與數據中心的銅纜和光纖連接
市場調查報告書
商品編碼
1103082

與數據中心的銅纜和光纖連接

Copper and Fiber Connectivity in the Data Center

出版日期: | 出版商: Bishop & Associates, Inc. | 英文 275 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

報告摘要

快速銅纜和光纖互連支持對更高帶寬、信號完整性、更長距離和更高面板密度的不斷增長的需求,同時降低總系統功耗和成本。那麼它是如何發展的?

  • 哪些應用繼續推動對數據中心容量和速度的迫切需求?有源光纜是銅纜和光纖網絡之間的長期解決方案還是過渡工具?熱管理問題如何影響 I/O 連接器的選擇?
  • 正在開發和正在開發哪些新的光纖連接器以支持許多新的光鏈路應用?誰是開發這些的製造商以及這些接口的主要特性是什麼?
  • 你是否達到了基礎技術的極限?什麼是聯合封裝光學器件 (CPO),這種方法如何影響功耗?面板密度是多少?
  • 當前的可插拔光模塊如何改變了市場?使用可插拔有什麼好處?
  • 使用銅有哪些電氣和機械限制?電纜的重量和體積如何影響重量和成本?

Bishop & Associates 的最新研究報告“數據中心的銅和光纖連接”將是此類接口市場重大演變的第一步。要準備了解此內容,請訂閱購入數據中心的銅纜和光纖連接。

其他詳情

數據中心從最初作為計算和存儲硬件中心位置的概念轉變為今天的數據中心,即連接數字生活幾乎所有方面的中心。我長大了。數據中心已經從與世界隔離的單客戶端本地設施發展為擁有數千台服務器的多英畝超大規模設施,這些服務器充當連接到世界的高速網絡中的節點。

在過去的三十年裡,包括虛擬化在內的大量新計算技術被引入,以實現動態適應以支持不斷變化的資源需求。隨著互聯網的普及,數以百萬計的應用程序,以及流媒體視頻的出現,互聯網流量達到了巨大的水平。向軟件定義和託管數據中心的轉變使現代數據中心基礎設施更加高效,並徹底改變了雲計算和邊緣計算,但它需要在不久的將來支持預期的工作負載,它仍處於起步階段。在不久的將來,人工智能、全自動運輸、8K 影像、工業 4.0 和人工現實等新技術將會出現,這將需要以接近零延遲的方式提供令人難以置信的計算能力。元界對數據中心流量水平的潛在需求是不可想像的。全球數據中心網路基礎設施需要有效地支持這些需求,同時應對諸如降低功率和熱量、提高可靠性和確保絕對安全性等挑戰。高速數據鏈路,包括銅纜和光纖,將在實現這些目標方面發揮重要作用。

自數據中心誕生以來,基於銅的電路一直是高速電子信號的主要介質。多年來,印刷電路板 (PCB)、電線和電纜組件中的銅導體具有良好的可靠性記錄。這項技術發展良好,擁有數十年的製造經驗,可從世界各地的供應商處獲得。

光纖具有多種技術優勢,例如近乎無限的寬頻、低信號損耗和長距離失真、減小尺寸和體積,以及與電磁干擾 (EMI) 和靜電放電 (ESD) 隔離。我有。早期的玻璃纖維極其脆弱、難以終止且成本高昂。在鏈路兩端執行電光轉換過程所需的組件增加了功率和熱量預算,佔用了寶貴的空間並增加了成本。光纖鏈路填補了從數百到數千英裡的長距離通信應用的有限利基。使用這種長度的銅線需要昂貴的放大器,這是不實用的,尤其是對於海底電纜。

除了數據中心之外,光纖的新用途最初將集中在特定行業,例如高性能計算 (HPC)、軍事和航空設備。憑藉經驗和較低的組件價格,商業化可以將光纖轉移到更主流的設備上,包括嵌入式計算機。光纖到戶 (FTTH) 已經為數百萬居民提供了帶寬增加的好處。未來,光纖可能會成為高速住宅數據傳輸的通用主幹,就像過去家庭和辦公室使用以太網電纜連接一樣。

