市場調查報告書

通訊基礎設施經營者的資料管理:改善行動通訊業者關係的配合措施

Towerco Data Management: Improving the Relationship with MNOs

出版商 Analysys Mason 商品編碼 892960
出版日期 內容資訊 英文 6 Slides
商品交期: 最快1-2個工作天內
價格
Back to Top
通訊基礎設施經營者的資料管理:改善行動通訊業者關係的配合措施 Towerco Data Management: Improving the Relationship with MNOs
出版日期: 2019年07月23日內容資訊: 英文 6 Slides
簡介

近年來行動通訊業者 (MNO)常將其基地台的業務外包給獨立型的通訊基礎設施經營者,但由於數據管理和分析方法截然不同,產生不少合作關係問題的案例。與這些技術相比,Towercos在這些技術上投入的資金要少得多,這可能會限制他們為這種關係帶來的價值,並可能限制他們擴展到新業務模式的選擇。

本報告提供通訊基礎設施經營者的資料管理措施選擇詳細分析。

主要的內容

  • 基於對48個通訊基礎設施經營者的獨特調查,深入了解通訊基礎設施經營者方面的資料管理狀況
  • 關於何通過短期和長期選擇為數據管理和分析投資提供強力商業案例的具體建議
  • 分析投資將如何支持通訊基礎設施經營者擴展其業務模式的新機會,轉移到新類型的網站和資產,或為租戶提供增值服務
  • 為MNO提供關於如何與通訊基礎設施經營者合作以建立通用框架和增強行動網絡視覺化的建議
  • 評估市場上可用的解決方案,以及機器學習等新興方法。
目錄

"Towercos' revenue growth may stall if they do not invest in modern data management strategies."

Mobile network operators (MNOs) are increasingly outsourcing their cell sites to neutral host towercos, but problems in the MNO-towerco relationship often arise because of very different approaches to data management and analytics. Towercos have invested far less in these technologies than MNOs, which may limit the value that they can bring to the relationship, and may restrict their options to expand into new business models.

This report provides:

  • a deep overview of the state of data management in the towerco business, based on a unique survey of 48 towercos and mobile operator tower divisions
  • concrete recommendations for the ways in which towercos could make a strong business case for investment in data management and analytics, with short-term and long-term options
  • analysis of how that investment would support new opportunities for towercos to extend their business models, by moving into new types of sites and assets, or by providing value-added services for tenants
  • recommendations for MNOs about how to work with towercos in order to establish common frameworks and enhance the visibility of the mobile network
  • an assessment of the solutions available on the market, and emerging approaches such as machine learning.
Back to Top