表紙
市場調查報告書
商品編碼
1003233

全球生質塑膠及生物聚合物市場 2021年

The Global Market for Bioplastics and Biopolymers 2021

出版日期: | 出版商: Future Markets, Inc. | 英文 272 Pages, 54 Tables, 60 Figures | 訂單完成後即時交付

價格
  • 全貌
  • 簡介
  • 目錄
簡介

生質塑膠,是有生物分解性與再生性的生物為基礎的產品。分解為二氧化碳和水的生質塑膠,能減輕垃圾和水質污染的塑膠對環境的負面影響而受到注目。還有作為替代石油的再生原料,可降低世界原油的依賴度,降低對氣候的影響。儘管全球對環境的認識高漲,現在,年度3億6500萬噸以上生產的塑膠中,生質塑膠佔的比例不過約1%,但生質塑膠的成長率顯示每年30%以上的成長。以先進生物聚合物和材料的開發,降低成本,法規,消費者的意識提高等為背景,生質塑膠的需求增加。

本報告提供全球生質塑膠及生物聚合物市場調查,市場概要,生產能力趨勢,COVID-19市場及需求的影響,市場領導者分析,合成及天然生物為基礎聚合物的市場分析,各地區的市場趨勢,主要企業的簡介等相關資訊彙整。

目錄

第1章 摘要整理

  • 市場趨勢
  • 至2030年的全球生產能力
  • 主要生產企業和全球生產能力
  • 生物為基礎、永續塑膠的需求:各市場
  • 新型冠狀病毒感染疾病(COVID-19)大流行對生質塑膠市場與未來需求的影響
  • 生物為基礎、永續塑膠市場課題

第2章 調查手法

第3章 全球塑膠市場

  • 全球生產
  • 塑膠的重要性
  • 塑膠使用的問題

第4章 簡介

  • 生物為基礎、永續塑膠
  • 生物分解性、堆肥可能塑膠
  • 優點與缺點

第5章 生物為基礎聚合物種類與市場預測

第6章 生物為基礎、生物分解性塑膠的市場領導者:各類型

第7章 合成生物為基礎聚合物

  • 聚乳酸(Bio-PLA)
    • 市場分析
    • 生產企業
  • 聚乙烯對苯二甲酸酯(Bio-PET)
    • 市場分析
    • 生產企業
  • 聚對苯二甲酸丙二醇酯(Bio-PTT)
    • 市場分析
    • 生產企業
  • Polyethylene Furanoate(Bio-PEF)
    • 市場分析
    • PET的比較特性
    • 生產企業
  • 聚醯胺(Bio-PA)
    • 市場分析
    • 生產企業
  • Poly(butylene adipate-co-terephthalate)(Bio-PBAT)
    • 市場分析
    • 生產企業
  • 聚丁二酸丁二醇酯(PBS)和共聚物
    • 市場分析
    • 生產企業
  • 聚乙烯(Bio-PE)
    • 市場分析
    • 生產企業
  • 聚丙烯(Bio-PP)
    • 市場分析
    • 生產企業

第8章 天然生物為基礎聚合物

  • 聚羥基烷酯(PHA)
    • 市場分析
    • 市售的PHA
    • 生產企業
  • Polysaccharides
    • 微纖化纖維素(MFC)
    • 纖維素奈米結晶
    • 纖維素奈米纖維
  • 蛋白質為基礎的生質塑膠
  • 藻類、真菌
  • 幾丁聚醣

第9章 生物為基礎、永續塑膠的生產趨勢:各地區

  • 北美
  • 歐洲
  • 亞太地區
    • 中國
    • 日本
    • 泰國
    • 印尼
  • 南美

第10章 生質塑膠市場區分

  • 包裝
  • 消費者產品
  • 汽車
  • 建築、建設
  • 紡織品
  • 電子產品
  • 農業、園藝

第11章 企業簡介

第12章 參考文件

目錄
Product Code: BIOPOLY0521

Nearly 270 million tonnes of petroleum are used every year in the production of plastics. Apart from the environmental problems associated with extracting the non-renewable resource, nearly 80 million tonnes of plastics end up in landfills. Bioplastics and biopolymers are a biodegradable and natural alternative.

Bioplastics are biobased products that allow for greater product sustainability due to their biodegradability and renewability. Their use is attractive as bioplastics that biodegrade to CO2 and H2O mitigate the negative effects of standard plastic (litter and damage to aqua environments). Renewable feedstocks can be utilized instead of petroleum, thereby reducing global dependence on crude oil and lessening the impact on climate.