本市場研究報告確定並比較了在傳統上使用銅電路的一系列應用中考慮的光纖通信的主要趨勢。了解連接器和傳輸技術等光學硬件的進步,以及未來的進步將如何使我們能夠滿足不斷變化的網絡流量需求。

長期以來,人們一直預測銅電路的廢除和光纖的替代今天仍在繼續,但隨著帶寬需求的增加,光通信對於日益增加的應用來說是一種具有成本效益的替代方案。將繼續提供這種手段。

目錄

第 1 章-調查範圍及調查方法

  • 報告的目的
  • 報告您調查的問題
  • 調查方法和途徑

第 2 章-執行摘要

  • 執行摘要

第 3 章-簡介

  • 銅線的優越性
  • 信號調理技術
  • 先進的調製技術
  • 渠道建模與仿真
  • 銅電路限制
  • 光纖替代品
  • 可插拔光模塊
  • 聯合封裝光學器件 (CPO)
  • 摩爾定律的終結和香農的極限
  • 新型光連接器進入市場

第 4 章-數據中心架構

  • 概覽
  • 基本數據中心架構
  • 雲端數據中心
  • 邊緣計算的興起
  • 不斷發展的數據中心趨勢
  • 分解網路
  • 分佈式網路
  • 改變數據流向
  • 數據中心架構“扁平化”
  • 電信網路架構
  • 數據中心面臨的挑戰

第 5 章 - 數據中心增長的驅動力

  • 數據中心增長的驅動力
  • 移動設備的快速增長
  • COVID19 世界病毒大流行
  • 雲計算
  • 邊緣計算
  • 物聯網 (IoT)
  • 工業物聯網(工業4.0)
  • 增強現實/虛擬現實
  • 傳感器浪湧
  • 5G 蜂窩通信
  • 增強寬帶可用性
  • 人工智能
  • 支持下一代交換機和路由器的功能
  • 自動駕駛
  • 遠程醫療監控和診斷
  • 節能
  • 現在增加容量很重要

第 6 章-高速銅連接器

  • 高速銅連接器

第 7 章-啟用高速銅連接

  • 啟用高速銅線連接
  • 高級信號調理
  • 高速信號測量與驗證
  • 散射參數
  • 先進的信號調製技術

第 8 章-高級光纖連接器

  • 先進的光纖連接器
  • 多纖連接器

第 9 章-啟用高速□□/電容式光纖連接

  • 實現高速/大容量光纖連接
  • 多芯光纖
  • 並行光纖鏈路
  • 波分複用
  • 相干檢測
  • 以太網
  • OIF 實施合同
  • COBO

第 10 章-高級光纖

  • 光纖傳輸基礎

第 11 章-銅線和光互連標準

  • 主要銅線和光通信標準組織
  • Standards Organizations
  • Ethernet
  • Institute of Electrical and Electronics Engineers (IEEE)
  • Optical Internetworking Forum (OIF)
  • InfiniBand Trade Association
  • Ethernet Technology Consortium
  • Fibre Channel Industry Association (FCIA)
  • PCI-SIG
  • Small Form Factor Committee
  • "Open" Standards Organizations
  • Open ZR+ Multisource Agreement (MSA)
  • Open ROADM MSA
  • Gen-Z Consortium
  • Consortium for On-Board Optics (COBO)
  • Open Compute Project
  • Open 19 Foundation
  • Open Power Foundation
  • The Open Disaggregated Transport Network Foundation Project
  • 800G Pluggable MSA
  • Open EYE Consortium (Open EYE MSA)
  • Open XR Forum
  • Additional Standards Organizations Include
  • Continuous-Wave Division Multiplexing MSA
  • Terabit BIDI MSA
  • Universal Chiplet Interconnect Express (UCIe)

