrimethylene terephthalate (PTT) market analysis
  • Table 25. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
  • Table 26. Polyethylene furanoate (PEF) market analysis
  • Table 27. PEF vs. PET
  • Table 28. FDCA and PEF producers
  • Table 29. Bio-based polyamides (Bio-PA) market analysis
  • Table 30. Leading Bio-PA producers production capacities
  • Table 31. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis
  • Table 32. Leading PBAT producers, production capacities and brands
  • Table 33. Bio-PBS market analysis
  • Table 34. Leading PBS producers and production capacities
  • Table 35. Bio-based Polyethylene (Bio-PE) market analysis
  • Table 36. Leading Bio-PE producers
  • Table 37. Bio-PP market analysis
  • Table 38. Leading Bio-PP producers and capacities
  • Table 39. Starch blends market analysis
  • Table 40. Leading starch blends producers and capacities
  • Table 41.Types of PHAs and properties
  • Table 42. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
  • Table 43. Polyhydroxyalkanoate (PHA) extraction methods
  • Table 44. Polyhydroxyalkanoates (PHA) market analysis
  • Table 45. Commercially available PHAs
  • Table 46. Markets and applications for PHAs
  • Table 47. Applications, advantages and disadvantages of PHAs in packaging
  • Table 48. Polyhydroxyalkanoates (PHA) producers and production capacities
  • Table 49. Microfibrillated cellulose (MFC) market analysis
  • Table 50. Leading MFC producers and capacities
  • Table 51. Cellulose nanocrystals analysis
  • Table 52: Cellulose nanocrystal production capacities and production process, by producer
  • Table 53. Cellulose nanofibers market analysis
  • Table 54. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes
  • Table 55. Types of protein based-bioplastics, applications and companies
  • Table 56. Types of algal and fungal based-bioplastics, applications and companies
  • Table 57. Overview of alginate-description, properties, application and market size
  • Table 58. Companies developing algal-based bioplastics
  • Table 59. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 60. Companies developing mycelium-based bioplastics
  • Table 61. Overview of chitosan-description, properties, drawbacks and applications
  • Table 62. Granbio Nanocellulose Processes
  • Table 63. Lactips plastic pellets
  • Table 64. Oji Holdings CNF products

List of Figures

  • Figure 1. Total global production capacities for biobased and biodegradable plastics, all types, 000 tons
  • Figure 2. Global production capacities of bioplastics 2018-2030, in 1,000 tons by biodegradable/non-biodegradable types
  • Figure 3. Global production capacities of biobased and biodegradable plastics in 2019-2030, by type, in 1,000 tons
  • Figure 4. Global production capacities of bioplastics in 2019-2025, by type
  • Figure 5. Global production capacities of bioplastics in 2030, by type
  • Figure 6. Current and future applications of biobased and biodegradable plastics
  • Figure 7. Global demand for biobased and biodegradable plastics by end user market, 2020
  • Figure 8. Global production capacities for biobased and biodegradable plastics by end user market 2019-2030, tons
  • Figure 9. Challenges for the biobased and biodegradable plastics market
  • Figure 10. Global plastics production 1950-2018, millions of tons
  • Figure 11. Bio-based chemicals production capacities, 2018-2025
  • Figure 12. 1,4-Butanediol (BDO) production capacities, 2018-2025 (tonnes)
  • Figure 13. Dodecanedioic acid (DDDA) production capacities, 2018-2025 (tonnes)
  • Figure 14. Epichlorohydrin production capacities, 2018-2025 (tonnes)
  • Figure 15. Ethylene production capacities, 2018-2025 (tonnes)
  • Figure 16. L-lactic acid (L-LA) production capacities, 2018-2025 (tonnes)
  • Figure 17. Lactide production capacities, 2018-2025 (tonnes)
  • Figure 18. Bio-MEG producers capacities
  • Figure 19. Bio-MPG production capacities, 2018-2025
  • Figure 20. Naphtha production capacities, 2018-2025 (tonnes)
  • Figure 21. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2025 (tonnes)
  • Figure 22. Sebacic acid production capacities, 2018-2025 (tonnes)
  • Figure 23. Coca-Cola PlantBottle®
  • Figure 24. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 25. Regional capacities, 1,000 tons, 2019-2030, all types of bioplastics