Despite growing global environmental awareness, bioplastics currently account for only around 1 percent of the >365 million tons of plastics produced annually, but with annual growth of >30%. Due to the development of advanced biopolymers and materials, reduced costs, regulations and increased consumer awareness, demand is rising.

This report covers:

  • Analysis of non-biodegradable bio-based plastics and biodegradable plastics and polymers.
  • Global production capacities, market demand and trends 2019-2025
  • Analysis of synthetic biopolymers market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers, Protein-based bioplastics, Algal and fungal.
  • Market segmentation analysis. Markets analysed include packaging, consumer goods, automotive, building & construction, textiles, electronics, agriculture & horticulture.
  • More than 215 companies profiled including products and production capacities. Companies profiled include major producers such as NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF and many more. Profiles include products and production capacities.
  • Profiles of start-up producers and product developers including AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Kraig Biocraft Laboratories Spiber and many more.

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY

  • 1.1 Market trends
  • 1.2 Global production to 2030
  • 1.3 Main producers and global production capacities
    • 1.3.1 Producers
    • 1.3.2 By biobased and sustainable plastic type
    • 1.3.3 By region
  • 1.4 Global demand for biobased and sustainable plastics 2020, by market
  • 1.5 Impact of COVID-19 pandemic on the bioplastics market and future demand
  • 1.6 Challenges for the biobased and sustainable plastics market

2 RESEARCH METHODOLOGY

3 THE GLOBAL PLASTICS MARKET

  • 3.1 Global production
  • 3.2 The importance of plastic
  • 3.3 Issues with plastics use

4 INTRODUCTION

  • 4.1 Bio-based or renewable plastics
    • 4.1.1 Drop-in bio-based plastics
    • 4.1.2 Novel bio-based plastics
  • 4.2 Biodegradable and compostable plastics
    • 4.2.1 Biodegradability
    • 4.2.2 Compostability
  • 4.3 Advantages and disadvantages

5 BIO-BASED POLYMER TYPES AND MARKET PROSPECTS

6 MARKET LEADERS BY BIOBASED AND/OR BIODEGRADABLE PLASTIC TYPES

7 SYNTHETIC BIO-BASED POLYMERS

  • 7.1 Polylactic acid (Bio-PLA)
    • 7.1.1 Market analysis
    • 7.1.2 Producers
  • 7.2 Polyethylene terephthalate (Bio-PET)
    • 7.2.1 Market analysis
    • 7.2.2 Producers
  • 7.3 Polytrimethylene terephthalate (Bio-PTT)
    • 7.3.1 Market analysis
    • 7.3.2 Producers
  • 7.4 Polyethylene furanoate (Bio-PEF)
    • 7.4.1 Market analysis
    • 7.4.2 Comparative properties to PET
    • 7.4.3 Producers
  • 7.5 Polyamides (Bio-PA)
    • 7.5.1 Market analysis
    • 7.5.2 Producers
  • 7.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    • 7.6.1 Market analysis
    • 7.6.2 Producers
  • 7.7 Polybutylene succinate (PBS) and copolymers
    • 7.7.1 Market analysis
    • 7.7.2 Producers
  • 7.8 Polyethylene (Bio-PE)
    • 7.8.1 Market analysis
    • 7.8.2 Producers
  • 7.9 Polypropylene (Bio-PP)
    • 7.9.1 Market analysis
    • 7.9.2 Producers

8 NATURAL BIO-BASED POLYMERS

  • 8.1 Polyhydroxyalkanoates (PHA)
    • 8.1.1 Market analysis
    • 8.1.2 Commercially available PHAs
    • 8.1.3 Producers
  • 8.2 Polysaccharides
    • 8.2.1 Microfibrillated cellulose (MFC)
      • 8.2.1.1 Market analysis
      • 8.2.1.2 Producers
    • 8.2.2 Cellulose nanocrystals
      • 8.2.2.1 Market analysis
      • 8.2.2.2 Producers
    • 8.2.3 Cellulose nanofibers
      • 8.2.3.1 Market analysis
      • 8.2.3.2 Producers
  • 8.3 Protein-based bioplastics
    • 8.3.1 Types, applications and producers
  • 8.4 Algal and fungal
    • 8.4.1 Algal
      • 8.4.1.1 Advantages
      • 8.4.1.2 Production
      • 8.4.1.3 Commercialization
    • 8.4.2 Mycelium
      • 8.4.2.1 Properties
      • 8.4.2.2 Applications
      • 8.4.2.3 Commercialization
  • 8.5 Chitosan