第 12 章-可插拔光收發器

  • 為什麼是可插拔的?
  • 小型可插拔的演進
  • 電源/熱管理
  • 提高能源效率
  • 相干光端機

第 13 章-Box 中的電氣和光學連接

  • 替代銅解決方案
  • 不斷發展的板載光學引擎架構

第 14 章-市場統計

  • 簡介
  • 2019-2020 年用於計算機市場的世界上最快的銅端接連接器
  • 2020-2021年用於計算機市場的世界高速銅端接連接器
  • 2021-2022F計算機市場使用的世界高速銅端接連接器
  • 世界高速銅端接連接器應用於電腦市場2022-2027F,5年CAGR
  • 2019-2020年用於電信/數據通信市場的全球高速銅端接連接器
  • 用於電信/數據通信市場的全球高速銅端接連接器 2020-2021
  • 用於電信/數據通信市場的全球高速銅端接連接器 2021-2022
  • 全球用於電信/數據通信市場的高速銅端接連接器2022-2027F,5年CAGR
  • 2019-2020 年用於計算機和電信/數據通信市場的全球高速銅端接連接器
  • 2020-2021 年用於計算機和電信/數據通信市場的全球高速銅端接連接器
  • 用於計算機和電信/數據通信市場的全球高速銅端接連接器 2021-2022F
  • 全球高速銅端接連接器2022F-2027F用於計算機和電信/數據通信市場,5年CAGR
  • 2019-2020年全球計算機市場使用的高速光纖端接連接器
  • 2020-2021 年全球計算機市場使用的高速光纖端接連接器
  • 2021年至2022年計算機市場使用的全球高速光纖端接連接器
  • 全球計算機市場使用的高速光纖端接連接器2022-2027F,5年CAGR
  • 2019-2020年用於電信/數據通信市場的全球高速光纖端接連接器
  • 2020-2021 年用於電信/數據通信市場的全球高速光纖端接連接器
  • 2021 年至 2022 年用於電信/數據通信市場的全球高速光纖端接連接器
  • 全球電信/數據通信市場使用的高速光纖端接連接器 2022-2027F,5年CAGR
  • 2019-2020 年用於計算機和電信/數據通信市場的全球高速光纖端接連接器
  • 2020-2021 年用於計算機和電信/數據通信市場的全球高速光纖端接連接器
  • 用於計算機和電信/數據通信市場的全球高速光纖端接連接器 2021-2022F
  • 全球高速光纖端接連接器2022F-2027F用於計算機和電信/數據通信市場,5年CAGR
  • 2019-2020 年用於區域計算機市場的全球高速電纜組件
  • 世界上最快的用於計算機的電纜組件
  • 2020-2021 年區域市場
  • Region 2021-2022F 世界高速電纜組件用於另一個計算機市場
  • 區域 2022F-2027F,全球高速電纜組件用於計算機市場 5 年 CAGR
  • 2019-2020 年用於區域電信/數據通信市場的全球高速電纜組件
  • 2020-2021 年用於區域電信/數據通信市場的全球高速電纜組件
  • 用於區域電信/數據通信市場的全球高速電纜組件 2021-2022F
  • 用於區域電信/數據通信市場的全球高速電纜組件 2022F-2027F,5 年復合增長率
  • 2019-2020 年用於區域計算機和電信/數據通信市場的全球高速電纜組件
  • 2020-2021 年用於區域計算機和電信/數據通信市場的全球高速電纜組件
  • 用於區域計算機和電信/數據通信市場的全球高速電纜組件 2021-2022F
  • 全球高速電纜組件 2022F-2027F 用於區域計算機和電信/數據通信市場,5 年復合增長率

第 15 章-主要發現和結論

簡介目錄
Product Code: P-675-22

Report Summary:

How are high-speed copper and fiber optic interconnect continuing to evolve to support ever-increasing demand for higher bandwidth, signal integrity, longer reach, and increased face plate density while reducing total system power consumption and cost?