  • Figure 26. Production capacities for Bio-based Polylactic acid (PLA), by country/region 2019-2030, 1,000 tons
  • Figure 27. Production capacities for Bio-based Polyethylene terephthalate (Bio-PET), by country/region 2019-2030, 1,000 tons
  • Figure 28. Production capacities for Bio-based Polytrimethylene terephthalate (Bio-PTT), by country/region 2019-2030, 1,000 tons
  • Figure 29. Production capacities of Polyethylene furanoate (PEF) to 2025
  • Figure 30. Production capacities for Bio-based polyamides (Bio-PA), by country/region 2019-2030, 1,000 tons
  • Figure 31. Production capacities for Bio-based Poly(butylene adipate-co-terephthalate) (PBAT), by country/region 2019-2030, 1,000 tons
  • Figure 32. Production capacities for Bio-based Polybutylene succinate (PBS), by country/region 2019-2030, 1,000 tons
  • Figure 33. Production capacities for Bio-based Polyethylene (Bio-PE), by country/region 2019-2030, 1,000 tons
  • Figure 34. Production capacities for Bio-based Polypropylene (Bio-PP), by country/region 2019-2030, 1,000 tons
  • Figure 35. Production capacities for starch blends, by country/region 2019-2030, 1,000 tons
  • Figure 36. PHA pellets
  • Figure 37. PHA family
  • Figure 38. Yarn spun from PHA
  • Figure 39. Production capacities for PHA, by country/region 2019-2030, 1,000 tons
  • Figure 40. BLOOM masterbatch from Algix
  • Figure 41. Typical structure of mycelium-based foam
  • Figure 42. Commercial mycelium composite construction materials
  • Figure 43. Global production capacities for biobased and biodegradable plastics by end user market 2019, 1,000 tons
  • Figure 44. Global production capacities for biobased and biodegradable plastics by end user market 2020, 1,000 tons
  • Figure 45. Global production capacities for biobased and biodegradable plastics by end user market 2030
  • Figure 46. PHA bioplastics products
  • Figure 47. Global production capacities for biobased and biodegradable plastics in packaging 2019-2030, in 1,000 tons
  • Figure 48. Global production capacities for biobased and biodegradable plastics in consumer products 2019-2030, in 1,000 tons
  • Figure 49. Global production capacities for biobased and biodegradable plastics in automotive 2019-2030, in 1,000 tons
  • Figure 50. Global production capacities for biobased and biodegradable plastics in building and construction 2019-2030, in 1,000 tons
  • Figure 51. Global production capacities for biobased and biodegradable plastics in textiles 2019-2030, in 1,000 tons
  • Figure 52. Global production capacities for biobased and biodegradable plastics in electronics 2019-2030, in 1,000 tons
  • Figure 53. Biodegradable mulch films
  • Figure 54. Global production capacities for biobased and biodegradable plastics in agriculture 2019-2030, in 1,000 tons
  • Figure 55. Algiknit yarn
  • Figure 56. Bio-PA rear bumper stay
  • Figure 57. formicobio™ technology
  • Figure 58. nanoforest-S
  • Figure 59. nanoforest-PDP
  • Figure 60. nanoforest-MB
  • Figure 61. CuanSave film
  • Figure 62. ELLEX products
  • Figure 63. CNF-reinforced PP compounds
  • Figure 64. Kirekira! toilet wipes
  • Figure 65. Mushroom leather
  • Figure 66. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
  • Figure 67. PHA production process
  • Figure 68. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
  • Figure 69. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
  • Figure 70. CNF gel
  • Figure 71. Block nanocellulose material
  • Figure 72. CNF products developed by Hokuetsu
  • Figure 73. Made of Air's HexChar panels
  • Figure 74. IPA synthesis method
  • Figure 75. MOGU-Wave panels
  • Figure 76. Reishi
  • Figure 77. Nippon Paper Industries' adult diapers
  • Figure 78. Compostable water pod
  • Figure 79. CNF clear sheets
  • Figure 80. Oji Holdings CNF polycarbonate product
  • Figure 81. Manufacturing process for STARCEL
  • Figure 82. Lyocell process
  • Figure 83. Spider silk production
  • Figure 84. Sulapac cosmetics containers
  • Figure 85. Sulzer equipment for PLA polymerization processing
  • Figure 86. Teijin bioplastic film for door handles
  • Figure 87. Corbion FDCA production process
  • Figure 88. Visolis' Hybrid Bio-Thermocatalytic Process