9 PRODUCTION OF BIOBASED AND SUSTAINABLE PLASTICS BY REGION

  • 9.1 North America
  • 9.2 Europe
  • 9.3 Asia-Pacific
    • 9.3.1 China
    • 9.3.2 Japan
    • 9.3.3 Thailand
    • 9.3.4 Indonesia
  • 9.4 Latin America

10 MARKET SEGMENTATION OF BIOPLASTICS

  • 10.1 Packaging
  • 10.2 Consumer products
  • 10.3 Automotive
  • 10.4 Building & construction
  • 10.5 Textiles
  • 10.6 Electronics
  • 10.7 Agriculture and horticulture

11 COMPANY PROFILES 91 (222 COMPANY PROFILES)

12 REFERENCES

Tables

  • Table 1. Market drivers and trends in biobased and sustainable plastics.
  • Table 2. Global production capacities of biobased and sustainable plastics 2018-2030, in 1,000 tons.
  • Table 3. Global production capacities, by producers.
  • Table 4. Global production capacities of biobased and sustainable plastics 2019-2030, by type, in 1,000 tons.
  • Table 5. Global production capacities of biobased and sustainable plastics 2019-2025, by region, tons.
  • Table 6. Issues related to the use of plastics.
  • Table 7. Type of biodegradation.
  • Table 8. Advantages and disadvantages of biobased plastics compared to conventional plastics.
  • Table 9. Types of Bio-based and/or Biodegradable Plastics, applications.
  • Table 10. Market leader by Bio-based and/or Biodegradable Plastic types.
  • Table 11. Polylactic acid (PLA) market analysis.
  • Table 12. Lactic acid producers and production capacities.
  • Table 13. PLA producers and production capacities.
  • Table 14. Bio-based Polyethylene terephthalate (Bio-PET) market analysis.
  • Table 15. Bio-based Polyethylene terephthalate (PET) producers.
  • Table 16. Polytrimethylene terephthalate (PTT) market analysis.
  • Table 17. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.
  • Table 18. Polyethylene furanoate (PEF) market analysis.
  • Table 19. PEF vs. PET.
  • Table 20. FDCA and PEF producers.
  • Table 21. Bio-based polyamides (Bio-PA) market analysis.
  • Table 22. Leading Bio-PA producers production capacities.
  • Table 23. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis.
  • Table 24. Leading PBAT producers, production capacities and brands.
  • Table 25. Bio-PBS market analysis.
  • Table 26. Leading PBS producers and production capacities.
  • Table 27. Bio-based Polyethylene (Bio-PE) market analysis.
  • Table 28. Leading Bio-PE producers.
  • Table 29. Bio-PP market analysis.
  • Table 30. Leading Bio-PP producers and capacities.
  • Table 31. Polyhydroxyalkanoates (PHA) market analysis.
  • Table 32. Commercially available PHAs.
  • Table 33. Polyhydroxyalkanoates (PHA) producers.
  • Table 34. Microfibrillated cellulose (MFC) market analysis.
  • Table 35. Leading MFC producers and capacities.
  • Table 36. Cellulose nanocrystals analysis.
  • Table 37: Cellulose nanocrystal production capacities and production process, by producer.
  • Table 38. Cellulose nanofibers market analysis.
  • Table 39. CNF production capacities (by type, wet or dry) and production process, by producer.
  • Table 40. Types of protein based-bioplastics, applications and companies.
  • Table 41. Types of algal and fungal based-bioplastics, applications and companies.
  • Table 42. Overview of alginate-description, properties, application and market size.
  • Table 43. Companies developing algal-based bioplastics.
  • Table 44. Overview of mycelium fibers-description, properties, drawbacks and applications.
  • Table 45. Companies developing mycelium-based bioplastics.
  • Table 46. Overview of chitosan-description, properties, drawbacks and applications.
  • Table 47. Global production capacities of biobased and sustainable plastics in 2019-2025, by region, tons.
  • Table 48. Biobased and sustainable plastics producers in North America.
  • Table 49. Biobased and sustainable plastics producers in Europe.
  • Table 50. Biobased and sustainable plastics producers in Asia-Pacific.
  • Table 51. Biobased and sustainable plastics producers in Latin America.
  • Table 52. Granbio Nanocellulose Processes.
  • Table 53. Lactips plastic pellets.
  • Table 54. Oji Holdings CNF products.