  • What applications will continue to drive exponential demand for data center capacity and speed? Are active optical cables a long-term solution or a transitional tool between copper and fiber networks? How do thermal management issues impact I/O connector selection?
  • What new fiber optic connectors have, or are being developed, to support the many new applications for optical links? Who are the manufacturers developing these and what key features do these interfaces incorporate?
  • Have we reached basic technology limits? What is co-packaged optics (CPO) and how does this approach affect power consumption? Panel density?
  • How have the current iterations of pluggable optical transceivers changed the market? What are the advantages of using pluggables?
  • What are some of the electrical and mechanical limitations associated with using copper? How does cable weight and bulk affect things like weight and cost?

Bishop & Associates' newest research report, ‘ ’Copper and Fiber Connectivity in the Data Center’ looks at what maybe the first steps of a major evolutionary change in the market for this class of interfaces. Be prepared for these steps. Order your copy of Copper and Fiber Connectivity in the Data Center.

Additional Details:

The data center has grown from its original concept as a central location for computing and storage hardware to the data center of today that is at the epicenter of connection of nearly every aspect of our digitized lives. Data centers have evolved from single client on-premises facilities that were isolated from the world to multi-acre hyperscale facilities that contain thousands of servers and act as nodes in a globally connected high-speed network.

The past 30 years have seen massive adoption of new computing technologies including virtualization that enabled dynamic adaptation to support constantly changing resource demands. Widespread adoption of the Internet and the literally millions of subsequent applications together with the advent of streaming video has driven Internet traffic to incredible levels. The transition to software defined and managed data centers increased the efficiency of modern data center infrastructure and ushered in the cloud and edge computing revolution, but we are only at an early stage in what will be required to support the workload expected in the near future. Looming on the horizon are emerging technologies including artificial intelligence, fully autonomous transportation, 8K video, Industry 4.0, and artificial reality that will demand incredible computing power delivered with nearly zero latency. The potential demands that the metaverse could add to the level of data center traffic is unimaginable. The infrastructure of the global data center network will be tasked with efficiency supporting these demands while addressing challenges in power and heat reduction, and improved reliability, while assuring absolute security. High-speed data links, both copper and fiber optic will play critical roles in achieving each of these objectives.

Copper based circuits have been the primary media choice for high-speed electronic signals within the data center since its beginning years. Copper conductors in printed circuit boards (PCB), wire and cable assemblies have a proven track record of reliability over many years. The technology is well developed and supported with decades of manufacturing experience available from a universe of global vendors.

Fiber offers multiple technical advantages including, near unlimited bandwidth, low signal loss and distortion over long distances, reduced size and bulk, as well as isolation from electromagnetic interference (EMI) and electrostatic discharge (ESD). Early glass fiber was extremely fragile, difficult to terminate and costly. Components required to perform the electro-optic conversion process at both ends of a link added to the power and heat budget, consumed valuable space as well as added cost. Fiber optic links filled a limited niche in long-haul telecommunication applications that could extend for hundreds or thousands of miles. To use copper cables in lengths that long would require many expensive amplifiers, making copper impractical especially in undersea cables.

In addition to the data center, emerging applications of fiber will initially be concentrated in select industries including high performance computing (HPC), military, and avionic. As experience is gained and component prices decline, commercialization will allow the migration of fiber into more mainstream equipment including embedded computers. Fiber to the home (FTTH) has already brought the advantages of increased bandwidth to millions of residents. It is possible in the future that as homes and offices in the past were wired with Ethernet cable, fiber will become a universal backbone of high-speed residential data distribution in the future.

This market research report identifies and compares the leading trends that are driving the consideration of fiber optic communication in an expanding range of applications that have traditionally been served by copper electrical circuits. Advances in optical hardware including connectors as well as transmission technology is discussed along with how future advances will enable support of evolving network traffic demands.

The long-predicted demise and replacement of copper circuitry by fiber optic alternatives, remains just that, but as bandwidth demands continue to rise, optical transmission will continue to offer a cost-effective alternative in a gradually increasing number of applications.

Table of Contents

Chapter 1 - Report Scope and Methodology

  • Report Objectives
  • Report Issues Explored
  • Methodology and Approach

Chapter 2 - Executive Summary

  • Executive Summary

Chapter 3 - Introduction

  • Dominance of Copper Interconnects
  • Signal Conditioning Technology
  • Advanced Modulation Technology
  • Channel Modeling and Simulation
  • Limitations of Copper Circuits
  • The Fiber Optic Alternative
  • Pluggable Optical Transceivers
  • Co-Packaged Optics (CPO)
  • The End of Moore's Law and the Shannon Limit
  • New Optical Connectors Entering the Market

Chapter 4 - Data Center Architecture

  • Overview
  • Basic Data Center Architecture
  • Cloud Data Centers
  • The Rise of Edge Computing
  • Evolving Data Center Trends
  • Disaggregated Networks
  • Distributed Networks
  • Data Flow Direction Change
  • "Flattening" of Data Center Architecture
  • Telecom Network Architecture
  • Challenges Facing Data Centers

Chapter 5 - Drivers of Data Center Growth

  • Drivers of Data Center Growth
  • Proliferation of Mobile Devices
  • COVID 19 Global Virus Pandemic
  • Cloud Computing
  • Edge Computing
  • Internet of Things (IoT)
  • Industrial Internet of Things (Industry 4.0)
  • Augmented Reality / Virtual Reality
  • Proliferation of Sensors
  • 5G Cellular Communications
  • Expanded Broadband Availability
  • Artificial Intelligence
  • Ability to Support Next Generation Switches and Routers
  • Autonomous Transportation
  • Remote Healthcare Monitoring and Diagnostics
  • Energy Reduction
  • Imperative to Increase Capacity Now

Chapter 6 - High-Speed Copper Connectors

  • High-Speed Copper Connectors

Chapter 7 - Enabling High-Speed Copper Connectivity

  • Enabling High-Speed Copper Connectivity
  • Advanced Signal Conditioning
  • High-Speed Signal Measurement and Verification
  • Scattering Parameters
  • Advanced Signal Modulation Techniques

Chapter 8 - Advanced Fiber Optic Connectors

  • Advanced Fiber Optic Connectors
  • Multi-Fiber Connectors

Chapter 9 - Enabling High-Speed / Capacity Fiber Optic Connectivity

  • Enabling High-Speed / Capacity Fiber Optic Connectivity
  • Multicore Fiber
  • Parallel Fiber Links
  • Wavelength Division Multiplexing
  • Coherent Detection
  • Ethernet
  • OIF Implementation Agreements
  • COBO

Chapter 10 - Advanced Optical Fiber

  • Basics of Fiber Optic Transmission

Chapter 11 - Copper and Optical Interconnect Standards

  • Major Copper and Optical Communication Standards Organizations
  • Ethernet
  • Institute of Electrical and Electronics Engineers (IEEE)
  • Optical Internetworking Forum (OIF)
  • InfiniBand Trade Association
  • Ethernet Technology Consortium
  • Fibre Channel Industry Association (FCIA)
  • PCI-SIG
  • Small Form Factor Committee
  • "Open" Standards Organizations
  • Open ZR+ Multisource Agreement (MSA)
  • Open ROADM MSA
  • Gen-Z Consortium
  • Consortium for On-Board Optics (COBO)
  • Open Compute Project
  • Open 19 Foundation
  • Open Power Foundation
  • The Open Disaggregated Transport Network Foundation Project
  • 800G Pluggable MSA
  • Open EYE Consortium (Open EYE MSA)
  • Open XR Forum
  • Additional Standards Organizations Include
  • Continuous-Wave Division Multiplexing MSA
  • Terabit BIDI MSA
  • Universal Chiplet Interconnect Express (UCIe)

Chapter 12 - Pluggable Optical Transceivers

  • Why Pluggables?
  • Evolution of Small Form Factor Pluggables
  • Power / Thermal Management
  • Increased Energy Efficiency
  • Coherent Optical Transceivers