Figures

  • Figure 1. Total global production capacities for biobased and sustainable plastics, all types, 000 tons.
  • Figure 2. Global production capacities of bioplastics 2018-2030, in 1,000 tons by biodegradable/non-biodegradable types.
  • Figure 3. Global production capacities of biobased and sustainable plastics in 2019-2030, by type, in 1,000 tons.
  • Figure 4. Global production capacities of bioplastics in 2019-2025, by type.
  • Figure 5. Global production capacities of bioplastics in 2030, by type.
  • Figure 6. Global production capacities of biobased and sustainable plastics 2019.
  • Figure 7. Global production capacities of biobased and sustainable plastics 2025.
  • Figure 8. Current and future applications of biobased and sustainable plastics.
  • Figure 9. Global demand for biobased and sustainable plastics by end user market, 2020.
  • Figure 10. Global production capacities for biobased and sustainable plastics by end user market 2019-2030, tons.
  • Figure 11. Challenges for the biobased and sustainable plastics market.
  • Figure 12. Global plastics production 1950-2018, millions of tons.
  • Figure 13. Coca-Cola PlantBottle®.
  • Figure 14. Interrelationship between conventional, bio-based and biodegradable plastics.
  • Figure 15. Production capacities of Polyethylene furanoate (PEF) to 2025.
  • Figure 16. BLOOM masterbatch from Algix.
  • Figure 17. Typical structure of mycelium-based foam.
  • Figure 18. Commercial mycelium composite construction materials.
  • Figure 19. Global production capacities of biobased and sustainable plastics 2019.
  • Figure 20. Global production capacities of biobased and sustainable plastics 2025.
  • Figure 21. Global production capacities for biobased and sustainable plastics by end user market 2019, 1,000 tons.
  • Figure 22. Global production capacities for biobased and sustainable plastics by end user market 2020, 1,000 tons.
  • Figure 23. Global production capacities for biobased and sustainable plastics by end user market 2030
  • Figure 24. PHA bioplastics products.
  • Figure 25. Global production capacities for biobased and sustainable plastics in packaging 2019-2030, in 1,000 tons.
  • Figure 26. Global production capacities for biobased and sustainable plastics in consumer products 2019-2030, in 1,000 tons.
  • Figure 27. Global production capacities for biobased and sustainable plastics in automotive 2019-2030, in 1,000 tons.
  • Figure 28. Global production capacities for biobased and sustainable plastics in building and construction 2019-2030, in 1,000 tons.
  • Figure 29. Global production capacities for biobased and sustainable plastics in textiles 2019-2030, in 1,000 tons.
  • Figure 30. Global production capacities for biobased and sustainable plastics in electronics 2019-2030, in 1,000 tons.
  • Figure 31. Biodegradable mulch films.
  • Figure 32. Global production capacities for biobased and sustainable plastics in agriculture 2019-2030, in 1,000 tons.
  • Figure 33. Algiknit yarn.
  • Figure 34. Bio-PA rear bumper stay.
  • Figure 35. nanoforest-S.
  • Figure 36. nanoforest-PDP.
  • Figure 37. nanoforest-MB.
  • Figure 38. CuanSave film.
  • Figure 39. ELLEX products.
  • Figure 40. CNF-reinforced PP compounds.
  • Figure 41. Kirekira! toilet wipes.
  • Figure 42. Mushroom leather.
  • Figure 43. Cellulose Nanofiber (CNF) composite with polyethylene (PE).
  • Figure 44. PHA production process.
  • Figure 45. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.
  • Figure 46. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).
  • Figure 47. CNF gel.
  • Figure 48. Block nanocellulose material.
  • Figure 49. CNF products developed by Hokuetsu.
  • Figure 50. IPA synthesis method.
  • Figure 51. MOGU-Wave panels.
  • Figure 52. Reishi.
  • Figure 53. Nippon Paper Industries' adult diapers.
  • Figure 54. Compostable water pod.
  • Figure 55. CNF clear sheets.
  • Figure 56. Oji Holdings CNF polycarbonate product.
  • Figure 57. Manufacturing process for STARCEL.
  • Figure 58. Lyocell process.
  • Figure 59. Spider silk production.
  • Figure 60. Sulapac cosmetics containers.
  • Figure 61. Sulzer equipment for PLA polymerization processing.
  • Figure 62. Teijin bioplastic film for door handles.
  • Figure 63. Corbion FDCA production process.