Chapter 13 - Electrical and Optical Connectivity Inside the Box

  • Alternative Copper Solutions
  • Evolving On-Board Optical Engine Architecture

Chapter 14 - Market Statistics

  • Introduction
  • World High-Speed Copper Terminated Connectors Used in the Computer Market 2019-2020
  • World High-Speed Copper Terminated Connectors Used in the Computer Market 2020-2021
  • World High-Speed Copper Terminated Connectors Used in the Computer Market 2021-2022F
  • World High-Speed Copper Terminated Connectors Used in the Computer Market 2022F-2027F with 5-Year CAGR
  • World High-Speed Copper Terminated Connectors Used in the Telecom/Datacom Market 2019-2020
  • World High-Speed Copper Terminated Connectors Used in the Telecom/Datacom Market 2020-2021
  • World High-Speed Copper Terminated Connectors Used in the Telecom/Datacom Market 2021-2022
  • World High-Speed Copper Terminated Connectors Used in the Telecom/Datacom Market 2022F-2027F with 5-Year CAGR
  • World High-Speed Copper Terminated Connectors Used in the Computer & Telecom/Datacom Market 2019-2020
  • World High-Speed Copper Terminated Connectors Used in the Computer & Telecom/Datacom Market 2020-2021
  • World High-Speed Copper Terminated Connectors Used in the Computer & Telecom/Datacom Market 2021-2022F
  • World High-Speed Copper Terminated Connectors Used in the Computer & Telecom/Datacom Market 2022F- 2027F with 5-Year CAGR
  • World High-Speed Fiber Terminated Connectors Used in the Computer Market 2019 - 2020
  • World High-Speed Fiber Terminated Connectors Used in the Computer Market 2020 - 2021
  • World High-Speed Fiber Terminated Connectors Used in the Computer Market 2021 - 2022F
  • World High-Speed Fiber Terminated Connectors Used in the Computer Market 2022F - 2027F with 5-Year CAGR
  • World High-Speed Fiber Terminated Connectors Used in the Telecom/Datacom Market 2019 - 2020
  • World High-Speed Fiber Terminated Connectors Used in the Telecom/Datacom Market 2020 - 2021
  • World High-Speed Fiber Terminated Connectors Used in the Telecom/Datacom Market 2021 - 2022F
  • World High-Speed Fiber Terminated Connectors Used in the Telecom/Datacom Market 2022F - 2027F with 5-Year CAGR
  • World High-Speed Fiber Terminated Connectors Used in the Computer & Telecom/Datacom Market 2019 - 2020
  • World High-Speed Fiber Terminated Connectors Used in the Computer & Telecom/Datacom Market 2020 - 2021
  • World High-Speed Fiber Terminated Connectors Used in the Computer & Telecom/Datacom Market 2021 - 2022F
  • World High-Speed Fiber Terminated Connectors Used in the Computer & Telecom/Datacom Market 2022F - 2027F with 5-Year CAGR
  • World High-Speed Cable Assemblies Used in the Computer Market by Region 2019 - 2020
  • World High-Speed Cable Assemblies Used in the Computer
  • Market by Region 2020 - 2021
  • World High-Speed Cable Assemblies Used in the Computer Market by Region 2021 - 2022F
  • World High-Speed Cable Assemblies Used in the Computer Market by Region 2022F - 2027F with 5-Year CAGR
  • World High-Speed Cable Assemblies Used in the Telecom/Datacom Market by Region 2019 - 2020
  • World High-Speed Cable Assemblies Used in the Telecom/Datacom Market by Region 2020 - 2021
  • World High-Speed Cable Assemblies Used in the Telecom/Datacom Market by Region 2021 - 2022F
  • World High-Speed Cable Assemblies Used in the Telecom/Datacom Market by Region 2022F - 2027F with 5-Year CAGR
  • World High-Speed Cable Assemblies Used in the Computer & Telecom/Datacom Market by Region 2019 - 2020
  • World High-Speed Cable Assemblies Used in the Computer & Telecom/Datacom Market by Region 2020 - 2021
  • World High-Speed Cable Assemblies Used in the Computer & Telecom/Datacom Market by Region 2021 - 2022F
  • World High-Speed Cable Assemblies Used in the Computer & Telecom/Datacom Market by Region 2022F - 2027F with 5-Year CAGR

Chapter 15 - Major Findings and Conclusions